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ABSTRACT
The World Wide Web Consortium (W3C) recently intro-
duced property paths in SPARQL 1.1, a query language for
RDF data. Property paths allow SPARQL queries to evalu-
ate regular expressions over graph data. However, they differ
from standard regular expressions in several notable aspects.
For example, they have a limited form of negation, they have
numerical occurrence indicators as syntactic sugar, and their
semantics on graphs is defined in a non-standard manner.

We formalize the W3C semantics of property paths and
investigate various query evaluation problems on graphs.
More specifically, let x and y be two nodes in an edge-labeled
graph and r be an expression. We study the complexities
of (1) deciding whether there exists a path from x to y that
matches r and (2) counting how many paths from x to y
match r. Our main results show that, compared to an al-
ternative semantics of regular expressions on graphs, the
complexity of (1) and (2) under W3C semantics is signifi-
cantly higher. Whereas the alternative semantics remains
in polynomial time for large fragments of expressions, the
W3C semantics makes problems (1) and (2) intractable al-
most immediately.

As a side-result, we prove that the membership problem
for regular expressions with numerical occurrence indicators
and negation is in polynomial time.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: General; H.2.3 [Database Management]: Languages—
query languages
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1. INTRODUCTION
The Resource Description Framework (RDF) is a data

model developed by the World Wide Web Consortium (W3C)
to represent linked data on the Web. The underlying idea
is to improve the way in which data on the Web is read-
able by computers and to enable new ways of querying Web
data. In its core, RDF represents linked data as an edge-
labeled graph. The de facto language developed by the W3C
for querying RDF data is the SPARQL Protocol and RDF
Query Language (SPARQL).

Recently, the W3C decided to boost SPARQL 1.1 with
extensive navigational capabilities by the introduction of
property paths [25]. Property paths closely correspond to
regular expressions and are a crucial tool in SPARQL if one
wants to perform non-trivial navigation through RDF data.
In the current working draft, property paths are not de-
fined as standard regular expressions, but some syntactic
sugar is added. Notably, property paths can use numeri-
cal occurrence indicators (making them exponentially more
succinct than standard regular expressions) and a limited
form of negation. Furthermore, their semantics is different
from usual definitions of regular expressions on graphs. In
particular, when evaluating a regular expression, the W3C
semantics requires some subexpressions to be matched onto
simple walks,1 whereas other subexpressions can be matched
onto arbitrary paths.

Property paths are very fundamental in SPARQL. For ex-
ample, the SPARQL query of the form SELECT ?x,?y WHERE

{?x r ?y} asks for pairs of nodes (x, y) such that there is a
path from x to y that matches the property path r. In fact,
according to the SPARQL definition, the output of such a
query is a multiset in which each pair of nodes (x, y) of the
graph occurs as often as the number of paths from x to y
that match r under W3C semantics. By only allowing cer-
tain subexpressions to match simple walks, the W3C there-
fore ensures that the number of paths that match a property
path is always finite.

The amount of available RDF data on the Web has grown
steadily over the last decade [6]. Since it is highly likely to
become more and more important in the future, we are con-
vinced that investigating foundational aspects of evaluating
regular expressions and property paths over graphs is a very
relevant research topic. We therefore make the following
contributions.

We investigate the complexity of two problems which we
believe to be central for query processing on graph data. In

1A simple walk is a path that does not visit the same node
twice, but is allowed to return to its first node.



the Evaluation problem, one is given a graph, two nodes x
and y, and a regular expression r, and one is asked whether
there exists a path from x to y that matches r. In the
Counting problem, one is asked how many paths from x
to y match r. Notice that, according to the W3C definition,
the answer to the above SELECT query needs to contain the
answer to the Counting problem in unary notation.

Our theoretical investigation is motivated by an experi-
mental analysis on several popular SPARQL processors that
reveals that they deal with property paths very inefficiently.
Already for solving the Evaluation problem, all systems
we found require time double exponential in the size of the
queries in the worst case. We show that it is, in princi-
ple, possible to solve Evaluation much more quickly: For
a graph G and an expression with numerical occurrence in-
dicators r, we can test whether there is a path from x to y
that matches r in polynomial time combined complexity.

We then investigate deeper reasons why evaluation of prop-
erty paths is so inefficient in practice. In particular, we per-
form an in-depth study on the influence of some W3C de-
sign decisions on the computational complexity of property
path evaluation. Our study reveals that the high processing
times can be partly attributed already to the SPARQL 1.1
definition from the W3C. We formally define two kinds of
semantics for property paths: regular path semantics and
simple walk semantics. Here, simple walk semantics is our
formalization of the W3C’s semantics for property paths.
Under regular path semantics, a path in an edge-labeled
graph matches a regular expression if the concatenation of
the labels on the edges is in the language defined by the
expression.

We prove that, under regular path semantics, Evalua-
tion remains tractable under combined query evaluation
complexity, even when numerical occurrence indicators are
added to regular expressions. In contrast, under simple walk
semantics, Evaluation is already NP-complete for the regu-
lar expression (aa)∗. (So, it is NP-complete under data com-
plexity.) We also identify a fragment of expressions for which
Evaluation under simple walk semantics is in PTIME but,
we prove that Evaluation under simple walk semantics for
this fragment is the same problem than Evaluation under
regular path semantics.

The picture becomes perhaps even more striking for the
Counting problem. Under regular path semantics, we pro-
vide a detailed chart of the tractability frontier. When the
expressions are deterministic, then Counting can be solved
in polynomial time. However, even for expressions with
a very limited amount of non-determinism, Counting be-
comes #P-complete. Under simple walk semantics, Count-
ing is already #P-complete for the regular expression a∗.
Essentially, this shows that, as soon as the Kleene star oper-
ator is used, Counting is #P-complete under simple walk
semantics. All fragments we found for which Counting is
tractable under simple walk semantics are tractable because,
for these fragments, simple walk semantics equals regular
path semantics.

Our complexity results are summarized in Table 2. One
result that is not in the table but may be of independent
interest is the word membership problem for regular ex-
pressions with numerical occurrence indicators and negation.
We prove this problem to be in PTIME in Theorem 3.3.

Since the W3C’s specification for SPARQL 1.1 is still
under development, we want to send a strong message to

the W3C that informs them of the computational complex-
ity repercussions of their design decisions; and what could
be possible if the semantics of property paths were to be
changed. Based on our observations, a semantics for prop-
erty paths that is based on regular path semantics seems to
be recommendable from a computational complexity point
of view. We propose some concrete ideas in Section 6.

Related Work and Further Literature.
This paper studies evaluation problems of regular expres-

sions on graphs. Regular expressions as a language for query-
ing graphs have been studied in the database literature for
more than a decade, sometimes under the name of regular
path queries or general path queries [1, 10, 16, 17, 19, 41].
Various problems for regular path queries have been investi-
gated in the database community, such as optimization [2],
query rewriting and query answering using views [13, 12],
and containment [11, 18, 20]. Recently, there has been a re-
newed interest in path expressions on graphs, for example,
on expressions with data value comparisons [31].

Regular path queries have also been studied in the context
of program analysis. For example, evaluation of path queries
on graphs has been studied by Liu et al. [32]. However,
their setting is different in the sense that they are interested
in a universal semantics of the queries. That is, they are
searching for pairs of nodes in the graph such that all paths
between them match the given expression.

On a technical level, the most closely related work is
on regular expressions with numerical occurrence indicators
and on the complexity of SPARQL. Regular expressions with
numerical occurrence indicators have been investigated in
the context of XML schema languages [15, 14, 22, 23, 29,
28] since they are a part of the W3C XML Schema Lan-
guage [21]. One of our PTIME upper bounds builds directly
on Kilpeläinen and Tuhkonen’s algorithm for membership
testing of a regular expression with numerical occurrence
indicators [28].

To the best of our knowledge, the present paper is the first
one that studies the complexity of full property paths (i.e.,
regular expressions with numerical occurrence indicators) in
SPARQL. Property paths without numerical occurrence in-
dicators have been studied in [37, 3, 5]. Most closely related
to us is Arenas et al. [5], which is conducted independently
from us and which complements our work in several respects.
The authors study the complexity of computing the answer
to SPARQL SELECT queries using property paths without
numerical occurrence indicators. They focus their study on
the ALP procedure in [25], which defines the semantics of
property paths on a very detailed level. Instead, we focus
on a more high-level semantics of property paths, namely
the definition of the operators ZeroOrMorePath and One-
OrMorePath in the SPARQL Algebra in [25]. Further work
on the complexity of SPARQL query evaluation can be found
in [36, 38]. We refer to [6] for further references on research
on RDF databases and query languages.

2. PRELIMINARIES
For the rest of the paper, ∆ always denotes a countably

infinite set. We use ∆ to model the set of IRIs and prefixed
names from the SPARQL specification. We assume that we
can test for equality between elements of ∆ in constant time.

A ∆-symbol (or simply symbol) is an element of ∆, and a
∆-string (or simply string) is a finite sequence w = a1 · · · an



of ∆-symbols. We define the length of w, denoted by |w|, to
be n. We denote the empty string by ε. The set of positions
of w is {1, . . . , n} and the symbol of w at position i is ai. By
w1 · w2 we denote the concatenation of two strings w1 and
w2. For readability, we usually denote the concatenation of
w1 and w2 by w1w2. The set of all strings is denoted by
∆∗. A string language is a subset of ∆∗. For two string
languages L,L′ ⊆ ∆∗, we define their concatenation L · L′
to be the set {ww′ | w ∈ L,w′ ∈ L′}. We abbreviate L ·
L · · ·L (i times) by Li. The set of regular expressions over
∆, denoted by RE, is defined as follows: ε and every ∆-
symbol is a regular expression; and when r and s are regular
expressions, then (rs), (r + s), (r?), (r∗), and (r+) are also
regular expressions. (Usually we omit braces to improve
readability.) We consider the following additional operators
for regular expressions:

Numerical Occurrence Indicators: If k ∈ N and ` ∈
N+ ∪∞ with k ≤ `, then (rk,`) is a regular expression.

Negation: If r is a regular expression, then so is (¬r).
Negated label test: If {a1, . . . , an} is a non-empty, finite
subset of ∆, then !{a1, . . . , an} is a regular expression.

Wildcard: The symbol • (/∈ ∆) is a regular expression.

By RE(X ) we denote the set of regular expressions with
additional features X ⊆ {#,¬, •, !} where “#” stands for
numerical occurrence indicators, “¬” for negation, “!” for the
negated label test, and “•” for the single-symbol wildcard.
For example, RE(#) denotes the set of regular expressions
with numerical occurrence indicators and RE(#,¬, •) is the
set of regular expressions with numerical occurrence indica-
tors, negation, and wildcard. We are particularly interested
in the following class of expressions.

Definition 2.1. The set of SPARQL Regular Expressions
or SPARQL Property Paths is the set RE(#, !, •).2

We consider edge-labeled graphs. A graph G will be de-
noted as G = (V,E), where V is the set of nodes of G and
E ⊆ V ×∆×V is the set of edges. An edge e is therefore of
the form (u, a, v) if it goes from node u to node v and bears
the label a. When we don’t care about the label of an edge,
we sometimes also write an edge as a pair (u, v) in order to
simplify notation. We assume familiarity with basic termi-
nology on graphs. A path from node x to node y in G is a
sequence p = v0[a1]v1[a2]v2 · · · vn−1[an]vn such that v0 = x,
vn = y, and (vi−1, ai, vi) is an edge for each i = 1, . . . , n.
When we are not interested in the labels on the edges, we
sometimes also write p = v0v1 . . . vn. We say that path p
has length n. Notice that a path of length zero does not fol-
low any edges. The labeled string induced by the path p in
G is a1 · · · an and is denoted by labG(p). If G is clear from
the context, we sometimes also simply write lab(p). We de-
fine the concatenation of paths p1 = v0[a1]v1 · · · vn−1[an]vn
and p2 = vn[an+1]vn1 · · · vn+m−1[an+m]vn+m to be the path
p1p2 := v0[a1]v1 · · · vn−1[an]vn[an+1]vn1 · · · vn+m−1[an+m]vn+m.

Regular Path Semantics.
The language defined by an expression r, denoted by L(r),

is inductively defined as follows: L(ε) = {ε}; L(a) = {a};
L(!{a1, . . . , an}) = ∆ − {a1, . . . , an}; L(•) = ∆; L(rs) =

2In this paper, we mostly refer to these expressions as
“SPARQL regular expressions” to avoid confusion between
expressions and paths.

L(r) ·L(s); L(r+s) = L(r)∪L(s); L(r∗) = {ε}∪
⋃∞

i=1 L(r)i,

L(rk,`) =
⋃`

i=k L(r)i; and, L(¬r) = ∆∗ − L(r). Further-
more, L(r?) = ε + L(r) and L(r+) = L(r)L(r∗).3 The size
of a regular expression r over ∆, denoted by |r|, is the num-
ber of occurrences of ∆-symbols, •-symbols, and operators
occurring in r, plus the sizes of the binary representations of
the numerical occurrence indicators. We say that a path p
matches a regular expression r under regular path semantics
if lab(p) ∈ L(r).

Simple Walk Semantics (Semantics in SPARQL).
A simple path is a path v0v1 · · · vn−1vn, where each node vi

occurs exactly once. A simple cycle is a path v0v1 · · · vn−1vn
such that v0 = vn and every vi for i = 1, . . . , n − 1 occurs
exactly once. We say that a simple walk is either a simple
path or a simple cycle. In the SPARQL 1.1 definition, the
W3C specifies the following constraint, which we call“simple
walk requirement”:

Simple Walk Requirement: Subexpressions of the form
r∗ and r+ should be matched to simple walks.

The W3C SPARQL algebra (Section 18.4 of [25]) defines
the semantics of r∗ and r+ through its operators ZeroOr-
MorePath and OneOrMorePath. It is not clear to us whether
the currently stated definition only allows simple paths or
simple walks to match. Our complexity results hold for both
options.

Let p = v0[a1]v1[a2]v2 · · · vn−1[an]vn be a path and r be
a SPARQL regular expression. Then p matches r under
simple walk semantics if one of the following holds:

• If r = ε, r = a ∈ ∆, r = •, or r = !{a1, . . . , an} then
lab(p) ∈ L(r).

• If r = s∗ or r = s+, then lab(p) ∈ L(r) and p is a simple
walk.

• If r = s?, then either p = v0 or p matches s under simple
walk semantics.

• If r = s1 · s2, then there exist paths p1 and p2 such that
p = p1p2 and pi matches si under simple walk semantics
for all i = 1, 2.

• If r = s1 + s2, then there exists an i = 1, 2 such that p
matches si under simple walk semantics.

• If r = sk,` with ` 6=∞, then there exists paths p1, . . . , pm
with k ≤ m ≤ ` such that p = p1 · · · pm and pi matches s
under simple walk semantics for each i = 1, . . . ,m.

• If r = sk,∞, then there exist paths p1 and p2 such that
p = p1p2, p1 matches sk,k under simple walk semantics,
and p2 matches s∗ under simple walk semantics.

Notice that, under simple walk semantics, we no longer have
that a∗ is equivalent to a∗a∗, that a1,∞ is equivalent to a+,
or that aa∗ is equivalent to a+. However, aa∗ is equivalent to
a1,∞. For the expression (a+ b)50,60 regular path semantics
and simple walk semantics coincide.

Problems of Interest.
We will often consider a graph G = (V,E) together with

a source node x and a target node y, for example, when
considering paths from x to y. We say that (V,E, x, y) is
the s-t graph of G w.r.t. x and y. Sometimes we leave the

3We do not define r+ as an abbreviation of rr∗ since r+ and
rr∗ have different semantics in SPARQL.



facts that x and y are source and target implicit and just
refer to (V,E, x, y) as a graph.

We consider two paths p1 = v10 [a11]v11 · · · [a1n]v1n and p2 =
v20 [a21]v21 · · · [a2m]v2m in a graph to be different, if either the
sequences of nodes or the sequences of labels are different,
i.e., v10v

1
1 · · · v1n 6= v20v

2
1 · · · v2m or lab(p1) 6= lab(p2). Notice

that this implies that we consider two paths going through
the same sequence of nodes but using different edge labels
to be different.

We are mainly interested in the following problems, which
we consider under regular path semantics and under simple
walk semantics:

Evaluation: Given a graph (V,E, x, y) and a regular ex-
pression r, is there a path from x to y that matches r?

Finiteness: Given a graph (V,E, x, y) and a regular expres-
sion r, are there only finitely many different paths from x to
y that match r?

Counting: Given a graph (V,E, x, y), a regular expression
r and a natural number max in unary, how many different
paths of length at most max between x and y match r?

The Counting problem is closely related to two problems
studied in the literature: (1) counting the number of words
of a given length in the language of a regular expression and
(2) counting the number of paths in a graph that match
certain constraints. We chose to have the number max in
unary because this was also the case in several highly rele-
vant papers on (1) and (2) (e.g., [27, 4, 40]). Furthermore, it
strengthens our hardness results. However, our polynomial-
time results for Counting still hold when the number max
is given in binary (Theorems 4.4 and 3.11).

We will often parameterize the problems with the kind
of regular expressions or automata we consider. For exam-
ple, when we talk about Evaluation for RE(#,¬), then we
mean the Evaluation problem where the input is a graph
(V,E, x, y) and an expression r in RE(#,¬).

3. THE EVALUATION PROBLEM
We conducted a practical study on the efficiency in which

SPARQL engines evaluate property paths. We evaluated
the most prevalent SPARQL query engines which support
property paths, namely the Jena Semantic Web Framework
(which is used in, e.g., ARQ), Sesame, RDF::Query, and
Corese 3.0.4 We asked the four frameworks to answer the
query ASK WHERE { x (a|b){1,k} y } for increasing values
of k on the graph

x y
a

a

b

b

consisting of two nodes and four labeled edges. Formally,
this corresponds to answering the Evaluation problem on
the above graph for the expression (a + b)1,k. Notice that
the answer is always “true”. Furthermore, notice that this
query has the same semantics under regular path semantics
as under simple walk semantics.

The performance of three of the four systems is depicted
in Figure 1. The results are obtained from evaluation on a
4RDF3X was also recommended to us as a benchmark sys-
tem but, as far as we could see, it does not support property
paths.
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Figure 1: Time taken by Jena, Sesame and
RDF::Query for evaluating the expression (a + b)1,k

for increasing values of k on a graph with two nodes
and four edges.

desktop PC with 2 GB of RAM. For the Jena and Sesame
framework the points in the graph depict all the points we
could obtain data on. When we increased the number k by
one more as shown on the graphic, the systems ran out of
memory. Our conclusion from our measurements is that all
three systems seem to exhibit a double exponential behavior:
from a certain point, whenever we increase the number k by
one (which does not mean that one more bit is needed to
represent it), the processing time doubles. Corese 3.0 evalu-
ated queries of the above form very quickly. However, when
we asked the query ASK WHERE {x ((a|b)/(a|b)){1,k} y},
which asks for the existence of even length paths, its time
consumption was the same than the other three systems. In
contrast to the other three systems, Corese did not run out
of memory so quickly. We note that Arenas, Conca, and
Pérez [5] observed double exponential behavior for SELECT

queries in an independent study. However, ASK queries are
easier to evaluate since they only ask for a Boolean answer.

3.1 An Efficient Algorithm for Regular Path
Semantics

We show that the double exponential behavior we ob-
served in practice can be improved to polynomial-time com-
bined complexity. In particular, we present a polynomial-
time algorithm for Evaluation of SPARQL regular expres-
sions.

We briefly discuss some basic results on evaluating regular
expressions on graphs. Evaluation is in PTIME for stan-



dard regular expressions.5 In this case, the problem basically
boils down to testing intersection emptiness of two finite au-
tomata: one converts the graph G with the given nodes x
and y into a finite automaton AG by taking the nodes of G
as states, the edges as transitions, x as its initial state and
y as its accepting state. The expression r is converted into
a finite automaton Ar by using standard methods. Then,
there is a path from x to y in G that matches r if and only if
the intersection of the languages of AG and Ar is not empty,
which can easily be tested in polynomial time. Pérez et al.
have shown that the product construction of automata can
even be used for a linear-time algorithm for evaluating nested
regular path expressions, which are regular expressions that
have the power to branch out in the graph [37].

The polynomial time algorithm for Evaluation of RE(#, !, •)-
expressions follows a dynamic programming approach. We
first discuss the main idea of the algorithm and then discuss
its complexity. Let r be an RE(#, !, •)-expression and let
G = (V,E) be a graph. Our algorithm traverses the syntax
tree of r in a bottom-up fashion. To simplify notation in the
following discussion, we identify nodes from the parse tree of
r to their corresponding subexpressions. We store, for each
node in the syntax tree with associated subexpression s, a
binary relation Rs ⊆ V × V such that

(u, v) ∈ Rs if and only if
there exists a path from u to v in G that matches s.

The manner in which we join relations while going bottom-
up in the parse tree depends on the type of the node. We
discuss all possible cases next.

If s is a ∆-symbol, then Rs := {(u, v) | (u, s, v) ∈ E}.
If s = ε, then Rs := {(u, u) | u ∈ V }.
If s =!{a1, . . . , an}, thenRs := {(u, v) | ∃a ∈ ∆−{a1, . . . , an}
with (u, a, v) ∈ E}.

If s = •, then Rs := {(u, v) | ∃a ∈ ∆ with (u, a, v) ∈ E}.
If s = s1 + s2, then Rs = Rs1 ∪Rs2 .

If s = s1 · s2, then Rs := π1,3(Rs1 ./
Rs1 .2=Rs2 .1

Rs2), where

./
Rs1

.2=Rs2
.1

denotes the ternary relation obtained by joining

Rs1 and Rs2 by pairing tuples that agree on the right col-
umn of Rs1 and the left column on Rs2 . Furthermore, π1,3

denotes the projection of these triples onto the leftmost and
rightmost column.

If s = s∗1, then Rs is the reflexive and transitive closure of
Rs1 .

If s = s+1 , then Rs is the transitive closure of Rs1 .

If s = sk1 , then consider the connectivity matrix Ms1 of pairs
that match s1 in G. That is, for each pair of nodes (u, v)
in G, we have that Ms1 [u, v] = 1 if and only if (u, v) ∈ Rs1

and Ms1 [u, v] = 0 otherwise. Notice that Ms1 is a |V | × |V |
matrix. Then Rs := {(u, v) | Mk

s1 [u, v] 6= 0}, where Mk
s1

denotes the matrix Ms1 to the power of k.

If s = sk,∞1 , then Rs is the relation for the expression sk1 ·s∗1.

If s = sk,`1 and ` 6= ∞, then let Ms1 be the same matrix
as we used in the sk1 case. Let M ′s1 be the matrix obtained
from Ms1 by setting M ′s1 [u, v] := 1 if u = v. Therefore we
have that M ′s1 [u, v] := 1 if and only if v is reachable from

5This has already been observed in the literature several
times, e.g., as Lemma 1 in [35], on p.7 in [2], and in [3].
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(a) Part of a run on the expression (b + c)∗b3,5 and the
graph in Fig. 2(b).
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(b) An edge-labeled graph.

Figure 2: Illustration of the polynomial-time dy-
namic programming algorithm.

u by a path that matches s1 zero or one times. Let Ms :=
(Ms1)k · (M ′s1)`−k. Then, Rs := {(u, v) |Ms[u, v] 6= 0}.
Finally, if the input for Evaluation is G, nodes x and y,
and RE(#, !, •)-expression r, we return the answer “true” if
and only if Rr contains the pair (x, y).

Example 3.1. Figure 2 illustrates part of a run of the
evaluation algorithm on the graph in Figure 2(b) and the
regular expression r = (b + c)∗b3,5. Each node of the parse
tree of the expression (Fig. 2(a)) is annotated with the binary
relation that we compute for it. Finally, the relation for the
root node contains all pairs (x, y) such that there is a path
from x to y that matches r.

We show that Evaluation is correct and can be imple-
mented to run in polynomial time.

Theorem 3.2. Evaluation for SPARQL regular expres-
sions under regular path semantics is in polynomial time.

Proof sketch. We prove that the dynamic program-
ming algorithm can be implemented to decide Evaluation
for RE(#, !, •) in polynomial time. That is, given a graph
G = (V,E, x, y) and RE(#, !, •)-expression r, it decides in
polynomial time whether there is a path in G from x to y
that matches r.

First, we argue correctness. The following invariant holds
for every relation Rs that is calculated: For each subexpres-
sion s of r, we have (u, v) ∈ Rs ⇔ ∃ path p in G from u to v :
lab(p) ∈ L(s).

Next, we argue that the algorithm can be implemented to
run in polynomial time. Notice that the parse tree of the
input expression s has linear size and that each relation Rs

has at most quadratic size in G. We therefore only need
to prove that we can implement each separate case in the
algorithm in polynomial time.

The cases where s ∈ ∆, s = ε, s = •, s = s∗1, s = s+1 , and
s = s1 · s2 are trivial. For the case s = sk1 , we need to argue
that, for a given |V |×|V | matrix M and a number k given in



binary, we can compute Mk in polynomial time. However,
this is well-known to be possible in dlog ke iterated squarings
(sometimes also called successive squaring) ([7], page 74).

In the case s = sk,∞1 , we only need to compute the relation
for s1 once, copy it, compute Mk

s1 as before, compute the
transitive and reflexive closure of Rs1 and join the results.
All of this can be performed in polynomial time. Finally, also
the case of s = sk,`1 can be computed in polynomial time by
using the same methods. This concludes our proof.

We are not the first to think of dynamic programming
in the context of regular expressions. The connection be-
tween dynamic programming and regular expressions goes
back at least to Kleene’s recursive formulas for extracting
a regular expression from a DFA [30]. Dynamic program-
ming for testing whether a string belongs to a language of a
regular expression has been demonstrated in [26] (p.75–76).
Kilpeläinen and Tuhkonen adapted this approach for evalu-
ating RE(#) on strings [28]. However, the algorithm from
[28] does not näıvely work on graphs: it would need time
exponential in the expression.6

We conclude this section with a few observations on the
dynamic programming algorithm. Most notably: if we want
to evaluate expressions on strings instead of graphs, we can
also incorporate negation into the algorithm. By Mem-
bership we denote the following decision problem: Given
a string w and a regular expression r, is w ∈ L(r)?

Theorem 3.3. Membership for RE(#, !,¬, •) is in poly-
nomial time.

However, as we illustrate in the next section, allowing unre-
stricted negation in expressions does not allow for an efficient
algorithm for Evaluation anymore.

3.2 Negation Makes Evaluation Hard
The negated label test seems to be harmless for the effi-

ciency of evaluating SPARQL regular expressions. On strings,
even the full-fledged negation operator “¬” can be evaluated
efficiently. However, allowing full-fledged negation for evalu-
ation on graphs makes the complexity of Evaluation non-
elementary. The reason is that Evaluation is at least as
hard as satisfiability of the given regular expression.

Lemma 3.4. Let C be a class of regular expressions over
a finite alphabet Σ. Then there exists a polynomial-time re-
duction from the non-emptiness problem for C-expressions
to the Evaluation problem with C-expressions.

Proof. The proof is immediate from the observation that
non-emptiness of an expression r over an alphabet Σ is the
same decision problem as Evaluation for r and the graph
G = (V,E) with V = {x} and E = {(x, a, x) | a ∈ Σ}.

Since the emptiness problem of star-free generalized reg-
ular expressions7 is non-elementary [39], we therefore also
immediately have that Evaluation is non-elementary for
RE(¬)-expressions, by Lemma 3.4.
6It uses the fact that the length of the longest match of
the expression on the string cannot exceed the length of the
string. For example, the regular expression a42 can only
match a string if it contains 42 a’s. So the fact that 42 is
represented in binary notation does not matter for the com-
bined complexity the problem. This assumption no longer
holds in graphs.
7A star-free generalized regular expression is a regular ex-
pression with concatenation, disjunction, and negation.

Theorem 3.5. Evaluation under regular path seman-
tics is non-elementary for RE(¬).

For completeness, since RE(#, !,¬, •)-expressions can be
converted into RE(#, !, •)-expressions with a non-elementary
blow-up, we also mention a general upper bound for Eval-
uation.

Theorem 3.6. Evaluation under regular path seman-
tics is decidable but non-elementary for RE(#, !,¬, •)

3.3 SPARQL Semantics
We study how the complexity of Evaluation changes

when SPARQL’s simple walk semantics rather than regu-
lar path semantics is applied.

NP-Complete Fragments.
Theorem 3.7 ([35]). Evaluation under simple walk

semantics is NP-complete for the expression (aa)∗ and for
the expression (aa)+.

The lower bound immediately follows from Theorem 1 in
[35], where it is shown that it is NP-hard to decide whether
there exists a simple path of even length between two given
nodes x and y in a graph G. The upper bound is trivial.

On the other hand, Evaluation remains in NP even when
numerical occurrence indicators are allowed.

Theorem 3.8. Evaluation under simple walk seman-
tics is NP-complete for RE(#, !, •)-expressions.

Proof sketch. The NP lower bound is immediate from
Theorem 3.7. The NP upper bound follows from an adap-
tation of the dynamic programming algorithm of Section 3
where, in the cases for s = s∗1 and s = s+1 , simple walks are
guessed between nodes to see if they belong to Rs.

It follows that Evaluation under simple walk semantics
is also NP-complete for standard regular expressions.

Corollary 3.9. Evaluation under simple walk seman-
tics is NP-complete for RE.

Polynomial Time Fragments.
Theorem 3.7 restrains the possibilities for finding polyno-

mial time fragments rather severely. In order to find such
fragments and in order to trace a tractability frontier, we
will look at syntactically constrained classes of regular ex-
pressions that have been used to trace the tractability fron-
tier for the regular expression containment problem [33, 34].
We will also use these expressions in Section 4.

Definition 3.10 (Chain Regular Expression [34]).
A base symbol is a regular expression w, w∗, w+, or w?,
where w is a non-empty string; a factor is of the form e,
e∗, e+, or e? where e is a disjunction of base symbols of
the same kind. That is, e is of the form (w1 + · · · + wn),
(w∗1 + · · · + w∗n), (w+

1 + · · · + w+
n ), or (w1? + · · · + wn?),

where n ≥ 0 and w1, . . . , wn are non-empty strings. An
(extended) chain regular expression (CHARE) is ∅, ε, or a
concatenation of factors.

We use the same shorthand notation for CHAREs as in [34].
The shorthands we use for the different kind of factors is
illustrated in Table 1. For example, the regular expression



Factor Abbr.
a a
a∗ a∗

a+ a+

a? a?
w∗ w∗

w+ w+

w? w?

Factor Abbr.
(a1 + · · ·+ an) (+a)
(a1 + · · ·+ an)∗ (+a)∗

(a1 + · · ·+ an)+ (+a)+

(a1 + · · ·+ an)? (+a)?
(a∗1 + · · ·+ a∗n) (+a∗)
(a+1 + · · ·+ a+n ) (+a+)

Factor Abbr.
(w1 + · · ·+ wn) (+w)
(w1 + · · ·+ wn)∗ (+w)∗

(w1 + · · ·+ wn)+ (+w)+

(w1 + · · ·+ wn)? (+w)?
(w∗1 + · · ·+ w∗n) (+w∗)
(w+

1 + · · ·+ w+
n ) (+w+)

Table 1: Possible factors in extended chain regular expressions and how they are denoted. We denote by a
and ai arbitrary symbols in ∆ and by w, wi non-empty strings in ∆+.

((abc)∗+ b∗)(a+ b)?(ab)+(ac+ b)∗ is an extended chain reg-
ular expression with factors of the form (+w∗), (+a)?, w+,
and (+w)∗, from left to right. The expression (a+b)+(a∗b∗),
however, is not even a CHARE, due to the nested disjunction
and the nesting of Kleene star with concatenation. Notice
that each kind of factor that is not listed in Table 1 can be
simulated through one of other ones. For example, a factor
of the form (a+1 + · · ·+ a+n )? is equivalent to (a∗1 + · · ·+ a∗n).
For a similar reason, no factor of the form w is listed. Our
interest in these expressions is that CHAREs often occur in
practical settings [8] and that they are convenient to model
classes that allow only a limited amount of non-determinism,
which becomes pivotal in Section 4. We denote fragments
of the class of CHAREs by enumerating the kinds of fac-
tors that are allowed. For example, the above mentioned
expression is a CHARE((+w∗), (+a)?, w+, (+w)∗).

The following theorem shows that it is possible to use the
∗- and +-operators and have a fragment for which evaluation
is in polynomial time. However, below it, one is only allowed
to use a disjunction of single symbols.

Theorem 3.11. Evaluation under simple walk seman-
tics for CHARE((+a)∗, (+a)+, (+w), (+w)?) is in PTIME.

Proof sketch. This theorem follows from the observa-
tion that, for each regular expression r from this class, there
exists a path p from a node x to y that matches r under sim-
ple walk semantics if and only if there exists a path p′ from
x to y that matches r under regular path semantics.

Notice that the range of possibilities between the expressions
in CHARE((+a)∗, (+a)+, (+w), (+w)?) and the expressions
in Theorem 3.7 is quite limited. Furthermore, notice the
relationship between Theorem 3.11 and Theorem 1 in [35]:
Whereas testing the existence of a simple path that matches
the expression a∗ba∗ is NP-complete [35], testing the exis-
tence of a path that matches the expression a∗ba∗ under
simple walk semantics is in PTIME (Theorem 3.11).

A limitation of Theorem 3.11 is that CHAREs do not
allow arbitrary nesting of disjunctions. However, since sim-
ple walk semantics and regular path semantics are equal for
RE-expressions that do not use the Kleene star or the +-
operator, Evaluation for those expressions under simple
walk semantics is tractable as well.

Observation 3.12. Evaluation under simple walk se-
mantics is in PTIME for RE-expressions that do not use
the ∗- or +-operators.

Theorem 3.11 and Observation 3.12 seem to make one cen-
tral point apparent: unless P = NP, simple walk semantics
is tractable as long as it is essentially the same than regular
path semantics.

4. THE COUNTING PROBLEM
In this section we study the complexity of Counting and

Finiteness. Our motivation for Counting comes from the
SPARQL definition that requires that, for simple SPARQL
queries of the form SELECT ?x, ?y WHERE {?x r ?y} for a
path expression r, the result is a multiset that has n copies
of a pair (x, y) ∈ V × V , when n is the number of paths
between x and y that match r. We informally refer to this
requirement as the path counting requirement.

Path Counting Requirement: The number of paths from
x to y that match r needs to be counted.

First, we investigate Counting under regular path seman-
tics and then under simple walk semantics.

4.1 Regular Path Semantics
We first show that it is possible to count paths for de-

terministic patterns and then that allowing even the slight-
est amount of non-determinism makes the counting problem
#P-complete.

Counting for Deterministic Patterns.
We consider finite automata that read ∆-strings. The

automata behave very similarly to standard finite automata
(see, e.g., [26]), but they can make use of a wildcard symbol
“◦” to deal with the infinite set of labels. More formally, an
NFA N over ∆ is a tuple (Q,Σ,∆, δ, q0, Qf ), where Q is a
finite set of states, Σ ⊆ ∆ is a finite alphabet, ∆ is the set of
input symbols, δ : Q×(Σ]{◦})×Q is the transition relation,
q0 is the initial state, and Qf is the set of final states. The
size of an NFA is |Q|, i.e., its number of states.

When the NFA is in a state q and reads a symbol a ∈ ∆,
we may be able to follow several transitions. The transitions
labeled with Σ-symbols can be followed if a ∈ Σ. The ◦-
label in outgoing transitions is used to deal with everything
else, i.e., the ◦-transitions can be followed when reading a /∈
Σ. Notice that the semantics of the •-symbol in regular
expressions is therefore different from ◦ in automata. The
reason for the difference is twofold: first, we want to define
a natural notion of determinism for automata and second,
our definition of ◦ makes it easy to represent subexpressions
of the form !{a1, . . . , an} in automata.8 Nevertheless, an
expression from RE can still be translated into an equivalent
NFA in polynomial time. More formally, a run r of N on

8One could also achieve these goals by defining the semantics
of ◦ to be “all symbols for which the current state has no
other outgoing transition”. We thought that our definition
would be clearer since it defines the semantics of every ◦-
transition the same across the whole automaton.



a ∆-word w = a1 · · · an is a string q0q1 · · · qn in Q∗ such
that, for every i = 1, . . . , n, if ai ∈ Σ, then (qi−1, ai, qi) ∈ δ;
otherwise, (qi−1, ◦, qi) ∈ δ. Notice that, when i = 1, the
condition states that we can follow a transition from the
initial state q0 to q1. A run is accepting when qn ∈ Qf . A
word w is accepted by N if there exists an accepting run
of N on w. The language L(N) of N is the set of words
accepted by N . A path p matches N if lab(p) ∈ L(N).

We say that an NFA is deterministic, or a DFA, when the
relation δ is a function from Q× (Σ]{◦}) to Q. That is, for
every q1 ∈ Q and a ∈ Σ ] {◦}, there is at most one q2 such
that (q1, a, q2) ∈ δ. In this case, we will also slightly abuse
notation and write δ(q1, a) = q2.

We discuss the relationship between SPARQL regular ex-
pressions and DFAs by (informally) revisiting the Glushkov-
automaton of a regular expression (see also [9, 24]). Let r
be a SPARQL regular expression and let Σr be the set of ∆-
symbols occurring in r. By num(r) we denote the numbered
regular expression obtained from r by replacing each subex-
pression of the form !S, •, or a ∈ Σr (that is not in the scope
of an !-operator) with a unique number, increasing from left
to right. For example, for r = a !{a} • (a + bc)∗• !{a, b}
we have num(r) = 1 2 3 (4 + 5 6)∗7 8. Formally, num(r)
can be obtained by traversing the parse tree of r depth-first
left-to-right and making the appropriate replacements. By
denumr we denote the mapping that maps each number i
to the subexpression it replaced in r. In the above example,
denumr(1) = a, denumr(2) =!{a}, denumr(3) = •, and so
on.

Fix an expression r and its numbered expression rm. No-
tice that rm can be seen as a regular expression over a finite
alphabet Σ′ ⊆ N. Let first(rm) be the set of all symbols
i ∈ Σ′ such that L(rm) contains a word iz, where z ∈ (Σ′)∗.
Furthermore, let follow(rm, i) be the set of symbols j ∈ Σ′

such that there exists Σ′-strings v, w with vijw ∈ L(rm),
and let last(rm) be the set of symbols i ∈ Σ′ such that there
exists a word vi in L(rm). The Glushkov-automaton Gr of
r is the tuple (Qr,Σr,∆, δr, q0, Qf ) where Qr = {q0} ] Σ′

is its finite set of states. That is, Qr contains an initial
state and one state for each Σ′-symbol i in the numbered
expression rm. If ε ∈ L(r), then the set of accepting states
is Qf = last(rm) ] {q0}. Otherwise, Qf = last(rm). For
each a ∈ Σr and i ∈ Qr, the transition function δr is defined
as follows: (1) δr(q0, a) = {i ∈ first(rm) | denum(i) = a,
denum(i) = •, or denum(i) = !S with a /∈ S} and (2)
δr(i, a) = {j ∈ follow(rm, i) | denum(j) = a, denum(j) = •,
or denum(j) = !S with a /∈ S}. Furthermore, (3) δr(q0, ◦) =
{i ∈ first(rm) | denum(i) = • or denum(i) = !S for some
S} and (4) δr(i, ◦) = {j ∈ follow(rm, i) | denum(j) = • or
denum(j) = !S for some S}.

Proposition 4.1. For each SPARQL regular expression
r, the Glushkov automaton of r can be constructed in poly-
nomial time. Furthermore, L(r) = L(Gr).

We say that a SPARQL regular expression r is deterministic,
or a Det-RE, if Gr is a DFA.

In the following, we slightly generalize the definition of
s-t graphs and overload their notation. For an edge-labeled
graph G = (V,E), x ∈ V , and Y ⊆ V , the s-t graph of
G w.r.t. x and Y is the quadruple (V,E, x, Y ). As before,
we refer to x as the source node and to Y as the (set of)
target nodes. Let G = (V,E, x, y) be an s-t graph and
A = (Q,Σ,∆, δ, q0, QF ) be a DFA. We define a product of

(V,E, x, y) and A, denoted by Gx,y×A, similar to the stan-
dard product of finite automata. More formally, Gx,y × A
is an s-t graph (VG,A, EG,A, xG,A, YG,A), where all of the
following hold.

• The set of nodes VG,A is V ×Q.

• The source node xG,A is (x, q0).

• The set of target nodes YG,A is {(y, qf ) | qf ∈ Qf}.
• For each a ∈ ∆, there is an edge

(
(v1, q1), a, (v2, q2)

)
∈

EG,A if and only if there is an edge (v1, a, v2) in G and
either a ∈ Σ and there is a transition (q1, a, q2) ∈ δ or
a /∈ Σ and there is a transition (q1, ◦, q2) ∈ δ in A.

If A is a DFA, then there is a strong correspondence between
paths from x to y in G and paths from qG,A

0 to QG,A
f in

Gx,y × A. We formalize this correspondence by a mapping
ϕPaths, which we define inductively as follows:

• ϕPaths(x) := (x, q0);

• for each v1 such that ϕPaths(v1) = (v1, q1) and for each
edge e = (v1, a, v2) in G, we define

• ϕPaths(v2) := (v2, q2), where q2 is the unique state such
that δA(q1, a) = q2 or δA(q1, ◦) = q2; and
• ϕPaths(e) :=

(
(v1, q1), a, (v2, q2)

)
.

We extend the mapping ϕPaths in the canonical manner to
paths in G starting from x. Notice that ϕPaths is only well-
defined if A is a DFA.

Lemma 4.2. If A is a DFA, then ϕPaths is a bijection be-
tween paths from x to y in G that match A and paths from
xG,A to some node in YG,A in Gx,y×A. Furthermore, ϕPaths

preserves the length of paths.

We recall the following graph-theoretical result that states
that the number of arbitrary paths between two nodes in a
graph can be counted quickly (see, e.g., [7], page 74):

Theorem 4.3. Let G be a graph, let x and y be two nodes
of G, and let max be a number given in binary. Then, the
number of paths from x to y of length at most max can be
computed in time polynomial in G and the number of bits of
max.

Again, the reason why the number of paths can be counted
so quickly is due to the fast squaring method that can com-
pute, for a given (square) matrix M , the matrix Mk in
O(log k) matrix multiplications.

Theorem 4.4. Counting for DFAs is in polynomial time,
even if the number max in the input is given in binary.

Proof. We reduce Counting for DFAs to the problem
of counting the number of paths in a graph, which is in poly-
nomial time even when max is in binary, due to Theorem 4.3.

LetG = (V,E, x, y) be a graph andA = (Q,Σ,∆, δ, q0, Qf )
be a DFA. The algorithms works as follows:

• Let Gx,y ×A be the product of (V,E, x, y) and A.

• Return
∑

qf∈Qf
Paths

(
(x, q0), (y, qf )

)
in Gx,y ×A.

Here, Paths
(
(x, q0), (y, qf )

)
denotes the number of paths of

length at most max in Gx,y ×A from node (x, q0) to (y, qf ).
By Lemma 4.2, this algorithm is correct. Indeed, the lemma
shows that the number of paths of length at most max in
G between x and y and that are matched by A equals the
number of paths of length at most max from (x, q0) to some
node in {y} ×Qf in Gx,y ×A.
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Figure 3: An edge-labeled graph (V,E, 0, 6).
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Figure 4: A DFA A for the regular expression (aΣ∗+
Σ+h), with Σ = {a, b, c, d, e, f, g, h}.

Actually, Theorem 4.4 even holds for automata that are un-
ambiguous, i.e., automata that only allow exactly one ac-
cepting run for each word in the language.

We illustrate the algorithm of Theorem 4.4 on an example.
Consider the DFA A in Figure 4. The product of A and the
s-t graph (V,E, 0, 6) from Figure 3 is depicted in Figure 5.
We see that the number of paths in G from node 0 to 6 that
match A is precisely the number of paths from the start
state to an accepting state in P .

Counting for Non-Deterministic Patterns.
We start by observing that Counting is in #P for stan-

dard regular expressions.

Theorem 4.5. Counting is in #P for all REs.

Proof. Let G = (V,E, x, y) be a graph, r be an RE, and
max ∈ N be a number given in unary notation. The non-
deterministic Turing machine for the #P procedure simply
guesses a path of length at most max and tests whether it
matches L(r).

We now prove that Counting becomes #P-hard for a
wide array of restricted REs that allow for a very limited
amount of non-determinism. We consider the chain reg-
ular expressions introduced in Section 3.3. For example,
the class of CHARE(a,a?) seems, at first sight, to be very
limited. However, such expressions cannot be translated to
polynomial-size DFAs in general. We show that Counting
is #P-complete for all classes of CHAREs that allow a single
label (i.e., “a”) as a factor and can not be trivially converted
to polynomial-size DFAs.

Theorem 4.6. Counting is #P-complete for all of the
following classes: (1) CHARE(a, a∗), (2) CHARE(a, a?),
(3) CHARE(a,w+), (4) CHARE(a, (+a+)), (5) CHARE(a,
(+a)+), and (6) CHARE((+a), a+). Moreover, #P -hardness
already holds if the graph G is acyclic.

Proof sketch. The upper bound for all cases is imme-
diate from Theorem 4.5. The lower bounds can be proved
by reductions from #DNF. We show the reduction for case
(1). Our technique is inspired by a proof in [34], where
it is shown that language inclusion for various classes of
CHAREs is coNP-hard. Let Φ = C1 ∨ · · · ∨ Ck be a propo-
sitional formula in 3DNF using variables {x1, . . . , xn}. We
encode truth assignments for Φ by paths in the graph. In
particular, we construct a graph (V,E, x, y), an expression
r, and a number max such that each path of length at most
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Figure 5: Fragment of the product G0,6 × A of
(V,E, 0, 6) from Figure 3 and DFA A from Figure 4.
The nodes in YG,A are in double circles.

max in G from x to y that matches r corresponds to a unique
satisfying truth assignment for Φ and vice versa. Formally,
we will have that the number of paths of length at most
max in G from x to y that match r is equal to the number
of truth assignments that satisfy Φ.

The graph G has the structure as depicted in Figure 6,
where (i) B is a path labeled #a$a$ · · · $a# (with n copies
of a) and (ii) A is a subgraph as depicted in Figure 6, with
n copies of the gadget labeled ab/ba. Notice that all paths
from x to y will enter A through the node xA and leave A
through yA. Notice that G is acyclic.

Each path from xA to yA in A corresponds to exactly one
truth assignment for the variables {x1, . . . , xn}: if the path
chooses the i-th subpath labeled ab, this means that xk is
“true”. If it chooses ba, it means that xk is “false”. This
concludes the description of the graph.

The expression r has the form r = (#∗a∗$∗ · · · $∗a∗#∗)k
F (C1) · · ·F (Ck)(#∗a∗$∗ · · · $∗a∗#∗)k, where for each i =
1, . . . , k, we define F (Ci) as #e1$ · · · $en# with, for each
j = 1, . . . , n,

ej :=


b∗a∗, if xj occurs negated in Ci,

aa∗b∗a∗, if xj occurs positively in Ci, and

a∗b∗a∗, otherwise.

This concludes the reduction for case (1).

We conclude this section by stating the general #P upper
bound on the counting problem.

Theorem 4.7. Counting for RE(#,¬, •) is #P-complete.

4.2 SPARQL Semantics
We investigate how the complexity of Counting changes

when we apply SPARQL’s simple walk semantics. The pic-
ture is even more drastic than in Section 3.3. Counting
already turns #P-complete as soon as the Kleene star or
plus are used. We start by mentioning a polynomial-time
result.

Theorem 4.8. Counting under simple walk semantics
for CHARE(a, (+a)) is in PTIME

This result trivially holds since, for this fragment, simple
walk semantics is the same as regular path semantics, and
expressions from this fragment can be translated into DFAs
in polynomial time.

Theorem 4.9. Counting under simple walk semantics
is #P-complete for the expressions a∗ and a+.
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Figure 6: The graph G from the proof of Theorem 4.6.

Proof. We reduce from the problem of counting the num-
ber of simple s-t paths in a graph, which was shown to be
#P-complete by Valiant [40].

Theorem 4.9 immediately implies that Counting under sim-
ple walk semantics is #P-complete for CHARE(a, a∗), CHA-
RE(a, w+), CHARE(a, (+a+)), CHARE(a, (+a)+), and
CHARE(a+, (+a)) as well. The result for CHARE(a,a?) is
not immediate from Theorem 4.9, but it is immediate from
the observation that the reduction for regular path seman-
tics applies here as well.

Theorem 4.10. Counting under simple walk semantics
for CHARE(a, a?) is #P-complete.

Finally, we mention that Counting is in #P for the full
fragment of expressions in RE(#, !, •).

Theorem 4.11. Counting under simple walk semantics
for RE(#, !, •) is #P-complete.

5. THE FINITENESS PROBLEM
Under simple walk semantics, there can never be an infi-

nite number of paths that match a certain regular expres-
sion. Under regular path semantics, however, this can be the
case. Therefore we complete the picture of our complexity
analysis by looking at the Finiteness problem.

Using the product construction (Section 4.1), we can test
in polynomial time whether there is a path from x to y that
is labelled uvw, such that v labels a loop and such that uvkw
matches r for every k ∈ N. If there is such a loop, then we
return that there are infinitely many paths.

Observation 5.1. Finiteness is in PTIME for RE.

By adapting the dynamic programming algorithm to also an-
notate the length of the longest paths associated to a pair in
each relation, we can even decide Finiteness for RE(#, !, •)
in PTIME.

Theorem 5.2. Finiteness for RE(#, !, •) is in PTIME.

Similar to Evaluation, the complexity of Finiteness be-
comes non-elementary once unrestricted negation is allowed
in regular expressions. Analogously to Evaluation we show
that Finiteness is at least as hard as satisfiability of a given
regular expression.

Lemma 5.3. Let C be a class of regular expressions over
a finite alphabet Σ, such that membership testing of ε for
expressions in C is in polynomial time. Then there exists
a polynomial reduction from the emptiness problem for C-
expressions to the Finiteness problem with C-expressions.

For r ∈ RE(¬), one can test whether ε ∈ L(r) in linear
time traversing the syntax tree of r. If ε /∈ L(r), then testing

emptiness for r is equivalent to Finiteness on the expression
r∗ and the graph G = (V,E, x, x) with V = {x} and E =
{(x, a, x) | a ∈ Σ}. Therefore, by [39] and Lemma 5.3 we
have the following.

Theorem 5.4. Finiteness is decidable but non-elementary
for RE(¬).

6. DISCUSSION
An overview of our results is presented in Table 2. CHAREs

are defined in Section 3.3. By“star-free RE”, we denote stan-
dard regular expressions that do not use the operators “∗”
and “+”. The SPARQL-negation operator “!” is defined in
Section 3.3. Det-RE stands for the class of deterministic
SPARQL expressions that we defined in Section 4.

The table presents complexity results under combined query
evaluation complexity. However, for simple walk semantics,
all the NP-hardness or #P-hardness results hold under data
complexity as well, except for the result on CHARE(a, a?).
Indeed, if the CHARE(a, a?) is fixed, we can translate it
to a DFA and perform the algorithm for Counting under
regular path semantics. (For this fragment, simple walk se-
mantics equals regular path semantics.) For regular path
semantics, all #P-hardness results become tractable under
data complexity: when the query is fixed, we can always
translate it to a DFA and perform the algorithm for DFAs.
When considering data complexity, the difference between
regular path semantics and simple walk semantics therefore
becomes even more striking.

Possible alternatives for the W3C.
The NP-complete and #P-complete data complexities make

the current semantics of W3C property paths highly prob-
lematic from a computational complexity perspective, espe-
cially on a Web scale. There are two orthogonal require-
ments in the current W3C proposal that render the eval-
uation of simple queries of the form SELECT ?x, ?y WHERE

{?x r ?y} computationally difficult:

Simple Walk Requirement: Subexpressions of the form
r∗ and r+ should be matched to simple walks.

Path Counting Requirement: The number of paths from
x to y that match r need to be counted.

By removing the simple walk requirement and the path
counting requirement, the answer to the above SELECT
query would be the set of pairs (x, y) in the graph such
that there exists a path from x to y that matches r under
regular path semantics. As such, each pair is returned at
most once. Similar to [5], which is work conducted inde-
pendently from ours, we believe that the W3C should use
this semantics as a default semantics for property paths in
SELECT queries. Our results show that SPARQL property



Problem Fragment Regular path semantics Simple walk semantics

Evaluation CHARE((+a)∗,(+a)+,(+w),(+w)?) in PTIME in PTIME (3.11)
star-free RE in PTIME in PTIME (3.12)
(aa)∗ in PTIME NP-complete [35]
RE in PTIME NP-complete
RE(#, !, •) in PTIME (3.2) NP-complete (3.8)
RE(¬) non-elementary (3.5) —
RE(#, !,¬, •) non-elementary (3.6) —

Counting DFA in FPTIME (4.4) —
CHARE(a, (+a)) in FPTIME in FPTIME (4.8)
a+ in FPTIME #P-complete (4.9,[40])
a∗ in FPTIME #P-complete (4.9,[40])
Det-RE in FPTIME #P-complete
CHARE(a, a∗) #P-complete (4.5,4.6) #P-complete
CHARE(a, a?) #P-complete (4.5,4.6) #P-complete(4.10)
CHARE(a, (+a+)) #P-complete (4.5,4.6) #P-complete
CHARE(a, (+a)+) #P-complete (4.5,4.6) #P-complete
CHARE(a,w+) #P-complete (4.5,4.6) #P-complete
CHARE((+a), a+) #P-complete (4.5,4.6) #P-complete
RE #P-complete (4.5,4.6) #P-complete
RE(#, !, •) #P-complete (4.7) #P-complete (4.11)
RE(#, !,¬, •) #P-complete (4.7) —

Finiteness RE in PTIME (5.1) —
RE(#, !, •) in PTIME (5.2) —
RE(¬) non-elementary (5.4) —
RE(#, !,¬, •) non-elementary (5.4) —

Table 2: An overview of most of our complexity results. The results printed in bold are new, to the best
of our knowledge. The entries marked by “—” signify that the question is either trivial or not defined. We
annotated new results with the relevant theorem numbers. If no such number is provided, it means that
the result directly follows from other entries in the table. These results concern combined complexity. In
data complexity, the entire column “Regular path semantics” drops to PTIME/FPTIME. For simple walk
semantics, only the complexity of CHARE(a,a?) drops to FPTIME under data complexity.

paths (cfr. Def. 2.1), which can be exponentially more suc-
cinct than standard regular expressions, can then be evalu-
ated in polynomial time combined complexity by a simple
dynamic programming algorithm. Preliminary results indi-
cate that we can even leverage this technique to evaluate
nested regular expressions [37] with numerical occurrence
indicators in polynomial time combined complexity.

However, it is possible that in some scenarios one would
like to have a bag semantics for property paths and, there-
fore, paths would need to be counted. We think that remov-
ing the simple walk requirement would be wise here as well.
As we showed, doing so would drop the data complexity of
Counting from #P-complete to polynomial time for almost
all non-trivial queries. However, in this case, it is still less
clear how one would like to count paths. At the moment, the
W3C has a procedural definition for counting paths which
is studied in depth in [5], where it is proved that it leads to
massive computational problems. Furthermore, we believe
that this definition is rather opaque and that it should be
much more transparent to end-users and researchers.

So, what could we do? When one would näıvely adopt
regular path semantics for counting paths, one would need
to find a way to deal with the case where there are infinitely
many paths between two nodes that match an expression. In
principle, it is possible to deal with this case efficiently. We
proved that deciding whether this case applies, i.e., solving
the Finiteness problem, is possible for SPARQL regular ex-
pressions in polynomial time. One could also avoid the need

to decide this case entirely. An ad-hoc solution could be to
simply not count paths anymore beyond a certain number.
Such a solution may be sufficient for many practical purposes
but is theoretically not very elegant. Perhaps more elegant
would be to only count paths that are, in some sense, short-
est paths.9 Again, various options are possible. One could,
e.g., first compute the length of the shortest path and then
count all paths that have this length. Another option is to
count all the paths p from x to y such that there does not
exist a sub-path of p from x to y that also matches the ex-
pression r. We do not think that the last word has been
said on this topic and that further research is needed. Es-
sentially, we need to find a semantics that is intuitive, easy
to understand, and efficient to compute. Unfortunately, the
present semantics fulfills neither condition.

We strongly believe that a feasible solution for property
paths in SPARQL should avoid the simple walk requirement
due to complexity reasons: from our perspective, the choice
between NP-complete data complexity already for the query
(aa)∗; or polynomial time combined complexity for the full
fragment of SPARQL property paths seems to be a rather
easy one to make.

9This idea was pitched by Serge Abiteboul during a
Dagstuhl seminar on foundations of distributed data man-
agement.
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