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Abstract. We study the descriptional complexity of regular languages
that are definable by deterministic regular expressions. First, we examine
possible blow-ups when translating between regular expressions, deter-
ministic regular expressions, and deterministic automata. Then we give
an overview of the closure properties of these languages under various
language-theoretic operations and we study the descriptional complex-
ity of applying these operations. Our main technical result is a general
property that implies that the blow-up when translating a DFA to an
equivalent deterministic expression can be exponential.

1 Introduction

Deterministic or one-unambiguous regular expressions have been a topic of re-
search since they were formally defined by Brüggemann-Klein and Wood in order
to investigate a requirement in the ISO standard for the Standard Generalized
Markup Language (SGML), where they were introduced to ensure efficient pars-
ing. Today, the prevalent schema languages for XML data, such as Document
Type Definition (DTD) and XML Schema, require that the regular expressions
in their specification be deterministic. From a more foundational point of view,
one-unambiguity is a natural manner in which to define determinism in regular
expressions. As such, several decision problems behave better for deterministic
regular expressions than for general ones. For example, language inclusion for
regular expressions is PSPACE-complete but is tractable when the expressions
are deterministic.

Although deterministic regular expressions are rather widespread and have
been around for quite some time, they are not yet well-understood. This mo-
tivates us to study various foundational properties. In particular, we investi-
gate the differences in the descriptional complexity between regular expressions
(REs), deterministic regular expressions (DREs), and deterministic finite au-
tomata (DFA). Our initial motivation for this work was an unproved claim in
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[2] which states that, for expressions of the form Σ∗w, where w is a Σ-string,
every equivalent DRE is at least exponential in w. However, to the best of our
knowledge, no proof for this result exists in the literature and proving it turned
out to be rather non-trivial. Since this language has a polynomial-size RE and
DFA, we needed to develop new techniques for proving lower bounds on the size
of DREs.

A second set of contributions in this paper is a study of the effect of language-
theoretic operations on languages that are definable by a DRE. In particular,
we consider union, intersection, difference, concatenation, star, and reversal, for
unary and arbitrary alphabets. We provide a complete overview of the closure
properties of DRE-definable languages under these operations and we study the
descriptional complexity of applying such operations on DREs and their DFAs.
Several of these operations are relevant in XML schema management [7, 17].

Until now, research on descriptional complexity of regular languages focused
mainly on REs and DFAs. It is well-known that an exponential blow-up cannot
be avoided when translating an RE into a DFA [12]. Ehrenfeucht and Zeiger
[5] proved that there also exist DFAs which are exponentially more succinct
than each equivalent RE. Gruber and Holzer [9, 11] showed that there exist
certain characteristics of automata which make equivalent regular expressions
large. However, these characteristics cannot näıvely be transferred to DREs. For
example, the languages used in the literature for proving lower bounds on the
size of REs (e.g. [5, 9, 11]) are not definable by DREs.

The state complexity of boolean operations on DFAs is studied in [15, 18,
20], where in [18] the focus is on unary languages. In Section 4.2 we see that
many results in [20] directly apply for DRE-definable languages, since they are
on finite languages and every finite language is DRE-definable [1]. Gelade and
Neven [8] and Gruber and Holzer [10] independently examined the descriptional
complexity of complementation and intersection for REs. They showed that the
size of the smallest RE for the intersection of a fixed number of REs can be
exponential; and that the size of the smallest RE for the complement of an
RE can be double-exponential. Furthermore, these bounds are tight. Gelade and
Neven also investigate these operations on DREs and proved that the exponential
bound on intersection is also tight when the input is given as DREs instead of
REs [8]. Furthermore, they proved that the complement of a DRE can always
be described by a polynomial-size RE. However, in their proofs, the languages of
the resulting REs are not DRE-definable. Concatenation and reversal operations
on regular languages are studied in [3, 13, 14, 19, 21], where in [21] also unary
languages are examined.

2 Definitions

By Σ we always denote a finite alphabet of symbols. A (Σ-)word w over alphabet
Σ is a finite sequence of symbols a1 · · · an, where ai ∈ Σ for each i = 1, . . . , n.
The set of all Σ-words is denoted by Σ∗. The length of a word w = a1 · · · an is
n and is denoted by |w|. The empty word is denoted by ε.



A (deterministic, finite) automaton (or DFA) A is a tuple (Q,Σ, δ, q0, F ),
where Q is a finite set of states, the transition function δ ⊆ Q × Σ → Q is a
partial function, q0 is the initial state and F ⊆ Q is the set of accepting states.
We sometimes abuse notation and denote a transition δ(q1, a) = q2 by a tuple
(q1, a, q2). We say that the aforementioned transition is q1-outgoing, q2-incoming,
or a-labeled. The run of A on word w = a1 · · · an is a sequence q0 · · · qn where,
for each i = 1, . . . , n, δ(qi−1, ai) = qi. Word w is accepted by A if the run is
accepting, i.e., if qn ∈ F . By L(A) we denote the language of A, i.e., the set of
words accepted by A. By δ∗ we denote the extension of δ to words, i.e., δ∗(q, w)
is the state which is reached from q by reading w. In this paper we assume
that all states of automata are useful, that is, every state can appear in some
accepting run. This implies that, from each state in an automaton, an accepting
state can be reached. The size |A| of a DFA is the cardinality of {(q, a) | δ(q, a)
is defined}.

The regular expressions (RE) over Σ are defined as follows: ε and every Σ-
symbol is a regular expression; and whenever r and s are regular expressions then
so are (r · s), (r + s), and (s)∗. In addition, we allow ∅ as a regular expression,
but we do not allow ∅ to occur in any other regular expression. We refer to
Σ-symbols, ε, and ∅ as atomic expressions. For readability, we usually omit
concatenation operators and parentheses in examples. The language defined by
an RE r, denoted by L(r), is defined as usual. Whenever we say that expressions
or automata are equivalent, we mean that they define the same language. The size
|r| of r is defined to be the total number of occurrences of alphabet symbols,
epsilons, and operators, i.e., the number of nodes in its parse tree. A regular
expression r is minimal if there does not exist a regular expression r′ with
L(r′) = L(r) and |r′| < |r|. By first(L) we denote the set of all symbols a ∈ Σ,
such that there is a word aw ∈ L. For a regular expression r, we define first(r)
as first(L(r)).

Deterministic regular expressions are defined as follows. Let r̄ stand for the
RE obtained from r by replacing, for every i and a, the i-th occurrence of
alphabet symbol a in r (counting from left to right) by ai. For example, for
r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b∗2a2)∗. A regular expression r is deterministic
(or one-unambiguous [2] or a DRE ) if there are no words waiv and wajv

′ in
L(r̄) such that i 6= j. The expression (a + b)∗a is not deterministic since both
strings a2 and a1a2 are in L((a1 + b1)∗a2). The equivalent expression b∗a(b∗a)∗

is deterministic. Brüggemann-Klein and Wood showed that not every regular
expression is equivalent to a deterministic one [2]. We call a regular language
DRE-definable if there exists a DRE that defines it. The canonical example for
a language that is not DRE-definable is (a+ b)∗a(a+ b) [2].

3 Descriptional Complexity of DFAs, REs, and DREs

We consider the relative descriptional complexity of REs, DREs and DFAs. An
overview of our results is shown in Figure 1. Since every DRE is an RE, we know
that every minimal RE for a language L is smaller or equal to a minimal DRE



Finite Languages Infinite Languages
RE DRE DFA Case exists? Ref RE DRE DFA Case exists? Ref

Θ(n) Θ(n) Θ(n) yes Obs.1 Θ(n) Θ(n) Θ(n) yes Obs.1

Θ(n) 2Ω(n) 2Ω(n) yes [15, 2] Θ(n) 2Ω(n) 2Ω(n) yes Th.6

2Ω(n) 2Ω(n) Θ(n) no [6] 2Ω(n) 2Ω(n) Θ(n) ?

Θ(n) 2Ω(n) Θ(n) ? Θ(n) 2Ω(n) Θ(n) yes Th.15

Ω(nlogn) Ω(nlogn) Θ(n) yes [11]

Fig. 1. Overview descriptional complexity.

for L. Furthermore, Brüggemann-Klein and Wood showed that, given a DRE r,
one can construct a DFA A for L(r) with size O(|Σ||r|). Thus the table contains
all substantial cases that ought to be considered.

We start with a trivial observation that shows that there are languages that
do not cause any significant blow-up between the different representations. For
example, consider the singleton {an} and the infinite language {ak | k ≡ 0
mod n} = L((aa · · · a)∗) in which the latter expression has n occurrences of a.

Observation 1. There exists a class of finite languages (Ln)n∈N and a class of in-
finite languages (L′n)n∈N such that, for each n ∈ N, the minimal DFAs, minimal
REs, and minimal DREs for Ln and L′n have size Θ(n).

3.1 Finite Languages

We present an overview of what is known in the case of finite languages. For the
language (0+1)≤n1(0+1)n, Kintala and Wotschke, and Brüggemann-Klein and
Wood showed that every DFA and every DRE has size exponential in n.

Theorem 2 ([15, 2]). For each n ∈ N, the minimal DFA (and therefore every
minimal DRE) for the language (a+ b)≤na(a+ b)n have size 2Ω(n).

Ellul et al. [6] showed that, for each DFA (or even non-deterministic automaton)
A of size n that defines a finite language L(A), there exists an RE for L(A)
of size O(nlogn). Gruber and Johannsen showed that this upper bound is also
tight. However, this problem was open for quite some time [11].

Theorem 3 ([6]). Let A be a DFA of size n and let L(A) be finite. Then there
exists an RE r for L(A) such that |r| ≤ O(nlogn).

Theorem 4 ([11]). There exists a family of finite languages (Ln)n∈N, such that
the minimal DFA for Ln has Θ(n) states but every minimal RE for Ln has size
Θ(nlogn).

It remains open whether there exists a class of finite languages (Ln)n∈N, such
that the minimal REs and the minimal DFA for Ln are exponentially more
succinct than a minimal DRE for Ln.



3.2 Infinite Languages

In the case of infinite languages, it is well known that an exponential blow-up
can occur when translating between REs and DFAs:

Theorem 5 ([12, 5]).
– The minimal DFA for (a+ b)∗a(a+ b)n has size 2Θ(n).
– There exists a family of infinite regular languages (Ln)n∈N, s.t. the minimal

DFA for Ln has size Θ(n2) and every minimal RE for Ln has size 2Ω(n).

However, to the best of our knowledge, all languages that are used in the litera-
ture to prove those blow-ups are not DRE-definable. Here, we prove that those
blow-ups cannot be avoided for DRE-definable languages, too. For an exponen-
tial blow-up when translating an RE for a DRE-definable language to a DFA,
we can extend the language of Theorem 2 to an infinite language.

Theorem 6. For each n ∈ N, the minimal DFA and every minimal DRE for
the DRE-definable language (a+ b)≤na(a+ b)n#∗ have size 2Ω(n).

Next, we prove that there can be an exponential blow-up when translating
a DFA to a DRE. The main idea of the proof is to identify concatenations of
a minimal DRE in a DFA. Therefore, we search for bottleneck states, which are
states through which every accepting run needs to go.

Definition 7. Let A = (Q,Σ, δ, q0, Qf ) be a DFA. A state q ∈ Q \ {q0} is a
bottleneck state of A if
– for every w ∈ L(A) there are v, z ∈ Σ∗, s.t. w = v · z and δ∗(q0, v) = q, and
– if q ∈ Qf , then Qf = {q} and there are a ∈ Σ and p ∈ Q s.t. δ(q, a) = p.

Notice that we explicitly define initial states not to be bottleneck states.

Lemma 8. Let A = (Q,Σ, δ, q0, Qf ) be a DFA with a bottleneck state q. Then
A has no equivalent DRE that is atomic or of the form s∗.

In the following we show that accepting bottleneck states in a DFA identify con-
catenations in an equivalent minimal DRE. Therefore, let A = (Q,Σ, δ, q0, Qf )
be a DFA. Then an equivalent DRE r is a q-concatenation if and only if r = r1 ·r2
and for every v ∈ L(r1) it holds that δ∗(q0, v) = q in A. If r is a DRE with these
conditions such that L(r) ( L(A), then r is a partial q-concatenation for A.

Lemma 9. Let A = (Q,Σ, δ, q0, {qf}) be a DFA for a DRE-definable language
L, such that qf is a bottleneck state of A. Then every minimal DRE r for L is
a qf -concatenation r1 · r2 with first(r2) = {a ∈ Σ | δ(qf , a) is defined}.

Proof. By Lemma 8 it holds that r is neither atomic nor an expression s∗. It
remains to show that r is neither a disjunction nor a concatenation which is not
a qf -concatenation. We can prove the following claim:

Claim 10. Let A = (Q,Σ, δ, q0, {qf}) be a DFA for a DRE-definable language L,
such that qf is a bottleneck state of A. Let ∅ 6= S ⊆ first(L) and r = r1r2 · · · rn
(with n > 1) be a minimal DRE for L∩SΣ∗, such that no ri is a concatenation.
Then there exists an i ∈ {1, . . . , n− 1} such that,



– for every word w ∈ L(r1 · · · ri), it holds that δ∗(q0, w) = qf , and
– first(ri+1 · · · rn) = {a ∈ Σ | δ(qf , a) is defined}.

In particular, this means that r is a partial qf -concatenation for A.

We show why Claim 10 implies Lemma 9. From the discussion above, we know
that r is either a concatenation or a disjunction. In the case that r is a concate-
nation, Claim 10 clearly implies the lemma (if S = first(r), then L ∩ SΣ∗ = L).

We now show that, if r is a disjunction (s1 + · · ·+ sk), then r is not minimal,
which contradicts the assumption we made about r. As an intermediate step we
want to apply Claim 10 to every si. We therefore have to show that, for every i,
(a) L(si) = L ∩ SiΣ∗ with ∅ ( Si ⊆ first(L) and (b) si is a concatenation.

Since r is a DRE, it holds that first(si) ∩ first(sj) = ∅ for all i 6= j. Fur-
thermore, we know that ε /∈ L and therefore ε /∈ L(si) for every i. Thus we
can conclude that L(si) = L ∩ SiΣ∗ with Si = first(si) ⊆ first(r) for every i.
This proves (a). Notice that Si 6= ∅ because r is minimal. Next we prove that
every si is a concatenation. W.l.o.g., si is not a disjunction. Since ε /∈ L(si), si
is not of the form t∗. Now take an arbitrary a ∈ Si. Then there exists a word
aw ∈ L(r) with w 6= ε, because qf has at least one outgoing transition. Since r is
a DRE, L(si) contains all words b ·v ∈ L where b ∈ Si and v ∈ Σ∗, and therefore
aw ∈ L(si). As |aw| > 1, si cannot be atomic. The only remaining possibility is
that si is a concatenation, which proves (b). Also, si is a minimal DRE.

We can now apply Claim 10 to every si and conclude that we can write every
si as sai s

b
i such that (i) δ(q0, w) = qf for every w ∈ L(sai ) and (ii) first(sbi ) =

{a ∈ Σ | δ(qf , a) is defined}. Notice that sai and sbi can be concatenations again.
Let Aqf = (Σ,Q, δ, qf , {qf}) be the automaton A where the initial state is

qf . From (i) and (ii), we can conclude that L(sbi ) = L(Aqf ) for every i. Therefore
all expressions sbi are equivalent. Thus, r can equivalently be written as (sa1 +
· · · + sak)sb1, which is strictly smaller than r. This contradicts the minimality of
r and therefore contradicts that r is a disjunction, which concludes the proof. �

Notice that a DRE can have multiple qf -concatenations. For example, the ex-
pression a · b∗ · (c · b∗)∗ has a DFA with a unique accepting state qf and has
two qf -concatenations. However, a DRE can only have one qf -concatenation
of the form r1 · r2 where first(r2) = {a | δ(qf , a) is defined}. Furthermore, if
A = (Q,Σ, δ, q0, {qf}) is a DFA with a bottleneck state qf , it holds that L(A)
is infinite. Lemma 9 gives us a rather precise structure of each minimal DRE
r1 · r2. The following lemma also clarifies L(r1) and L(r2).

Lemma 11. For a DFA A = (Q,Σ, δ, q0, {qf}) with a bottleneck state qf let the
qf -concatenation r1 · r2 be an equivalent minimal DRE with first(r2) = {a ∈ Σ |
δ(qf , a) is defined}. Then

(1) L(r1) = L(AS) where AS = (Q,Σ, δ − S, q0, {qf}), S = {(qf , a, q) ∈ δ | a ∈
Σ, q ∈ Q}; and

(2) L(r2) is infinite where L(r2) = L(Aqf ) with Aqf = (Q,Σ, δ, qf , {qf}).

Note that (2) follows from the proof of Lemma 9.



q0 q1 q2 · · · qn−1 qn
a a a a
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(a) Class of DFAs where the minimal
DREs are exponentially large in n.

q0 q1 q2 · · · qn−1 qn
a a a a

b

b
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(b) Minimal DFA AS for L(r1).

q0 q1 q2 · · · qn−1 qn
a a a a

b

b
b b b

(c) Minimal DFA Aqn for L(r2).

o q0 q1 q2 · · · qn−1 qn
ab a a a

b

b
b

b

(d) Minimal DFA for L(s2).

Fig. 2. Minimal DFAs for subexpressions from the proof of Lemma 14.

Before we can finally prove the blow-up from DFA to DRE, we need two
general results on minimal DREs. The first is a very straightforward relation
between a state and a concatenation in the DRE. Therefore, we say that a
regular language L is prefix-free if and only if, for every word v ∈ L, there exists
no z ∈ Σ∗ such that v · z ∈ L.

Lemma 12. Let La = L ·{a} be a prefix-free regular language. Then there exists
a minimal DRE for La which is either a or of the form r · a.

Lemma 13. If r∗ is a minimal DRE, then ε /∈ L(r).

However, the DRE r in a minimal DRE r∗ in Lemma 13 can still contain ε-
symbols. This holds, for example, for the DRE r = (a(b+ ε))∗.

Now we are ready to prove the exponential blow-up when translating DFAs
to DREs. In particular, we prove that every minimal DRE for the DFA in Fig-
ure 2(a) is exponential in n. We denote the language of this DFA with L[n].

Lemma 14. There is a minimal DRE r for L[n] containing at least 2n concate-
nations.

Proof. Let A be the minimal DFA for L[n] (see Figure 2(a)). The proof is by
induction on n. For the induction basis, let n = 1. Since A has an accepting
bottleneck state, we know by Lemma 9 that r is a concatenation r1 · r2 with
first(r2) = {b}. By Lemma 11, it follows that L(r1) = L(b∗a). This implies that
there is a minimal DRE for L[1] = L(b∗ · a · r2), with at least 2 concatenations.

For the induction step, assume that there exists a minimal DRE for L[n−1]

containing at least 2n−1 concatenations. By Lemma 9, r is a qn-concatenation
r1 · r2 with first(r2) = {b}. Lemma 11 implies that the automaton in Figure 2(b)
is a DFA for L(r1) and the automaton in Figure 2(c) is a DFA for L(r2).

Next we show that r1 and r2 each contain a subexpression for the language
L[n−1]. For r1 we observe that L(r1) (see Figure 2(b)) is prefix-free and a lan-
guage of the form L′ · {a}. Thus there exists a minimal DRE r1 of the form
s1 · a by Lemma 12, where L(s1) is defined by the DFA of Figure 2(b) without



the transition δ(qn−1, a) = qn and with qn−1 as accepting state. As we can see,
this is a DFA for L[n−1]; hence L(s1) =L[n−1]. Then, by induction hypothe-
sis there exists a DRE s1, such that s1 and therefore r1 contain at least 2n−1

concatenations.
For r2, we observe that L(r2) is infinite (see Aqn in Figure 2(c)), which implies

that r2 is not an atomic expression. Furthermore, it holds that |first(r2)| = 1
and ε ∈ L(r2). It follows that r2 cannot be a concatenation r2 = r3 · r4, as the
first sets of r3 and r4 would have to be disjunct because of ε ∈ r3. Next we
show that r2 cannot be a disjunction. Since first(r2) = {b}, the only possible
disjunction is r2 = b ·r3 +ε for some DRE r3. As δ(qn, b) = q0 in Aqn , we observe
that L(r3) = L[n], which directly contradicts that r is a minimal DRE for L[n].

Thus r2 is an expression of the form s∗2. Next we investigate the structure
of a DFA for L(s2). For every word v ∈ L(s2), it holds that δ∗(qn, v) = qn in
Aqn . Since s∗2 is a DRE and first(r2) = {b}, L(s2) cannot contain a word v such
that v = w · z with w, z 6= ε and δ∗(qn, w) = qn. These properties characterize
L(s2), for which the minimal DFA is shown in Figure 2(d). Because the DFA
has a bottleneck state q1, s2 cannot be atomic or an expression t∗ by Lemma 8.
Furthermore, s2 is not a disjunction, because |first(s2)| = 1, ε /∈ L(s2), and s2
is a DRE. Thus s2 is a concatenation b · t, where L(t) is definded by the DFA
from Figure 2(d) without the transition (o, b, q0) and with q0 as initial state. By
Lemma 12, it follows that s2 = b · t · a, where L(t) =L[n−1]. Thus, by induction
hypothesis, t and therefore r2 contain at least 2n−1 concatenations.

Finally, it holds that r1 and r2 contain at least 2n−1 concatenations each,
i.e., r = r1 · r2 contains at least 2n concatenations. This concludes the proof. �

Since we can write L[n] = L((b + ab + · · · + anb)∗an) = L((b(a + b(· · · (ab +
b) · · · )))∗an), we obtain the following theorem:

Theorem 15. For each n ∈ N, the minimal DFA for L[n] has size Θ(n), every
minimal RE for L[n] has size Θ(n), and every minimal DRE has size 2Ω(n).

3.3 Application on an Example from the Literature

Brüggemann-Klein and Wood claimed that every minimal DRE for languages
of the form Σ∗a1 · · · an, where a1 · · · an is a fixed Σ-word, is exponential [2].
However, to the best of our knowledge, no proof for this result exists in the lit-
erature. We prove this claim by using bottleneck states. Therefore we will gen-
eralize the special structure of the automata of languages L[n] (see Figure 2(a))
and L(Σ∗a1 · · · an) to provide a formal proof.

Definition 16. Let A = (Q,Σ, δ, o, {qn}) be a DFA with Σ ⊇ {a1, . . . , an} and
Q ⊇ {q0, . . . , qn}. Then A contains a bottleneck tail of length n, if all of the
following hold:

1. qi is a bottleneck state for every i ∈ {0, . . . , n};
2. (qi−1, ai, qi) ∈ δ for all i ∈ {1, . . . , n};
3. for every i ∈ {0, . . . , n} there is an a ∈ Σ and a transition (qi, a, o) in A; and
4. for every i ∈ {1, . . . , n}, if (q, a, qi) ∈ δ then q = qi−1 and a = ai.



Op. |Σ| = 1 |Σ| ≥ 1 Op. |Σ| = 1 |Σ| ≥ 1 Op. |Σ| = 1 |Σ| ≥ 1

\ no no ∪ no no · no no
Rev yes no ∩ yes no ∗ yes no

Fig. 3. Closure Properties of DRE-definable languages.

For example, the automaton in Figure 2(a) and the minimal DFA for L(Σ∗a1 · · · an)
each contain a bottleneck tail of length n − 1. We prove that a bottleneck tail
causes a blow-up in a DRE, exponential in the length of the tail.

Theorem 17. Let A = (Q,Σ, δ, o, {qn}) be a DFA for a DRE-definable regular
language L with a bottleneck tail of length n. Then there exists a minimal DRE
r for L which contains at least 2n concatenations.

Theorem 18. Every minimal DRE for L(Σ∗a1 · · · an) has size 2Ω(n).

4 Operations on DRE-Definable Languages

We investigate the descriptional complexity of several language-theoretic oper-
ations on DREs and their DFAs. Most results concern DFAs for DRE-definable
languages, which allows us to infer lower bounds for DREs as well. First, we
present an overview of the closure properties of DRE-definable languages.

4.1 Closure Properties of DRE-Definable Languages

It has been observed that DRE-definable languages are not closed under union [2],
intersection [16, 4] or complement [8]. DRE-definable languages are also not
closed under concatenation [2], reversal3 (take L((a + b)∗a(a + b))) or Kleene
star [2]. These results hold for alphabets with at least two symbols. For unary
alphabets, the same results hold, except for reversal, intersection and star. In
these three cases, we prove that DRE-definable languages are closed. It is easy
to see that DRE-definable languages over unary alphabets are closed under re-
versal, since for unary alphabets the language and its reversal are equal. The
other two cases are non-trivial. The results are summarized in Figure 3.

Theorem 19. DRE-definable regular languages over a unary alphabet are closed
under reversal, intersection, and Kleene star.

4.2 Descriptional Complexity of Operations on DRE-Definable
Languages

We are now ready to apply previously obtained results to prove lower bounds on
the descriptional complexity of operations on DREs. From Section 4.1 we know
that we need to be careful that the language after performing the operations is
indeed DRE-definable. We first prove some lower bounds directly on DREs. For
DRE-definable languages we get the following by Theorem 2 and 15.

3 The reversal of a language L is the set of strings {an · · · a1 | a1 · · · an ∈ L}.



Theorem 20. There exist regular languages (Ln)n∈N such that, for each n ∈ N,
the minimal DREs for Ln have size Θ(n), whereas the minimal DREs for the
reversal of Ln have size 2Θ(n). This holds in the case where all Ln are finite
languages and in the case where all Ln are infinite languages.

Indeed, in the finite case one could take Ln to be L((a+ b)≤na(a+ b)n) and in
the infinite case take the language L[n] from Theorem 15.

Theorem 21. There exist regular languages (L1
n)n∈N and (L2

n)n∈N such that,
for each n ∈ N, the minimal DREs for L1

n and L2
n have size Θ(n) and the

minimal DREs for L1
n · L2

n have size 2Θ(n). This holds in the case where all L1
n

and L2
n are finite languages and in the case where all L1

n and L2
n are infinite

languages.

Indeed, in the finite case we can take L1
n = (a+ b)≤n and L2

n = a(a+ b)n and in
the infinite case we can take L1

n = (a+ b)∗ and L2
n = ancc∗.

The following results do not immediately concern the minimal size of DREs
after performing an operation, but focus on the minimal size of the DFAs for
the DREs. For DRE-definable languages, lower bounds can always be transfered.
In some cases, we can even infer upper bounds on the DRE size. Consider, for
example, the case of languages over a unary alphabet: For those languages all
minimal DREs have size linear in the minimal DFA.

Theorem 22. Let A be a minimal DFA with m states for a DRE-definable
language L over a unary alphabet. Then there exists a minimal DRE r for L,
such that r is of size O(m).

To this end, for a DRE-definable language L, we write DDFA(L) for the
minimal DFA defining L. We summarize our results in Figure 4 and 5, where
in each case we consider a single use of a boolean operation and a k-times
application. In Figure 5 the resulting DFA has to define an infinite language.

It is well-known that for the complement on DFAs there is no blow-up [12].
Since all finite languages are DRE-definable, we provide the known results of Yu
[20] separated in Figure 4. For all remaining operations the upper bounds are ob-
tained by the standard product construction [12]. For the union and intersection
of two finite languages an exact result is as far as we know still open.

Theorem 23. For every k ∈ N there exists finite languages L1, . . . , Lk, such
that the minimal DFA for every Li has Θ(k) states and the minimal DFA for
L1 ∩ · · · ∩ Lk or L1 ∪ · · · ∪ Lk has at least 2Θ(k) states.

The theorem is obtained by taking Li = {x1 . . . xkyk . . . y1 ∈ {a, b}∗ | xi = yi}.
Now we examine DDFAs which are the result of a boolean operation on k ≥ 2

infinite DRE-definable languages. For general DFAs the descriptional complexity
is studied in [18, 20]. In the following we show that for infinite DRE-definable
languages the complexity remains the same in almost all cases. Only for the union
of two DDFAs the descriptional complexity is strictly lower than for DFAs.



|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [12] — Θ(m) [12] —

∩ Θ(min{m1,m2}) [20] Θ(min{m1, ...,mk}) [20] O(m1m2) [20] 2Ω(k) (Th. 23)

∪ Θ(max{m1,m2}) [20] Θ(max{m1, ...,mk}) [20] O(m1m2) [20] 2Ω(k) (Th. 23)

Fig. 4. Descriptional complexity of minimal DFAs for finite languages.

|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [12] — Θ(m) [12] —

∩ Θ(m1m2) (Th. 24) 2Ω(k) (Th. 24) Θ(m1m2) (Th. 24) 2Ω(k) (Th. 24)

∪ Θ(max{m1m2}) (Th. 25) Θ(max{m1, ...,mk})(Th. 25) O(m1m2) 2Ω(k) (Th. 26)

Fig. 5. Descriptional complexity of minimal DFAs for inifinite DRE-definable languages

Theorem 24. For each k ∈ N, there exist infinite DRE-definable languages
L1, . . . , Lk, such that, for every i ∈ {1, . . . , k} the minimal DFA for Li has
O(k log k) states and DDFA(L1 ∩ · · · ∩ Lk) has kΩ(k) states. This holds even
when the alphabet is unary.

The theorem is obtained by k languages Li = (ami)∗ with 1 ≤ i ≤ k and k
different mi, such that gcd(mi,mj) = 1 for each pair (mi,mj).

At last we examine the union of DFAs for DRE-definable languages where
the result still describes a DRE-definable language. We get that for DFAs over
unary alphabets the complexity is only linear; hence is strictly lower than for
intersection. For arbitrary alphabets the complexity is again exponential.

Theorem 25. Let L1, . . . , Lk be infinite languages over a unary alphabet, such
that the minimal DFAs for every Li with i ∈ {1, . . . , k} has mi states. Then the
DDFA A for L1 ∪ · · · ∪ Lk has Θ(max{m1, . . . ,mk}) states.

Theorem 26. For each k ∈ N, there are infinite DRE-definable languages L1,
. . . , Lk such that, for each i ∈ {1, . . . , k} there is a DFA of size Θ(k) for Li, but
DDFA(L1 ∪ · · · ∪ Lk) has size 2Θ(k).

The theorem follows from taking Li = {x1 . . . xkyk . . . y1w ∈ {a, b}∗ | xi = yi}.

5 Conclusions and further work

In this paper we were motivated by the aim to come to a better understanding of
DRE-definable languages. For example, we developed a new technique to prove
lower bounds on the size of DREs by using bottleneck states and tails in a
DFA. As a consequence of this technique, we now know that, when translating
an RE into a DFA and when translating a DFA into a DRE, an exponential
blow-up cannot be avoided. However, we do not know yet whether there are
DRE-definable languages for which a translation from an RE to a DRE causes
a double exponential blow-up.



Finally we examine several operations on DRE-definable languages. We ob-
tain an overview of the closure properties and the descriptional complexity of
these operations on DRE-definable languages. A tight lower bound for the union
of two DFAs for DRE-definable languages remains open.
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