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1 Umeå University

Department of Computing Science

90187 Umeå, Sweden
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1 Introduction

What is a learning algorithm? How can a computer automatically learn things and some-

how become smarter as it receives more information? According to Valiant, “a program

for perfoming a task has been acquired by learning if it has been acquired by any means

other than explicit programming” [42]. This view on learning is very broad, as is the

field of learning algorithms. Learning algorithms, or learners, can be said to specialize in

generalizing from instances to concepts. At the heart of learning lies the ability to derive

from a number of instances the common concept that they examplify. The concept can,

in principle, be almost anything. If it is a logical formula, the instances may be structures

that satisfy it. If it is a language, the intances may be words that belong to it.

Grammatical inference is the subfield of algorithmic learning where the concept to be

learned is a formal language. Since languages can be infinte, we are interested in learners

that output finite representations of the languages such as automata. Even grammatical

inference is, however, a field much too vast to be covered here, and we therefore focus on

what we believe to be the most fundamental aspect of it, namely the learning of regular

languages, represented by finite automata.

After some preliminary definitions, we present the most well-known classical results

on the learning of deterministic finite automata in Section 3. These results have been taken

up by many researchers and extended to the learning of, e.g., nondeterministic finite au-

tomata, and regular tree automata. We discuss these extensions in Sections 4–6. The

concept of probably approximately correct (PAC) learning is important in general learn-

ing theory, but arguably less so in grammatical inference. We do, however, discuss its

implications for learning finite automata in Sectiton 7. Finally, in Section 8, we present a

few examples of more applied settings in which grammatical inference has been success-

fully used, such as natural language processing, XML databases, and formal verification.

2 Preliminaries

We denote the set of Booleans by B = {0, 1} where 1 represents true and 0 represents

false. We use N for the natural numbers and N+ for the strictly positive natural numbers.

For k ∈ N, we denote the set {1, . . . , k} by [k], with [0] = ∅. Given a partial function

f : D → D′, we denote by Dom(f) the domain of f , that is, the subset of D on which f
is defined. We write Rng(f) for the range of f , that is, the set {d′ | (d′ ∈ D′)∧ (∃d ∈ D
such that f(d) = d′)}.

In the following, A always denotes a finite alphabet. A set S of words over alphabet A
is prefix-closed if w ·x ∈ S implies that w ∈ S, for all w, x ∈ A∗. The set is suffix-closed

if w · x ∈ S implies that x ∈ S.



Learning Algorithms 353

We often abbreviate (nondeterministic) finite automaton and deterministic finite au-

tomaton by NFA and DFA, respectively. Given an NFA A = (Q, I, E, T ) and a set

S ⊆ Q, we write E(S) for the set of successors of states in S with respect to E, that is,

E(S) = {p | ∃q ∈ S∧∃a ∈ A : (q, a, p) ∈ E}. We write E(S, a) for the set {p | ∃q ∈ S
with (p, a, q) ∈ E}. For a word w we denote by E∗(w) the set of states that can be

reached by reading w. That is, E∗(ε) = I and E∗(wa) = E(E∗(w), a). The language

of A is denoted L(A). By A(w) we denote the Boolean value that is true if and only if

w ∈ L(A).
Given a set S = {w1, . . . , wn} of words, the prefix tree acceptor, or PTA of S is the

DFA A = (Q, I, E, T ) such that L(A) = S and Q is the set of all prefixes of words from

S, I = ε, T = S, and E = (w, a, wa) for each state wa in Q.

2.1 A warm-up to learning

At the heart of many learning algorithms for regular languages lies the Myhill-Nerode

theorem. We therefore remind the reader of its statement.

Definition 2.1. Let X be a language over alphabet A. Two words w1, w2 in A∗ are

equivalent with respect to X , written w1 ≡X w2, if, for every word x ∈ A∗, w1 · x ∈ X
if and only if w2 · x ∈ X . For a word w ∈ A∗, we write [w]≡X

for the equivalence class

of w in the equivalence relation≡X , that is, for the set of words {y ∈ A∗ | y ≡X w}. We

say that w is a representative of class [w]≡X
.

Theorem 2.1 (Myhill-Nerode). A language X is regular if and only if ≡X has finite

index, that is, has a finite number of equivalence classes. Furthermore, if X is regular,

then each state of the minimal DFA for X corresponds to an equivalence class of≡X and

vice versa. In particular, the index of ≡X is exactly the number of states of the minimal

DFA for X .

We provide a general example as a warm-up for the reader to the general philosophy

behind many algorithms for learning regular languages.

Example 2.1. Assume that we are given the following information about an unknown

word language Z over A = {a, b}.

• The equivalence relation ≡Z has four classes, S1, S2, S3, and S4.

• The words ε, a, and baa belong to S1.

• The words b and bab belong to S2.

• The words ba and bba belong to S3.

• The words bb and bbb belong to S4.

• (S3 ∪ S4) = Z .

Due to Theorem 2.1, we know that we are looking for a regular word language. As we

shall see, this information is enough to recreate the minimal DFA AZ = (Q, I, E, T ) for

Z . Consider the set S = {ε, b, ba, bb} of the shortest representatives we know for each

equivalence class of≡Z . Notice that, for everyw ∈ S and every c ∈ A, we know to which

equivalence class w · c belongs. Furthermore, since w ≡Z x implies that w · c ≡Z x · c
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Figure 1. The automatonAZ from Example 2.1. Each state is labeled by its shortest

representative.

holds for all w, x ∈ A∗ and all c ∈ A, we know everything we need to know about the

relationships of the equivalence classes to each other. If we let Q = {S1, S2, S3, S4} as

in the Myhill-Nerode theorem, we know, for example, that since ba ∈ S3 and bab ∈ S2,

there should be a b-labeled edge from S3 to S2. Furthermore, since ε ∈ S1 we have

I = {S1} and since (S3 ∪ S4) = Z we have T = {S3, S4}. The full automaton AZ

is depicted in Figure 1. The language Z can also be characterized through the regular

expression (a+ b)∗b(a+ b).

2.2 Observation tables for word languages

Many learning algorithms use so-called observation tables to represent the information

they have so far gathered about an unknown language X . In this section we recall the

observation tables for words from Angluin [4] and we show how to generalize them for

trees in Section 6.

An observation table for words is a tuple (Spre, Ssuff,Obs), where

• Spre is a nonempty, finite, prefix-closed set of words;

• Ssuff is a nonempty, finite, suffix-closed set of words; and

• Obs is a finite function from ((Spre ∪ Spre ·A) · Ssuff) to {0, 1}.

Here, the function Obs formalizes what is known about the unknown language X , i.e.,

Obs(w) = 1 if and only if w ∈ X .

An observation table can be organized in rows and columns. The rows are indexed by

elements from (Spre ∪ Spre · A) and the colums are indexed by elements from Ssuff. The

entry for row x and column y is then equal to Obs(x · y). If w ∈ (Spre ∪ Spre ·A) then we

denote by roww the finite function from Ssuff to {0, 1} with roww(x) = Obs(w · x).
An observation table is closed when for each word w in Spre · A there exists a word x

in Spre such that roww = rowx. It is consistent if whenever w and x are elements of Spre

with roww = rowx, then, for all a ∈ A, we have that rowwa = rowxa.

It is useful to think of the elements of Spre as potential equivalence classes of X , or,

equivalently, as potential states of a DFA for X . If we have w ∈ Spre and w · a ∈ Spre,

we know that there should be an a-labeled edge from the state represented by w to the

state represented by w · a. But what if w · a is not an element of Spre? The elements of

(Spre · A) \ Spre can then be thought of as representing the extra transitions needed in the

following sense. If w ∈ Spre, w · a ∈ (Spre · A) \ Spre, and rowwa = rowx, for some

x ∈ Spre, there should be an a-labeled edge from the state represented by w to the state

represented by x.
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With these correspondences in mind, we are better prepared to understand the signifi-

cance of closedness and consistency. If the observation table is not closed, then there are

transitions leading to unknown states. If, on the other hand, the observation table is not

consistent, then the corresponding automaton is not deterministic.

Formally, the finite automatonAObs = (Q, I, E, T ) associated to a closed, consistent

observation table (Spre, Ssuff,Obs) is defined as follows:

• Q = {roww | w ∈ Spre},
• I = {rowε},
• E = {(roww, a, rowwa) | w ∈ Spre and a ∈ A}, and
• T = {roww | w ∈ Spre and Obs(w) = 1}.

We argue thatAObs is well-defined. We have that I is well-defined since Spre is a nonempty

prefix-closed set and therefore contains ε. To prove that T is well-defined, let w1 and w2

be two words in Spre such that roww1 = roww2 . Since Ssuff is nonempty and suffix-closed,

Ssuff always contains ε. Therefore, we have that Obs(w1) = Obs(w1 · ε) = roww1(ε) =
roww2(ε) = Obs(w2 · ε) = Obs(w2) and therefore T is well-defined. Finally, we show

that E is well-defined. To this end, assume that w1 and w2 are two words in Spre such

that roww1 = roww2 . Since the observation table (Spre, Ssuff,Obs) is consistent, we have

that, for each a ∈ A, roww1a = roww2a. Furthermore, since (Spre, Ssuff,Obs) is closed,

roww1a and roww2a are equal to roww for some word w in Spre. This proves that AObs is

well-defined.

The automaton AObs = (Q, I, E, T ) associated to table (Spre, Ssuff,Obs) is also con-

sistent with Obs in the following sense. For every w1 ∈ (Spre ∪ Spre · A) and w2 ∈ Ssuff,

we have that E∗(w1 · w2) is in T if and only if Obs(w1 · w2) = 1. Furthermore, we note

that any other DFA consistent with Obs but inequivalent to AObs must have more states

than AObs (Theorem 1 in [4]).

3 Classical results

3.1 Learning in the limit

Gold’s learning paradigm learning in the limit formalizes the view of human language

acquisition as a process, in which the internal representation of the unknown language is

continuously refined by new evidence, and converges towards an accurate model as time

advances. In Gold’s learning paradigm, an algorithm (henceforth, the learner) is to infer

a formal representation an unknown language X . It is known that X is a subset of a

certain universe U , belongs to a class of languages C, and that the learner needs to infer a

formal representation from a certain hypothesis space R. Suppose, for instance, that we

are interested in learning regular word languages over the alphabet A. Then C would be

the class of regular word languages, U would be set of words in A∗, and R could be the

set of deterministic finite state automata, or the set of regular expressions over A.

In the presentation of Gold’s paradigm, it will be convenient to identify a language X
over the universe U of words with its characteristic mapping. That is, we also view X
as a mapping X : U → B such that, for each word w ∈ U , X(w) = 1 if w ∈ X and

X(w) = 0 otherwise. Similarly, we can view a sample of X on the subdomain D ⊆ U as
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the restriction X |D of X to D. Thus seen, X |D represents the annotated set of examples

{(w,X(w)) | w ∈ D}. The positive examples contained in X |D are X |−1
D (1), and the

negative examples are X |−1
D (0).

Additional information about X is provided to the learner at discreet time steps, ac-

cording to a presentation, i.e., a function g : N+ → U . At time i, the learner is told

whether the element g(i) of U is in X or not. For every new piece of information, the

learner must guess the identity of X by outputting an element in R. This means that at

time i ∈ N+, the learner may support its conjecture on membership information for the

words in {g(1), . . . , g(i)}. It is commonly assumed that the learner does not care about

the order in which the examples are presented. From here on, we denote by g[i] the first i
examples provided by g, that is, the set Rng(g|[i]).

Gold is primarily interested in two classes of presentations: texts and informants. A

presentation g is a text for X if Rng(g) = X , and an informant for X if Rng(g) = U .

Thus, a text is restricted to positive information, which reflects the early linguistic hypoth-

esis that children learn to speak by listening to others. When aided by an informant, the

learner has access to both positive and negative information. This more expressive type

of presentation can be justified by the fact that children also receive negative examples,

e.g., when they try to speak, but fail to be understood.

Definition 3.1. Let fin(U) be the set of all finite subsets of U . A class of languages C is

learnable in the limit from an informant (from text) if there is a computable function

L : {X |D | X ∈ C and D ∈ fin(U)} → R

such that the following condition holds: for every X ∈ C and every informant g : N+ →
U (every text g : N+ → X), there is an index i ∈ N+ and a representationA ∈ R of X ,

such that L(X |g[j]) = A, whenever j > i.

Definition 3.1 does not require that the learner’s initial conjectures are consistent with

the given information, only that the conjectures eventually converge to the correct answer.

A learner that only produces consistent conjectures is said to be feasible. In the remainder

of this section, we briefly discuss learning from text versus learning from an informant.

3.1.1 Learning from text Early results regarding learning from text were discouraging.

Angluin showed that no languae class with infinite elasticity is learnable in the limit from

text [3]. The elasticity of a class is the length of the longest chain of inclusions X1 (

X2 ( X3 ( · · · , where Xi ∈ C for every i ∈ N. The intuition behind Angluin’s

argument is the following. Towards a contradiction, assume that there is a learner that can

infer C from a text presentation. If the learner is given a presentation g that begins with

examples taken from X1, then there is an index i1 ∈ N such that after seeing the first i1
examples, the learner will make the conjecture X1. This is necessary because X1 ∈ C
and we assumed that the learner can identify every member of C in the limit. But assume

that after index i1+1, g contains a sequence of examples from X2. Again, since X2 ∈ C,

there is an index i2 such that after seeing i2 examples, the learner will conjecture L2.

Now starting at index i2 + 1, g contains a sequence of examples from X3, and so forth.

Such an unfavorable presentation will always exist, and it will force the learner to renew

its conjecture infinitely many times, making convergence impossible. This contradicts
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our assumption. It follows that no class of languages containing the finite languages

and a single infinite language is learnable in the limit from text. There are, however a

few positive results, e.g., it is known that languages of fixed cardinality can be (trivially)

inferred from text. Further positive results are briefly discussed in Section 8.

3.1.2 Learning from an informant Whereas most language classes cannot be learned

from text, even the primitive recursive languages can be learned from an informant using

a technique called identification by enumeration [24]. This technique is applicable when-

ever the hypothesis space consists of a recursively enumerable family of representations

R and the problem of deciding whether a particular representation is consistent with a

restriction X |D of some language X to some finite domain D is decidable. The identifi-

cation rule at time i reads as follows: enumerate the representations in R in order of size

(using the lexicographical order to resolve ties) and take as conjecture the first (an hence

the smallest) representation that is consistent with X |g[i]. Since the minimal representa-

tion A of X will eventually be reached, the learner only has to modify its hypothesis a

finite number of times before finding A. Once the learner has made the conjecture A,

the addition of new examples will not cause an inconsistency, so the learner will never be

compelled to discard the correct answer.

3.1.3 Characteristic sets A mapping charL : C → fin(U) is a characteristic mapping

for the class C and computable function L : {X |D | X ∈ C and D ∈ fin(U)} → R if

the following condition holds: for every language X ∈ C there is a representationA ∈ R
of X such that L(X |D) = A whenever charL(X) ⊆ D. If charL is a characteristic

mapping for C, then charL(X) is a characteristic set for X ∈ C.

A class C has a characteristic mapping with respect to a learner L, if and only if L

infers C in the limit from an informant [13]. For every X ∈ C and presentation g, there

is an index i ∈ N such that charL(X) ⊆ X |g[i], so from time i onwards, L will correctly

identify X . Vice versa, if there is a language X ∈ C for which no characteristic set exists,

then one can contruct a presentation of X on which L will never converge.

3.1.4 Polynomial time inference A class C is learnable with polynomial time and data

if there is an algorithm L that infers C in the limit, a characteristic mapping charL, and

polynomials p and q such that for every language X ∈ C and every presentation g the

following conditions hold:

(1) at each time i, the learner L uses p(|gi|) computation steps to output a conjecture

consistent with X |g[i] , where |gi| =
∑

j∈{1,...,i} |g(j)|, and

(2) |charL(X)| = q(|A|), where A is the smallest representation of X in R [25].

Under this complexity model, identification by enumeration does not yield polynomial-

time inference of regular languages when the representation space is deterministic finite

automata (if P 6= NP ). Recall that identification by enumeration takes as conjecture the

smallest representation that is consistent with the current information. Our observation

now follows from the NP-completeness of the minimal consistent representation (MCR)

problem for DFAs [25], a decision problem which can be stated as follows: Given k ∈ N

and a finite sample X |D of some unknown language X , is k the minimal integer such
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that there is a DFA of size k consistent with X |D ? The problem cannot even be effi-

ciently approximated, since deciding whether a given DFA is only polynomially larger

any state-minimal DFA is also NP-hard [37]. Intuitively, the difficulty is that to synthe-

size A, missing data must be guessed, and the hypothesis space is exponential in the size

of D. We note that any polynomial-time procedure for computing the next hypothesis in

the identification by enumeration algorithm would also provide an efficient solution to the

MCR problem, so no such procedure can exist.

An alternative attempt at in-the-limit learning could be to maintain a prefix tree ac-

ceptor that reflects the information in X |D. However, also this apporach misses because

although the time needed to update the conjecture is but linear in the size of the input, the

conjectured automaton changes with every new positive example recieved, so the algo-

rithm will typically not converge.

Gold [25] was first to present an algorithm that identifies the class of regular languages

(over an alphabet A) in the limit with polynomial time and data. To compute a conjecture

based on the information contained in X |D, Gold’s algorithm searches for a subset S of

D from which a DFA A can be synthesized without having to guess missing data. If A
agrees with X on all of D, then it becomes the learner’s next conjecture. If no such A
can be obtained, then the learner synthesizes a consistent PTA instead, which it uses as

a dummy conjecture. In essence, the learner waits for a characteristic set for the target

language, and disregards data which it cannot use easily.

Gold’s algorithm is outlined in Algorithm 1. In the try-catch block spanning lines 1

through 5, an attempt is made to construct a DFA from the given data X |D by invok-

ing the timid state characterization algorithm, but the attempt is unsuccessful if X |D is

not compact enough. When this happens, the algorithm resorts to building a prefix tree

acceptor that is consistent with X |D, something which is always feasible. On line 6,

A(w) denotes the Boolean that is true if and only if w is accepted by A. The procedure

PREFIXTREEACCEPTOR is outlined in Algorithm 5.

The timid state characterization algorithm (TSCA) is the core of Gold’s algorithm (see

Algorithm 2). If TCSA is informed about X on any superset of a characteristic set for

X with respect to Gold’s algorithm, then it returns the minimal DFA recognizing X in

polynomial time. It does so by constructing an observation table for X |D. However, if

TSCA is not provided with a superset of a characteristic set, then it often fails to produce

a DFA altogether. This is either because the observation table has missing information or

because it contains inconsistencies that cannot be resolved without expanding the domain

of X |D. The latter problem arises in the subprocedure SYNTHESIZE (not listed explictly)

which computes the DFA associated to a closed and consistent observation table (see

Section 2.2) or, if the table is not consistent, flags that the information is insufficient and

aborts.

Gold’s algorithm thus performs rather poorly as long as it does not receive the right

data, but since the the data set continues to grow, there will be some time i ∈ N+ when the

algorithm has received the shortest prefix of g that contains a characteristic set for X with

respect to the learner. Although i is guaranteed to be finite, it may be unboundedly large,

and the majority of the algorithm’s conjectures before time i are prefix tree acceptor.
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Algorithm 1 Gold’s algorithm to identify a DFA in the limit from an informant [25].

Require: The restriction X |D : D → B of X : A∗ → B to some finite domain D ⊂ A∗.

Ensure: The DFA A is consistent with X on D.

try

2: A ← TIMIDSTATECHARACTERIZATION(X |D)
catch Insufficient information in X |D

4: return PREFIXTREEACCEPTOR(X |D)
end try

6: if ∃w ∈ D : A(w) 6= X |D(w) then

return PREFIXTREEACCEPTOR(X |D)

8: returnA

Algorithm 2 TIMIDSTATECHARACTERIZATION [25].

Require: The restriction X |D : D → B of X : A∗ → B to some finite domain D ⊂ A∗

that contains a characteristic set for X .

Ensure: The DFA A is consistent with X on D and is the minimal DFA for L(A).
S ← {ε}

2: T ← suffixes(D)
Obs← FILLTABLE(X |D, S, T )

4: while ∃w · a ∈ S · A : rowwa 6∈ {rowx | x ∈ S} do

S ← S ∪ {w · a}
6: Obs← FILLTABLE(X |D, S, T )

returnA ← SYNTHESIZE(S, T,Obs)

Algorithm 3 FILLTABLE

Require: The restriction X |D : A∗ → B of X to some finite domain D, and a pair of

sets S, T ⊆ A∗.

Ensure: Obs is a (possibly inconsistent and incomplete) observation table.

for each w ∈ S do

2: for each x ∈ T do

if w · x ∈ D then

4: Obs(w, x)← X |D(w · x)
else

6: throw Insufficient information

return Obs
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3.2 Learning from a Minimally Adequate Teacher

Learning from a minimally adequate teacher (MAT-learning) was introduced in a seminal

paper by Angluin [4]. The MAT-learning scenario assumes a learner and a teacher. The

learner wants to learn an unknown regular language X over alphabet A known by the

teacher. In order to learn X , the learner asks questions, which the teacher must answer.

In particular, the learner can ask two types of questions, namely

(1) membership queries, each consisting of a word w, and

(2) conjectures, each consisting of a description of a language Y .

The teacher will respond to membership queries by answering either yes (if w ∈ X) or no

(otherwise) and to conjectures by either yes (if X = Y ) or by a word x in the symmetric

difference of X and Y (otherwise). The word x may be chosen arbitrarily and we refer

to it as a counterexample. We say that a teacher that behaves as described is a minimally

adequate teacher (MAT).

Angluin’s main result is that the learner can learn any regular language from a teacher

in time polynomial in |A|, |A|, and |x|, where |A| is the number of symbols in A, |A|
denotes the number of states of the minimal DFA for X , and |x| denotes the maximum

length of any counterexample word presented by the teacher.

If the teacher is able to answer both membership queries and conjectures correctly,

it may seem that she should actually already have a representation of the language to

be learned. If this is the case, we may ask ourselves why she doesn’t simply give the

learner this representation, rather than playing the cat-and-mouse game of queries and

answers. One could therefore think that the MAT learning paradigm is certainly more of

a mathematical abstraction than a realistic setting. Still, it has played a very important

role in the field of grammatical inference. The explanation for this has two parts. The first

is that grammatical inference, as we have seen in Section 3.1, is inherently hard. To be

able to achieve positive theoretical results, we must either restrict the class of languages

to be learned severely, or give the learner access to a powerful information source, such

as a MAT. The second is that there are practical settings where we can assume something

very close to a MAT. One such example comes from formal verification. One approach

to so-called black box checking [35, 26], uses a MAT algorithm where the equivalence

queries to the teacher are replaced by conformance testing algorithms; see Section 8.

3.2.1 The MAT learning algorithm The crux of Angluin’s learning algorithm is that

the learner maintains an observation table and iteratively makes this table closed and con-

sistent by querying the teacher. The MAT learning algorithm is presented as Algorithm

4. Initially, the learner sets Spre = Ssuff = {ε} and asks the teacher membership queries

for ε and for each a ∈ A. The initial observation table is then constructed to reflect the

learned information.

The main loop of the algorithm is concerned with repeatedly making the observation

table closed and consistent, and presenting the teacher with a conjecture. If the observa-

tion table is not consistent, then the learner finds words w1, w2 in Spre, an a in A, and

a w in Ssuff that witness this fact. The witnessing suffix aw is then added to Ssuff and

the table is completed to incorporate this new entry. Similarly, if the observation table is

not closed, the learner finds a word w1 in Spre and an a in A witnessing this fact. The

witnessing word w1a is then added to Spre and the table is completed to incorporate this
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Algorithm 4 The MAT learning algorithm by Angluin [4].

Initialize Spre and Ssuff to {ε}
2: Ask membership queries for ε and each a ∈ A

Construct the initial observation table (Spre, Ssuff,Obs)
4: repeat

while (Spre, Ssuff,Obs) is not closed or not consistent do

6: if (Spre, Ssuff,Obs) is not closed then

find w1 ∈ Spre and a ∈ A such that

8: roww1a is different from roww for all w ∈ Spre

add w1 · a to Spre

10: extend Obs to (Spre ∪ Spre ·A) · Ssuff using membership queries

if (Spre, Ssuff,Obs) is not consistent then

12: find w1 and w2 in Spre, a ∈ A, and w ∈ Ssuff such that

roww1 = roww2 and Obs(w1 · a · w) 6= Obs(w2 · a · w)
14: add a · w to Ssuff

extend Obs to (Spre ∪ Spre ·A) · Ssuff using membership queries

16: Once (Spre, Ssuff,Obs) is closed and consistent,

letAObs be its associated automaton and make the conjectureAObs

18: if the teacher replies with a counterexample w then

add w and all its prefixes to Spre

20: extend Obs to (Spre ∪ Spre · A) · Ssuff using membership queries

until the teacher replies yes to the conjectureAObs

22: returnAObs

new entry.

If the observation table is closed and consistent, a conjecture AObs is generated. If

the conjecture is correct, the learner is done and can output AObs. Otherwise, the coun-

terexample w from the teacher is added, along with its prefixes, to Spre. The table is then

completed to incorporate this new information.

Angluin proves that the total running time of Algorithm 4 is O(km2n2 + kmn3),
where k = |A|, n is the number of states of the minimal DFA for X , and m is the

maximum length of any counterexample presented by the teacher [4]. It follows that, if

the teacher always presents counterexamples of minimal length, then they will be at most

O(n) in length and therefore the learning algorithm will run in time O(kn4).

Example 3.1. We consider a run of Algorithm 4 with the language Z of the regular

expression

r = (a+ b)∗b(a+ b)

as the target. This language consists of all words over A = {a, b} that have length at least

two and such that the second to last letter is b.
The first thing the algorithm does is to set Spre = Ssuff = {ε} and to use membership

queries to find the Obs-values for ε, a, and b. This results in the following table.
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ε
ε 0

a 0

b 0

In the table, the columns represent elements of Ssuff and the rows elements in Spre ∪
(Spre · A) with the elements of Spre above the double horizontal line and the elements of

(Spre · A) \ Spre below it. The value of a cell in row w and column x is Obs(w · x).
The table is clearly consistent, since Ssuff is a singleton. It is also closed, since ev-

ery row that appears below the double line also appears above it. This means that the

algorithm will reach line 16 and construct an automaton from the table. Since Spre is a

singleton and the table contains only zeroes, the automaton will only have one state and

this state will not be accepting. Thus it will accept the empty language. When the algo-

rithm makes this conjecture, the teacher is obliged to provide a counterexample. Since

the conjecture was an automaton that accepts nothing, the counterexample will have to be

a word in Z . We will assume that the teacher responds with ba ∈ Z . The algorithm now

adds ba, b, and ε to Spre (the latter was of course already included) and uses membership

queries to compute a new table:

ε
ε 0

b 0

ba 1

a 0

bb 1

baa 0

bab 0

The new table is obviously closed, since every row below the double line is also present

above the line. However, it is not consistent. For example, rowε = rowb, but Obs(ε·a·ε) =
Obs(a) = 0 while Obs(b·a·ε) = Obs(ba) = 1. This means that the algorithm will execute

the code on lines 11 to 15, for example with the instantiations w1 = ε, w2 = b, a = a,

and w = ε. In this case, a · ε = a will be added to Ssuff and the following table will be

computed:

ε a
ε 0 0

b 0 1

ba 1 0

a 0 0

bb 1 1

baa 0 0

bab 0 1

This third table is consistent, since no two rows above the double line are the same. But,

this time, it is not closed since rowbb does not appear above the double line. This means

that the code on lines 6 to 10 will be executed with w1 = b and a = b. Finally, bb will be

added to Spre with the following table as a result:
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ε a
ε 0 0

b 0 1

ba 1 0

bb 1 1

a 0 0

baa 0 0

bab 0 1

bba 1 0

bbb 1 1

This table is consistent, since no two rows above the double line have the same values, and

closed, since all possible rows are represented above the double line. Thus the algorithm

will reach line 16 again and construct an automatonA = (Q, I, E, T ) with

• Q = {ε, b, ba, bb},
• I = {ε},
• T = {ba, bb}, and

• E = {(ε, a, ε), (ε, b, b), (b, a, ba), (b, b, bb), (ba, a, ε), (ba, b, a), (bb, a, ba), (bb, b,
bb)}.

This automaton is shown in Figure 1 and is the minimal DFA for Z . Thus the teacher will

approve the conjecture and the algorithm will terminate.

4 Learning from given data

Recall that Gold’s algorithm (which was covered in Section 3.1) is informed about a

regular language X through an infinite sequence g of positive and negative examples and

converges in the limit to the minimal DFA for X . The convergence, however, may take

an unbounded amount of time, and the majority of the algorithm’s conjectures before that

will be prefix tree acceptors (PTAs) which, in a practical setting, isn’t very convenient.

PTAs do not provide any compression nor generalization of the data. This means that they

do not represent the data in a significantly more succinct manner than the data itself and

that they always exactly describe the positive examples seen so far; and nothing more. In

brief, PTAs are therefore not much more useful than the positive data itself.

Since Gold’s first paper on learning in the limit, much effort has been invested in the

search for polynomial time learning algorithms that produce small automata and which

generalize the given examples even when conditions are less than perfect, i.e., when the

examples do not contain a characteristic set. In this work, the emphasis has shifted from

in-the-limit behavior to the problem of learning from given data. This problem, which

is also known as the consistency problem, reads as follows. Given a restriction XD of a

target language X to a finite domain D, find a representation A in the hypothesis space

R that agrees with X on all of D, i.e.,A(w) = X(w), for every w ∈ D. Ideally, we want

such representations to be small, and we want to find them efficiently.

An algorithm that learns from given data may also identify X in the limit, but this is

not always true. For example, the naive algorithm that outputs a PTA for the input sample
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Algorithm 5 PREFIXTREEACCEPTOR

Require: A restriction X |D of X to the finite domain D ⊆ A∗.

Ensure: A is a DFA consistent with X on D.

Q← prefixes(X |−1
D (1))

2: I ← ε
E ← {(x, a, x · a) | x · a ∈ prefixes(X |−1

D (1))}
4: T ← X |−1

D (1)
returnA = (Q, I, E, T )

solves the consistency problem, but it does not have the in-the-limit behavior. However, if

L is a learning algorithm that solves the consistency problem and every language X ∈ C
has a characteristic set with respect to L, then L identifies C in the limit.

In our presentation of algorithms that learn from given data, we assume that the input

is a restriction of the target languageX to a finite domainD. As in Section 3.1, we say that

the function X |D is a sample of X . The algorithm’s objective is to produce an automaton

that is consistent with X |D, that is, a representation A such that X |−1
D (1) ⊆ L(A) and

X |−1
D (0) ∩ L(A) = ∅.

State merging algorithms. A common approach to learning from given data is to start

by constructing a PTA for the positive sample X |−1
D (1) (see Algorithm 5) and then merge

as many states as possible in this PTA. Since merging states may result in an automaton

that recognises a larger language, each merge has to be preceded by a consistency check,

to make sure that none of the negative examples from X |−1
D (0) are included in the lan-

guage of the automaton. The method, which is due to Trakhtenbrot and Barzdin [41], has

given rise to a family of state merging algorithms that mainly differ in the strategies they

use to merge states and the order in which the merges are done. This order may influence

the eventual outcome, because performing one state merge may preclude another one.

When the hypothesis space is deterministic finite automata, merges are typically done

as in Algorithm 6. The algorithm takes as input a DFA A = (Q, I, E, T ) and a pair of

states q1, q2 in Q, and returns a DFA A′ in which q1 and q2 have been merged into the

new state q. Every edge that once led to q1 or q2 now leads to q, and every edge that

left q1 or q2 is now leaving q. If at least one of q1 or q2 is an initial state, then so is q,

and the same holds for the property of being an accepting state. It is easy to see that the

resulting automaton recognizes a superset of L(A), but is not necessarily deterministic.

This is the case when both q1 and q2 have outgoing edges that are labeled by the same

symbol, but which lead to different states p1 and p2. To remove the nondeterminism, the

merge algorithm calls itself recursively to merge p1 and p2. Since every application of

the algorithm produces a smaller automaton, the algorithm will eventually terminate and

return a DFA.

The RPNI algorithm. Perhaps the most well known state merging algorithm is the

regular positve-negative inference (RPNI) algorithm [33]. The basic idea of the algorithm

is to control the order in which merges of states are performed. In particular, the algorithm

avoids merging two states that are both involved in loops. This is done as follows. First,
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Algorithm 6 MERGE

Require: A DFA or NFA A = (Q, I, E, T ) and a pair of states q1, q2 ∈ Q
Ensure: In the DFA A′, the states q and q′ have been merged into one.

Q′ ← {{q} | q ∈ Q \ {q1, q2}} ∪ {{q1, q2}}
2: I ′ ← {q′ ∈ Q′ | q′ ∩ I 6= ∅}

E′ ← {(q′, a, p′) | ∃q ∈ q′, p ∈ p′ : (p, a, q) ∈ E}
4: T ′ ← {q′ ∈ Q′ | q′ ∩ T 6= ∅}
A′ = (Q′, I ′, E′, T ′)

6: while ∃q′, p′1, p
′
2 ∈ Q′, a ∈ A : (q′, a, p′1) ∈ E′ ∧ (q′, a, p′2) ∈ E′ do

A′ ← MERGE(A′, p′1, p
′
2)

8: returnA′

Algorithm 7 RPNI

Require: A restriction X |D of X to the finite domain D ⊆ A∗.

Ensure: A is a DFA consistent with X on D.

A = (Q, I, E, T )← PREFIXTREEACCEPTOR(X |−1
D (1))

2: RED ← ε
BLUE ← E(RED)

4: while BLUE 6= ∅ do

choose qb ∈ BLUE

6: BLUE ← BLUE \ {qb}
if ∃qr ∈ RED : MERGE(A, qr, qb) is consistent with X on D then

8: A ← MERGE(A, qr , qb)
else

10: RED ← RED ∪ {qb}

BLUE ← E(RED) \ RED

12: returnA = (Q, I, E, T )

the root of the PTA is colored red and all successors of the root are colored blue (all other

states are white). The algorithm then always tries to merge a blue state with a red state.

When a merge is performed, the new combined state is red and all its white successors

are colored blue. If a blue state cannot be merged with any red state, it is colored red and

its white successors become blue. The basic RPNI scheme is shown in Algorithm 7.

Example 4.1. Consider running the RPNI algorithm with input Z|D, where

• Z|−1
D (1) = {ba, bb, aba, bba, bbb, babb, baaba} and

• Z|−1
D (0) = {ε, a, b, aa, bab}.

Constructing a prefix tree acceptor from Z|−1
D (1), we get the automaton shown in Fig-

ure 2(a). State p1 is the only red state and its successors p2 and p3 are blue.

States p1 and p2 can be merged without violating Z|D. To avoid nondeterminism, the

successors of p2 are “folded” into the successors of p1. This means that p4 is merged with

p3 and p7 is merged with p5. The resulting automaton is depicted in Figure 2(b), where

we have also introduced a number of new red states, which is justified as follows. If we

were to merge p3 with p1, the resulting automaton would accept a and b, both of which
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p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

a

b

b

a

b

a

a

b

a

b

b

b

a

(a) The original prefix tree acceptor.

p1 p3

p5

p6

p8

p9

p10

p11

p12

p13

p14

b

a

b

a

b

a

b

b

b

aa

(b) After merging p1 and p2.

p1 p3

p5

p6

p9

p10

p11

p13
b

a

b

a

b

a

b

b

a

(c) After merging p8 with p1.

p1 p3

p5

p6

p10

p11

b

a

b

a

b
a

b

a

(d) After merging p9 with p3.

Figure 2. The automata from Example 4.1. The accepting state are shown as double

circles. Red states are colored dark grey while blue states are light gray.

belong to Z|−1
D (0). Once p3 becomes red, p5 and p6 become blue. None of them can be

merged with p1, since they are accepting, while p1 is initial, and ε belongs to Z|−1
D (0).

Also, none of them can be merged with p3, since the resulting automaton would accept

b ∈ Z|−1
D (0). Thus we can color both of them red and their successors blue. We can now

merge state p8 with p1. The resulting automaton is shown in Figure 2(c). Next, we merge

p9 with p3, resulting in the automaton in Figure 2(d).

Finally, state p10 can be merged with p5 and state p11 can be merged with p6. This

actually gives us the minimal DFA AZ for the language Z from Example 2.1, depicted in

Figure 1.
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The running time of the RPNI algorithm is polynomial in the size of D, that is, in the

sum of lengths of the words for which X |D is defined. This can be seen from the fact that

every iteration of the main while loop colors at least one white state blue and no state that

has once become blue can ever become white.

The algorithm also identifies the regular languages in the limit. In fact, for every

implementation of RPNI, there is a mapping charRPNI : Reg → pow (U) from the

regular languages to the powerset of the universe such that, for every language X ∈ Reg ,

• the size of charRPNI (X) is polynomial in the size of the minimal DFA for X and

• if charRPNI (X) ⊆ D, then the algorithm, when run on input X |D, returns the

minimal DFA for X .

For a complete proof of this statement, we refer to de la Higuera [14].

Notice that above, we talk about a characteristic sample for every implementation of

the RPNI algorithm. This is because Algorithm 7 does not completely specify in which

order merges should be performed. To specify this completely, we must define how the

choice of blue state on line (5) is made and in which order red states are considered on

line (7). These choices lead to different functions for the characteristic samples and may

also significantly influence the performance of the algorithm. It is also in these choices

that many variants of the RPNI scheme differ. We discuss one such variant next.

Evidence driven state merge. The evidence driven state merge (EDSM) algorithm was

entered by Price into the Abbadingo One DFA Learning Competition [28] and was one of

two co-winners. It is a good example of an RPNI-variant that uses a heuristic to find the

merges that are in some sense most promising. These merges are then performed first.

In each iteration the EDSM algorithm first checks whether there is some blue state

that can be promoted. Only when this is not the case it tries to find a merge. At this

stage, the algorithm evaluates every possible merge, that is, every pair of one red state

and one blue state. Each possible merge is given a score and the merge with the highest

score is performed before the algorithm continues with the next iteration. The score for

a merge of a red state pr and a blue state pb is computed as follows. The automaton

A′ = MERGE(A, pr, pb) is constructed. If it violates X |D, the score is set to −∞.

Otherwise, let S be the subset of the states ofA′ such that, for every p ∈ S, there is some

word in D that takesA′ from the initial state to p. Set the score for the merge to |D|−|S|.
Intuitively, the score gets better the more words from D lead to the same state.

5 Learning non-deterministic finite automata

While DFAs and NFAs both define the class of regular languages, there are many situa-

tions where one is preferable above the other. The vast majority of research into learning

regular languages has focused on DFAs, to a large part because of the direct correspon-

dence between the Myhill-Nerode equivalence classes and the states of a minimal DFA.

In many applications, however, the use of NFAs as language representations is more de-

sirable, primarily due to the compactness of representation they offer. There are also lan-

guage classes for which the DFA-based methods perform poorly, and NFA-based methods
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can be expected to do better [22].

Since there is not always a unique minimal NFA for a language, most research into

NFA learning deals with subclasses, within which languages have representations that are

in some sense unique. We start by introducing an important such subclass.

Residual languages. Let X ⊆ A∗ be a language and let w ∈ A∗ be a word. Then the

set of all suffixes that can be added to w to form a word in X is a residual language of

X . In other words, Y is a residual language of X if there is a word w ∈ A∗ such that

Y = {x | w · x ∈ X}. We call Y the residual language of X with respect to w (also

known as the Brzozowski derivative [8] or left quotient [45]). If w is not a prefix of any

word in X , then the residual language of X with respect to w is ∅. For the set of all

residual languages of X , we write Res(X).
Recall that two words w1 and w2 are equivalent with respect to X in the sense of

Myhill and Nerode, written w1 ≡X w2, if and only if for every word x, we have w1 · x ∈
X if and only if w2 ·x ∈ X (Definition 2.1). This means that w1 ≡X w2 if and only if the

residual languages of X with respect to w1 and w2 are the same. We can thus conclude

that every language X has exactly as many residual languages as the equivalence ≡X

has classes. In particular, a regular language has finitely many residual languages, one

corresponding to each state of the minimal DFA for the language. We say that a residual

language Y of X is prime if it is not the union of some members of Res(X) \ {Y }.
Equivalently, the residual language Y of X is composite, or non-prime, if and only if it is

the union of all members of Res(X) that it properly contains.

Example 5.1. Consider the language Z represented by the regular expression

(a+ b)∗b(a+ b).

This language has the four equivalence classes [ε]≡Z
, [b]≡Z

, [ba]≡Z
, and [bb]≡Z

. In the

following, we denote by Zw the residual language of Z with respect to w. In this notation,

these classes correspond to residual languages as follows.

• [ε]≡Z
corresponds to Zε = Z .

• [b]≡Z
corresponds to Zb = Z ∪ {a, b}.

• [ba]≡Z
corresponds to Zba = Z ∪ {ε}.

• [bb]≡Z
corresponds to Zbb = Z ∪ {ε, a, b}.

Notice that we have Zbb = Zb ∪ Zba, while none of the other residual languages can be

formed as a non-trivial union of some of the others. Therefore, Zε, Zb, and Zba are prime

residual languages, while Zbb is a non-prime residual language.

Residual finite state automata. The above terminology was introduced by Denis et

al., who also used it to define an important subclass of the NFAs, the Residual finite

state automata (RFSA) [16, 17]. As noted above, each state in the minimal DFA for a

language corresponds to a unique residual language. This is also true for RFSA, but we

do not require every residual language to be represented by a state.

Definition 5.1. An NFA A is a residual finite state automaton if, for every state p of A,

the language accepted by A, when started from p, is a residual language of the language

accepted by A.
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Zε Zb Zba

b

a, b

a, b

b

a, ba, b

Figure 3. The canonical RFSA for Z from Example 5.2.

In particular, every DFA without unreachable states is an RFSA. Indeed, if p is a state

of A and w is a word that takes A from the initial state to p, then the language accepted

by A when it is started from p is the residual language of L(A) with respect to w. Denis

et al. prove the following theorem [16].

Theorem 5.1. Every regular languageX is accepted by an RFSA with a number of states

equal to the number of prime residual languages of X .

The automaton refered to in Theorem 5.1 can be constructed as follows. Let PrimeRes(X)
be the set of prime residual languages of the regular language X over alphabet A. We can

construct an RFSA AX for X from PrimeRes(X) as follows.

• The set of states ofAX is PrimeRes(X);
• p ∈ PrimeRes(X) is an initial state if p ⊆ X ;

• p ∈ PrimeRes(X) is an accepting state if ε ∈ p; and

• (p1, a, p2) is an edge of AX if p2 is a subset of the residual language of p1 with

respect to a.

The automaton AX is saturated in the sense that no additional state can be made initial

and no additional edge can be added without changing the language of the automaton. It

is also reduced in the sense that no state represents a language that is the union of the

languages of some other states. In fact,AX is the unique reduced and saturated RFSA for

X and is called the canonical RFSA for X [16, 17].

Example 5.2. Consider our example language Z again, defined by the regular expression

(a + b)∗b(a + b). Since the language has four equivalence classes, we know that the

minimal DFA that recognizes it has four states. Theorem 5.1 tells us that there is an

RFSA for Z that has only three states, one each for the prime residual languages Zε, Zb,

and Zba. Using the above construction, we obtain the canonical RFSA for Z , shown in

Figure 3. The state for Zε is an initial state, since Zε = Z is a subset of Z . The state Zba

is accepting, since ε ∈ Zba. For the transitions, consider, for example, the b-labeled edge

from Zba to Zb. This edge is included because Zb = Z ∪ {a, b} is a subset of the residual

language of Zba = Z ∪ {ε} with respect to b, which is in fact Zb.

The uniquness of canonical RFSA for regular languages opens up the possibility of

reusing many of the learning techniques used for DFAs.

A MAT learning algorithm for RFSA. The DFA-like properties of RFSA come to

the fore in the context of MAT learning. Recently, Bollig et al. [7] developed such an
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algorithm. With the right definitions, the changes needed to the original algorithm of

Angluin (Algorithm 4) are rather minor.

Given an observation table (Spre, Ssuff,Obs), we need a notion of inclusion between

rows. Given w, x ∈ Spre ∪ Spre · A, we say that the row of w is covered by the row of x,

written roww ⊑ rowx, if Obs(w · y) 6 Obs(x · y) for every y ∈ Ssuff.

Let R be the set of rows of the table, i.e., R = {roww | w ∈ Spre ∪ Spre · A}. For

a subset R of R, let JoinR be the function from Ssuff to {0, 1} defined by JoinR(y) =
maxr∈R(r(y)).

We can now define prime rows as follows. The row roww of w ∈ Spre ∪ Spre · A is

composite if there is an R ⊆ R \ {roww} such that roww = JoinR. In fact, roww is

composite if and only if it is the join of all rows that it strictly covers. Otherwise, roww

is prime. We write Primes for the set of all prime rows and Primespre for Primes ∩
{roww | w ∈ Spre}.

The notion of closedness of an observation table now translates into a notion of RFSA-

closedness that requires that every row corresponding to a word in Spre·A\Spre must be the

join of the rows in Primespre that it covers. Formally, (Spre, Ssuff,Obs) is RFSA-closed

if, for every word w ∈ Spre · A \ Spre, there is R ⊆ Primespre such that roww = JoinR.

Similarly, (Spre, Ssuff,Obs) is RFSA-consistent if, for all w1, w2 ∈ Spre and every

a ∈ A, if roww1 ⊑ roww2 , then roww1·a ⊑ roww2·a.

Finally, we need to modify the way an automaton is constructed from an obser-

vation table. Given (Spre, Ssuff,Obs), we define the corresponding automaton AObs =
(Q, I, E, T ) with

• Q = Primespre,

• I = {p ∈ Q | p ⊑ rowε},
• T = {roww ∈ Q | Obs(w) = 1}, and

• E = {(roww, a, rowx)) | rowx ⊑ roww·a}.

The well-definedness of AObs is proved similarly as in Section 2.2. The MAT learner for

RFSA is presented in Algorithm 8. It requires O
(

n2
)

equivalence queries and O
(

mn3
)

membership queries in the worst case, where n is the size of the minimal DFA for the

language and m is the length of the longest counterexample received from the teacher [7].

Other learning algorithms for NFAs. During the first decade of the 21st century, a

number of other algorithms for learning NFAs were presented. Here, we only briefly

mention some of them.

Denis at al. present a learning algorithm for RFSA, called DeLeTe2, which is based

on prefix tree acceptors and state merging [17]. The algorithm does not necessarily learn

the canonical RFSA for the target language, but rather an RFSA whose size lies between

that of the canonical RFSA and the minimal DFA.

The unambigous finite automata (UFA) form another class of restricted nondetermin-

istic finite automata, with the central property that no word in the language of a UFA

has more than one accepting run [40]. Coste and Fredouille give an algorithm for learn-

ing a UFA from given data, again by merging states from a prefix tree acceptor [12]. It

has the property that, given a specific sample, the same automaton will be constructed,

irrespective of the order in which merges are performed.
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Algorithm 8 The MAT-Learning algorithm for RFSA by Bollig et al. [7].

Initialize Spre and Ssuff to {ε}
2: Ask membership queries for ε and each a ∈ A

Construct the initial observation table (Spre, Ssuff,Obs)
4: repeat

while (Spre, Ssuff,Obs) is not RFSA-closed or not RFSA-consistent do

6: if (Spre, Ssuff,Obs) is not RFSA-closed then

find w1 ∈ Spre and a ∈ A such that

8: roww1·a ∈ Primes \ Primespre

add w1 · a to Spre

10: extend Obs to (Spre ∪ Spre ·A) · Ssuff using membership queries

if (Spre, Ssuff,Obs) is not RFSA-consistent then

12: find w1 and w2 in Spre, a ∈ A, and w ∈ Ssuff such that

Obs(w1 · a · w) = 1 and Obs(w2 · a · w) = 0 and roww1 ⊑ roww2

14: add a · w to Ssuff

extend Obs to (Spre ∪ Spre ·A) · Ssuff using membership queries

16: Once (Spre, Ssuff,Obs) is RFSA-closed and RFSA-consistent,

let AObs be its associated automaton and make the conjectureAObs

18: if the teacher replies with a counterexample w then

add w and all its suffixes to Ssuff

20: extend Obs to (Spre ∪ Spre · A) · Ssuff using membership queries

until the teacher replies yes to the conjectureAObs

22: returnAObs

The consistency problem for unrestricted (i.e., fully nondeterministic) finite automata

is treated by Vazquez et al. [44]. They present a family of in-the-limit algorithms for

nondeterministic finite automata that use maximal automata and state merging to infer a

regular language. This work was later continued with the definition of the OIL algorithm,

based on so-called universal automata [22, 21].

6 Learning regular tree languages

In this section we discuss the extension of MAT-learning (Section 3.2) to (ranked) regular

tree languages. This topic was pioneered by Sakakibara, although the main focus of his

work was on derivation trees of context-free grammars [38]. It is, however, well-known

that regular tree languages and derivation trees of context-free grammars are extremely

closely connected. This can be seen as follows. The yield of a tree is the sequence of

labels of the leafs, from left to right. The relation between context-free grammars and

regular tree languages is that the set of derivation trees of a context free grammar is

always a regular tree language and each language of yields of a regular tree language

is a context-free word language. Sakakibara generalized MAT-learning to skeletal tree

languages, which are tree languages in which all internal nodes are unlabeled [30]. We
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note that MAT-learning can also be extended to weighted tree series — for a survey on

this topic, we suggest [18].

The extension to full regular tree languages, which we present here, is by Drewes and

Högberg [19]. We assume that the alphabet A is partitioned into A(0), . . . , A(R) for some

constant natural number R. Here A(i) contains the symbols of rank i. We denote trees

by the letters t and s. We write (ranked) trees as a(t1, . . . , tn), where the root is labeled

by a ∈ A(n) under which the (ranked) trees t1, . . . , tn are attached. A context c is a tree

in which exactly one leaf is labeled with a hole marker •. The depth of a context c is the

length of the path from the root of c to the hole marker, not including the hole marker. We

denote the depth of context c by depth(c). For example, a context where the hole marker

is a child of the root has depth one. Given a context c and a tree t, we denote by c[t]
the tree obtained by replacing the unique •-labeled node in c by the tree t. If S is a set

of trees, we denote by A(S) the set {a(t1, . . . , tn) | a ∈ A(n) and t1, . . . , tn ∈ S}. As

before, we denote the unknown regular (tree) language by X .

6.1 Observation tables for trees

An observation table for trees (Tpre, Csuff,Obs) is defined analogously as in Section 3.2

with the differences that

• Tpre is a subtree-closed set of trees, that is, for every tree a(t1, . . . , tn) ∈ Tpre we

also have hat t1, . . . , tn are in Tpre;

• Csuff is a generalization-closed set of contexts, that is, for every context of the form

c[a(t1, . . . , ti−1, •, ti+1, . . . , tn)] ∈ Csuff we have that the context c is in Csuff as

well and t1, . . . , ti−1, ti+1, . . . , tn are in Tpre.

• Obs is a function Obs : (Tpre ∪ A(Tpre))× Csuff → {0, 1} such that, for a context c
and a tree t, Obs(t, c) = 1 if and only if c[t] ∈ X .

By rowt we denote the function rowt : Csuff → {0, 1} such that, for each context c,
rowt(c) = 1 if and only if c[t] ∈ X . In this section, we are interested in learning

bottom-up deterministic tree automata. For more details about tree automata, we refer

to Chapter ??. With bottom-up automata in mind, the intuition behind observation tables

for trees is similar to observation tables for words, i.e., Tpre can be seen as a set of prefixes

and Csuff as a set of suffixes.

An observation table for trees is closed if, for each a ∈ A(n) and trees t1, . . . , tn ∈
Tpre, there is a t ∈ Tpre such that rowa(t1,...,tn) = rowt. It is consistent if the following

condition is satisfied: for all a ∈ A(n), all t1, . . . , tn, t
′
1, . . . , t

′
n ∈ Tpre, if rowti = rowt′

i

for all i = [n], then rowa(t1,...,tn) = rowa(t′1,...,t
′

n
).

With a closed and consistent observation table for trees (Tpre, Csuff,Obs), we can as-

sociate a finite bottom-up tree automaton AObs = (Q,A,∆, T ) that represents the infor-

mation we currently have about the unknown language X . Here, the transition relation ∆
is a subset of

⋃

n(Q
n ×A(n) ×Q). This tree automaton is defined as follows:

• Q = {rowt | t ∈ Tpre};
• for every n ∈ N, a ∈ A(n), we have (rowt1 , . . . , rowtn , a, rowa(t1,...,tn)) ∈ ∆;

• I = {rowa | a ∈ A}; and

• T = {rowt | t ∈ Tpre ∩X}.
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Algorithm 9 MAT-Learning for regular tree languages [19].

Initialize Tpre := {a} for some arbitrary a ∈ A(0)

2: Initialize Csuff to {•}
Construct the initial observation table (Tpre, Csuff,Obs)

4: repeat

while (Tpre, Csuff,Obs) is not closed or not consistent do

6: if (Tpre, Csuff,Obs) is not closed then

find t ∈ A(Tpre) such that rowt is different from rows for all s ∈ Tpre

8: add t to Tpre

extend Obs to (Tpre ∪ A(Tpre))× Csuff using membership queries

10: if (Tpre, Csuff,Obs) is not consistent then

find c[t0], c[t1] ∈ A(Tpre) with t0, t1 ∈ Tpre and depth(c) = 1 such that

12: rowc[t0] 6= rowc[t1] and rowt0 = rowt1

find s0, s1 ∈ Tpre such that

14: rows0 = rowc[t0] and rows1 = rowc[t1]

find c′ ∈ Csuff such that rowt0(c
′) 6= rowt1(c

′)
16: add c′[c] to Csuff

extend Obs to (Tpre ∪ A(Tpre))× Csuff using membership queries

18: Once (Tpre, Csuff,Obs) is closed and consistent,

letAObs be its associated automaton and make the conjectureAObs

20: if the teacher replies with a counterexample tree t then

EXTRACT(Tpre, t)
22: extend Obs to (Tpre ∪A(Tpre))× Csuff using membership queries

until the teacher replies yes to the conjectureAObs

24: returnAObs

The well-definedness ofAObs is proved analogously as in Section 3.2. Furthermore, given

an observation table, AObs can be constructed in time linear in the size of its transition

table, i.e., time |Tpre|R · |Csuff|, where R is the maximum rank of A [19]. The following

observation is easily proved by induction:

Observation 6.1. Let (Tpre, Csuff,Obs) be a closed and consistent observation table for

trees. For all trees t ∈ (Tpre ∪ A(Tpre)) and all contexts c, we have that c[t] ∈ L(AObs)
if and only if Obs(t, c) = 1. Moreover,AObs is the unique minimal bottom-up finite tree

automaton with this property (up to isomorphism).

6.2 The MAT-learning algorithm for trees

The MAT-learning algorithm for regular tree languages is structured similarly to the stan-

dard MAT learning algorithm for regular word languages. However, as we will see, there

are some subtleties that need to be taken into account when dealing with trees.

The algorithm is summarized in Algorithm 9. In the main loop, if the observation table

is not closed, we repair the table much like in Algorithm 4. The manner in which non-
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Algorithm 10 Procedure EXTRACT(Tpre, t) for Algorithm 9.

choose context c and a subtree t0 of t such that t0 ∈ A(Tpre) \ Tpre and t = c[t0]
2: if there is a t′ ∈ Tpre such that rowt′ = rowt0 and (t ∈ X ⇔ c[t′] ∈ X) then

EXTRACT(Tpre, c[t′])
4: else

add t to Tpre

consistent tables are addressed, however, is quite different. We provide some intuition.

If the table (Tpre, Csuff,Obs) is not consistent, then there exist trees a(s1, . . . , sn) and

a(s′1, . . . , s
′
n) in A(Tpre) such that, for all i ∈ [n], rowsi = rows′

i
, but rowa(s1,...,sn) 6=

rowa(s′1,...,s
′

n
). It follows that there also must be an i ∈ [n] such that

rowa(s1,...,si−1,s
′

i
,...,s′

n
) 6= rowa(s1,...,si,s′i+1,...,s

′

n
),

since otherwise we would have that

rowa(s1,...,sn) = rowa(s1,...,sn−1,s′n)
= · · · = rowa(s′1,...,s

′

n
).

This means that we can take c = a(s1, . . . , si−1, •, s′i+1, . . . , s
′
n), t0 = si, and t1 = s′i

and obtain trees c[t0], c[t1] ∈ A(Tpre) with t0, t1 ∈ Tpre such that rowt0 = rowt1 but

rowc[t0] 6= rowc[t1]. Furthermore, we have that depth(c) = 1. This is exactly what is

tested on lines 10–17 of Algorithm 9.

Once the observation table (Tpre, Csuff,Obs) is closed and consistent, we produce a

conjecture AObs. If the teacher replies with a counterexample tree t we could, in princi-

ple, simply add t so Tpre and extend Obs. However, since extending Obs would require

adding all subtrees of t to Tpre, the observation table can possibly become extremely large.

Therefore, a more refined approach is presented here in which we extract from t another

counterexample s for which Tpre ∪ {s} is subtree-closed. As such, only one tree needs to

be added to Tpre. The counterexample tree s is constructed through repeated substitutions

of subtrees and its construction is detailed in the procedure EXTRACT (Algorithm 10).

The EXTRACT procedure first locates a subtree t0 of t which is in A(Tpre)\Tpre. Since

t /∈ Tpre (Observation 6.1), such a subtree must exist. Then the procedure searches a tree

t′ ∈ Tpre such that c[t′] is also a counterexample (line 10). We test whether c[t′] is also a

counterexample by testing whether rowt′ = rowt0 and whether t ∈ X ⇔ c[t′] ∈ X . This

test is correct for the following reason. By construction of AObs and since rowt′ = rowt0 ,

we have that ∆∗(t′) = ∆∗(t0), where ∆∗(s) denotes the state ofAObs reached at the root

of s after reading s in a bottom-up fashion. Therefore, by the Myhill-Nerode theorem for

trees, we have that c[t′] ∈ L(AObs) if and only if c[t0] ∈ L(AObs). But, since t = c[t0]
is a counterexample, we have t ∈ L(AObs) if and only if t /∈ X . This implies that

c[t′] ∈ L(AObs) if and only if c[t′] /∈ X and therefore c[t′] is a counterexample as well.

Finally, if it is not possible to find a replacement tree t′ on line 10, we add t to Tpre and

return. In particular, if the teacher provides a counterexample, EXTRACT makes sure that

at most one tree is added to Tpre.
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6.3 Complexity

We argue that the complexity of the learner is in polynomial time in the size I of the

minimal deterministic tree automaton for X and the largest counterexample tmax returned

by the teacher.

Just as for Angluin’s algorithm we always have that the tree automaton AObs associ-

ated with (Tpre, Csuff,Obs) is the minimal bottom-up deterministic tree automaton consis-

tent with Obs (Observation 6.1). By induction on the number of iterations of the repeat-

until loop, one can prove that

(1) for all trees t1, t2 ∈ Tpre, t1 6= t2, we always have that t1 6≡X t2; and

(2) we always have that |Csuff| 6 |Tpre|.

This proves that the number of rows and columns in the observation table is always poly-

nomial in I . In particular, it also implies that we execute the bodies of the if-tests at lines

6 and 10 in Algorithm 9, and the call to EXTRACT at line 21 in Algorithm 9 at most

polynomially often. Furthermore, the if-tests on lines 6 and 10 can clearly be executed in

polynomial time in the size of the observation table. Finally, one call to EXTRACT also

takes time polynomial in |tmax| and I .

Theorem 6.2. If tmax is the largest counterexample returned by the teacher, the running

time of the learner is polynomial in IR and |tmax|, where R denotes the maximum rank in

A and I the number of equivalence classes in X .

7 PAC learning

In an effort to initiate the study of complexity issues for machine learning tasks, Valiant

introduced a formal setting for studying such problems, which was later dubbed Probably

approximately correct (PAC) learning [42].

In Valiants terminology, the setting was originally intended for studying the learning

of concepts. A concept can, for example, be a Boolean function over a set of variables.

Positive and negative examples can be given as variable assignments, annotated with in-

formation as to whether they belong to the concept or not. In such a setting, exact learning

is very hard, and Valiant therefore made his setting probabilistic. The main idea is that

the set of examples should be drawn at random from some distribution D that is fixed, but

unknown to the learning algorithm. The algorithm is then supposed to, with high proba-

bility, come up with a concept that gives an approximation of the concept to be learnt that

is close with respect to D. In other words, for an element of the target domain, drawn at

random according to D, the probability of a correct classification should be high.

The following formal definition of PAC learning is due to Angluin [5]. Let U be a

finite or countable universe and let X , the concept to be learned, be a subset of U . Let D
be a probability distribution over U . Let {X1, X2, . . . } be a countable set of subsets of

U . This set is the hypothesis space. As a knowledge source, the learner has access to an

oracle. When called, the oracle returns an element x ∈ U , drawn according to D. It also

indicates whether x belongs to X or not.

The PAC learning problem is parameterized by two positive probabilities:
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(1) The accuracy parameter ǫ and

(2) the confidence parameter δ.

The learner is supposed to find, with probability at least 1 − δ, an index i such that the

probability that Xi disagrees with X on an element x ∈ U drawn according to D is at

most ǫ.

PAC learning for regular languages. Given an alphabet A and a probability distribu-

tion D over A∗, we can define a PAC learning setting for regular languages as follows.

The universe is A∗ and the concept to be learned is some regular language X ⊆ A∗. As

hypothesis space, we could take the set of all DFAs over A. A PAC learning algorithm

gets example words drawn from A∗ according to D and annotated with the information

whether they belong to X or not. To probably approximately correctly learn X with pa-

rameters ǫ and δ, the DFA A that the algorithm outputs should, with probability at least

1 − δ, be such that a word drawn according to D has probability at most ǫ of being clas-

sified incorrectly by A. In other words, with probability at least 1 − δ, a random word

drawn according to D should lie in the symmetric difference of X and the language ofA
with probability at most ǫ.

The above still does not say anything about the complexity of PAC learning. After

considering a number of possibilities, Pitt gave the following definition of what it would

mean for the regular languages to be PAC learnable with DFA as the representation of

choice [36].

Definition 7.1. DFAs are PAC identifiable if and only if there exists a (possibly random-

ized) algorithm L such that for any input parameters 0 < ǫ < 1 and 0 < δ < 1, for any

DFA A of size n, for any number m, and for any probability distribution D on strings

of A∗ of length at most m, if L obtains words generated according to distribution D and

labeled according to membership in L(A), then L produces a DFA B such that, with prob-

ability at least 1−δ, the probability (with respect to D) of the set {w | w ∈ L(A)⊕L(B)}
is at most ǫ (where⊕ denotes the symmetric difference). The running time ofL is required

to be polynomial in n,m, 1
ǫ
, 1
δ
, and |A|.

Notice that the above definition requires D to be a probability distribution over Am,

rather than A∗, that is, over a finite subset of A∗. This is to avoid technical difficulties

in dealing with words of arbitrary length, and is justified as follows. For any probability

distribution D′ over the countable set A∗ and for any arbitrarily small λ > 0, there is a

number m such that the probability, when drawing a word from A∗ according to D′, the

probability of the word having length larger than m is smaller than λ. Thus there is a

probability distribution D over A∗ that assigns zero probability to all words longer than

m and approximates D′ within λ.

Though PAC is a well known and widely used framework within machine learning,

the results for grammatical inference have mostly been negative. In particular, a num-

ber of authors have shown the problem to be hard under various complexity-theoretic

assumptions; an overview is given by Pitt [36].

Simple PAC. Since grammatical inference in the PAC model has not yielded any sig-

nificant positive results, researchers have studied reasonable restrictions of the model. In
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particular, the PAC requirement that learning algorithms should work equally well for any

distribution, and that the distribution is completely unknown to the algorithm, has been

questioned. It can be argued that there are a number of practical settings in which the

distribution is more predictable. For instance, it is not unreasonable to assume that the

distribution will have a higher probability for words that are in some sense simple. The

question is how to define this simplicity in a formal and uniform way. The method of

choice has mostly been to use Kolmogorov complexity.

A formal definition, known as PACS, for this setting was introduced by Denis et

al. [15]. It assumes the distribution over the words to be the universal distribution of

Solomomoff-Levin. The authors also prove some polynomiality results for restricted

classes of DFAs. Later, Parekh and Honovar showed that the full class of DFA are PACS

learnable in polynomial time [34].

8 Applications and Further Material

To round off this chapter, we give a few examples of more applied settings where gram-

matical inference has been used successfully. We can by no means claim to give a com-

plete view of such fields, but rather aim at giving a few, hopefully inspiring, examples and

pointers.

Natural language processing Several well-known inference algorithms stem from the

field of natural language processing. The algorithm Adios (for Automatic DIstillation

Of Structure) derives a context-free grammar from a positive sample of unannotated sen-

tences by searching for sequential patterns in the data [20]. A different approach is sug-

gested by Sakakibara and Muramatsu who present a genetic algorithm (GA) for inferring

context-free grammars from (partially structured) positive and negative samples. The al-

gorithm organizes a maximal set of nonterminals in a table similar to that used in chart

parsing, and then uses a GA-based technique to merge nonterminals, so as to obtain a

small output grammar [39].

A polynomial time in-the-limit algorithm that infers substitutable context-free lan-

guages from positive examples has been presented by Clark and Eyraud [11]. A CFL L is

substitutable if it adheres to Harris’ principle: if a pair of word sequences constitute the

same grammatical category, then they can be interchanged in any sentence without alter-

ing the grammatical correctness of the sentence [27]. Harris’ principle is also the founda-

tion for alignment-based learning (ABL), an inference framework for unsupervised learn-

ing. ABL algorithms typically operate in two phases. In the first phase, sample sentences

are aligned to generate a set of hypotheses, each suggesting that a pair of sub-sentences

constitute the same grammatical category. In the second phase, the most probable combi-

nation of hypotheses is selected through an expectation-maximization search [43, 23].

The algorithm Emile learns a shallow context-free language in the limit from set of

positive examples. A context-free language is shallow if it is generated by a grammar G
such that every production in G is used in to generate at least one sentence of a length

that is logarithmic in the size of G. Emile works by dividing and recombining the sample
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sentences, so as to discover syntactical categories. For efficiency reasons, some presen-

tations of the algorithm includes a membership oracle that can answer whether a given

combination of sentence fragments is grammatically correct [1, 2].

XML schemas and web applications. In the past years, the eXtensible Markup Lan-

guages (XML) has become a very popular data format. In order to automatically process

XML data, it is often beneficial to have an XML schema associated to the data (e.g., for

automatic error detection in the data). However, it has been observed, that much of the

XML data on the web does not have an accompanying schema [6].

In terms of formal languages, one can abstract XML data as unranked trees (i.e.,

trees in which each node can have arbitrarily many children) and XML schemas as tree

automata. Therefore, Bex et al. investigated automatically learning XML schemas [6]. In

this setting, a big challenge is that there is no negative information available, and therefore

one encounters the problems discussed in Section 3.1.1. In this particular case, a solution

was the observation that regular expressions in practical XML schemas are often of a very

restricted form [31] and that regular expressions of this form can be learned by positive

information alone.

Another interesting application of learning is by Carme et al. [9]. In particular, they

investigate automatically learning web information extraction algorithms based from an-

notated examples by the user. More concretely, they learn node-selecting tree transducers

which are based on stepwise tree automata, which allow a Myhill-Nerode characterization

for unranked trees [32].

Verification and testing. We give a few examples where automaton learning techniques

have been applied to the verification of software systems. For further applications, see the

survey by Leucker [29].

In so-called black box checking [35, 26], the goal is to model-check an implemented

system, whose internal structure is unknown. One approach to this problem uses a MAT

algorithm to obtain a model for the relevant aspects of the system’s structure. Here, the

equivalence queries to the teacher are replaced by conformance testing algorithms, which

compare an automaton to a “black box”, i.e., to the implemented system.

Another verification area where learning techniques have been used is compositional

verification. Chen et al. [10] give a learning algorithm that learns the minimal separating

DFA for a pair of regular languages L1 and L2. The learner thus derives a minimal

DFA M such that L1 ⊆ L(M) and L2 ∩ L(M) = ∅ by quering an extended MAT

oracle. This learning algorithm is then used to infer the contextual assumption needed for

the compositional verificaton. For references to other uses of learning in compositional

verification, see the introduction of Chen et al. [10].
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