
Generating, sampling and counting subclasses of regular
tree languages ∗

Timos Antonopoulos
Hasselt University and

Transnational University of Limburg

timos.antonopoulos@uhasselt.be

Floris Geerts
University of Edinburgh

fgeerts@inf.ed.ac.uk

Wim Martens
Technische Universität Dortmund

wim.martens@udo.edu

Frank Neven
Hasselt University and

Transnational University of Limburg

frank.neven@uhasselt.be

Abstract
To experimentally validate learning and approximation algo-
rithms for XML Schema Definitions (XSDs), we need algo-
rithms to generate uniformly at random a corpus of XSDs
as well as a similarity measure to compare how close the
generated XSD resembles the target schema. In this paper,
we provide the formal foundation for such a testbed. We
adopt similarity measures based on counting the number of
common and different trees in the two languages, and we
develop the necessary machinery for computing them. We
use the formalism of extended DTDs (EDTDs) to repre-
sent the unranked regular tree languages. In particular, we
obtain an efficient algorithm to count the number of trees
up to a certain size in an unambiguous EDTD. The latter
class of unambiguous EDTDs encompasses the more familiar
classes of single-type, restrained competition and bottom-up
deterministic EDTDs. The single-type EDTDs correspond
precisely to the core of XML Schema, while the others are
strictly more expressive. We also show how constraints on
the shape of allowed trees can be incorporated. As we make
use of a translation into a well-known formalism for combi-
natorial specifications, we get for free a sampling procedure
to draw members of any unambiguous EDTD. When drop-
ping the restriction to unambiguous EDTDs, i.e. taking the
full class of EDTDs into account, we show that the counting
problem becomes #P-complete and provide an approxima-
tion algorithm. Finally, we discuss uniform generation of
single-type EDTDs, i.e., the formal abstraction of XSDs. To
this end, we provide an algorithm to generate k-occurrence
automata (k-OAs) uniformly at random and show how this
leads to uniform generation of single-type EDTDs.

1. Introduction
XML Schema is the accepted industry standard for the

specification of schemas for collections of XML documents.
At the same time, it is widely recognized that XML Schema

∗We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Com- mission, under the FET-Open grant agreement FOX,
number FP7-ICT-233599.

is not a simple language. As it is very unlikely that the
World Wide Web Consortium (W3C) will adopt a new
schema standard any time soon, several initiatives have been
taken to simplify XML Schema. For instance, algorithms
have been developed to automatically infer XML Schema
Definitions (XSDs) from XML data [8, 9, 10]. We later re-
fer to this setting as the learning scenario. Another type of
simplification is to let users design a schema in a different,
but more user-friendly formalism and then offer the means
to automatically convert this schema into an XSD. In gen-
eral, the latter schema can not be equivalent but, hopefully,
constitutes a best approximation in some well-defined way.
The latter approach was taken in [18]. We later refer to
this setting as the approximation scenario. In addition, al-
gorithms to approximate non-deterministc content models
by deterministic ones, hereby relieving the user from the
Unique Particle Attribution constraint, are studied in [7].

Because it is not always possible to formally prove optimal-
ity of the above mentioned types of algorithms, their effec-
tiveness is usually validated by an experimental study using
real-world data, for instance using XSDs and correspond-
ing XML corpora found on the web. Unfortunately, as real
world data is often only sparsely available, ad-hoc methods
are used to generate schemas and corresponding XML cor-
pora. At the same time, a similarity measure is needed that
quantifies how closely two unranked regular tree languages
resemble each other, and which can be efficiently computed.

The aim of this paper is to provide the machinery to effi-
ciently compute the similarity between two tree languages
and to provide algorithms to generate a corpus of XSDs uni-
formly at random. As usual, we use the abstraction of XSDs
as single-type unranked regular tree languages [28, 30]. In
particular, we consider the following three problems:

(i) Counting: Given a tree language L and n ∈ N, com-
pute the number of trees in L of size n;

(ii) Sampling: Given a tree language L, generate uni-
formly at random a tree t ∈ L;

(iii) Generation: Given a class of tree languages C, gen-
erate uniformly at random a member L ∈ C.

1



We next provide further motivation and describe our con-
tributions for each of these three problems.

Counting and Sampling. We start by discussing an ap-
proach towards a similarity measure for tree languages. To
this end, let S and T be two tree languages. In the schema
learning case described above, T can be the target language
and S can be the schema inferred by the learning algorithm
under consideration. Or, in the second scenario of schema
approximation, T can be the schema designed by the user
and S is an approximation of T in a certain (simple) sub-
class of tree languages. This raises the natural question of
how closely S resembles T . In this paper, we approach this
problem by quantifying the number of common and different
trees in S and T . For instance, one possibility is to define
the similarity of S and T as

sim≤n(S, T ) :=

∑n
k=0 |(S ∩ T )=k|∑n
k=0 |(S ∪ T )=k| ,

where the set of trees of size k in a language L is denoted by
L=k, and the cardinality of L=k is denoted by |L=k|. This
similarity measure coincides with a measure commonly used
when comparing regular string languages [7, 8, 9]. Further-
more, this measure has a natural probabilistic interpreta-
tion: the similarity between S and T is defined as (an ap-
proximation) of the expected probability that a tree, chosen
uniformly at random from S ∪T , belongs to S ∩T . The ap-
proximation is realized by restricting attention to trees up
to a certain size n. The algorithmic challenge is to efficiently
compute |L=k| for a tree language L.

For string languages, when L is represented by a determinis-
tic finite automaton, the counting problem reduces to count-
ing the number of accepting paths in a graph; an easy ex-
ercise in dynamic programming. However, when L is repre-
sented by an NFA the problem becomes #P-complete [23].
We establish a similar dichotomy for tree languages.

Three classes of unranked regular tree languages are of im-
mediate interest to us: single-type, restrained competition,
and bottom-up deterministic EDTDs. Whereas single-type
EDTDs correspond to the core of XML Schema [28, 30],
restrained competition EDTDs correspond to EDTDs that
can be correctly typed in a one-pass pre-order manner [28].
Both of these classes are deterministic in a top-down sense
and are strict subclasses of the unranked regular tree lan-
guages. Moreover, the single-type EDTDs are known to be
a strict subclass of the restrained-competition EDTDs [28].
The class of bottom-up deterministic EDTDs are determin-
istic in a bottom-up sense and correspond to the full class of
unranked regular tree languages. We observe that while ev-
ery restrained-competition EDTD is equivalent to a bottom-
up deterministic EDTD, there is in general no efficient trans-
lation. Indeed, in some cases an exponential size increase
can not be avoided.

In fact, we consider the class of unambiguous EDTDs in
which any tree can have at most one valid typing. We
observe that every single-type, restrained-competition and
bottom-up deterministic EDTD is in effect an unambiguous
EDTD. As a consequence, it suffices to develop counting and
sampling algorithms for unambiguous EDTDs only. Rather
than providing an ad-hoc dynamic programming solution to
count the number of trees of a certain size in an unambiguous
EDTD, we exhibit a mapping from the class of unambigu-

ous EDTDs into a (recursive) combinatorial specification.
The latter is a formalism defined by Flajolet, Zimmermann
and Van Cutsem [17] and provides an elegant way to derive
counting and sampling algorithms. We show that in the case
of unambiguous EDTDs, these algorithms are also efficient.
In addition, we show how to incorporate shape constraints
into combinatorial specifications. These are numerical con-
straints on the depth and width of trees in relation to the
total size of the tree. For instance, to avoid string-like trees,
we can restrict the depth of a tree to be at most logarithmic
in the total number of nodes. In this way, the computation
of the similarity of two tree languages can be restricted to
trees of a certain shape (which is not necessarily regular).

Finally, when going beyond unambiguous EDTDs, the
counting problem becomes intractable. That is, for gen-
eral EDTDs, we show that computing the number of trees
of a certain size is #P-complete. However, we do provide
a pseudo-polynomial approximation algorithm based on a
similar result for context-free grammars [20].

Generation. To assess the average behaviour of an algo-
rithm, one can test it on a substantial input set drawn uni-
formly at random. This approach makes sense when no or
few real-world data is available and opens up the possibility
to quantify the quality of the obtained results in terms of
confidence intervals.

In this paper, we consider the problem of generating XSDs
uniformly at random. That is, for each n, every non-iso-
morphic XSD of size n must be generated with the same
probability. This definition is the same as for the random
generation of deterministic finite automata [2, 5]. Further-
more, since XSDs can be modelled as top-down DFAs that
map states to content models [28, 26], we can extend meth-
ods for DFA generation to XSDs.

Unfortunately, current DFA generation methods do not con-
strain the occurrence of alphabet symbols, a constraint im-
portant for XSDs. Indeed, it has been noted in [8] that
content models in XSDs contain large alphabets but ev-
ery alphabet symbol occurs only a small number of times.
We have referred to such expressions with alphabet sym-
bol occurrence up to k as k-OREs (k-occurrence regular
expressions) and to their automata counterparts as k-OAs
(k-occurence automata). In this paper, we provide an algo-
rithm to generate uniformly at random deterministic k-OAs
and show how this leads to uniform XSD generation.

Outline. In Section 2, we introduce the necessary defini-
tions concerning automata, regular expressions and abstrac-
tions of XML schema languages. We study the counting and
sampling problem for tree languages in Section 3 and 4, re-
spectively. The uniform generation problem for XSDs is
discussed in Section 5. Finally, Section 6 contains related
work and the paper is concluded in Section 7. Proofs are
referred to the Appendix.

2. Preliminaries
We define regular expressions, automata and XML

Schema languages. First, we fix some basic notation.

2.1 String languages

Strings. For any two integers n,m ∈ N where n ≤ m,
we denote by [n,m] the set of all the integers j such that

2



n ≤ j ≤ m. A symbol is an element of the alphabet Σ and
a string w is a finite sequence of symbols σ1 · · ·σn for some
n ∈ N. We assume that the alphabet Σ is finite. We define
the length of a string w = σ1 · · ·σn, denoted by |w|, as n
and we also refer to |w| as the size of w. The empty string
is denoted by ε. If w1 and w2 are two strings, we denote
their concatenation by w1 · w2 or simply by w1w2. The set
of all strings is denoted by Σ∗ and a string language is a
subset of Σ∗. If L1 and L2 are two string languages, their
concatenation is defined as the set {w1w2 | w1 ∈ L1, w2 ∈
L2}, and is denoted by L1 · L2 or simply by L1L2. For a
string language L and for any k ∈ N, we denote by L=k

the set of strings in L that have length or size k, namely
L=k = L ∩ Σk.

Automata. A non-deterministic finite automaton (NFA) A
is a tuple (Σ, Q, I, F, δ), such that Q is a finite set of states,
I ⊆ Q is the set of initial states, F is the set of final states,
and δ is the transition function of the automaton, defined
as δ : Q×Σ→ 2Q, mapping each pair of a state and symbol
to a set of states. A run ρ of A on some string w = a1 · · · an
is a sequence of states q0, . . . , qn, such that q0 ∈ I and for
each i ∈ [1, n], qi ∈ δ(qi−1, ai). Furthermore, when qn is a
member of F , we say that a run is accepting. The string
language accepted by A is denoted by L(A) and is defined
as the set of strings w for which there exists an accepting
run of A on w. A non-deterministic finite automaton A is
said to be deterministic (or A is a DFA) if the transition
function maps each state/symbol-pair to a singleton set.

Regular expressions. The set of regular expressions
(REs) over Σ is defined recursively as follows. The empty
string ε and every symbol in Σ is a regular expression and if
r1 and r2 are regular expressions, then so are r1 · r2, r1 + r2,
r+ and r∗. The string language defined by a regular ex-
pression r, is denoted by L(r) and is defined as follows. If
r = ε then L(r) = {ε} and if r = σ for some σ ∈ Σ,
then L(r) = {σ}. If r = r1 · r2 then L(r) = L(r1)L(r2), if
r = r1 + r2 then L(r) = L(r1) ∪ L(r2), and finally if r = r+

1

then L(r) = {w | w = w1 · · ·wn for some n ≥ 1 and ∀i ∈
[1, n], wi ∈ L(r1)}. For any regular expression r, the regular
expression r∗ is equivalent to the regular expression r+ + ε
and r? is used to abbreviate r + ε.

For any regular expression r, we denote by r̄ the regular ex-
pression obtained from r by replacing, for each i and each
a ∈ Σ, the i-th occurrence of a by ai. For example, if
r = ab∗(b + a+), then r̄ = a1b

∗
1(b2 + a+

2 ). The XSD and
DTD specifications (to be defined later) restrict regular ex-
pressions to be deterministic. A regular expression r is de-
terministic or 1-unambiguous if there are no strings w ·ai ·v
and w · aj · v′ in L(r̄) such that i 6= j [14]. We recall that
a deterministic regular expression can be translated into an
equivalent DFA in quadratic time [12].

2.2 XML schema languages

Trees. A set of strings S is prefix closed if for every string
s ∈ S and any prefix sp of s, sp is also in S. A tree t over an
alphabet Σ is a tuple (Nodes, lab,Σ) where Nodes, the set
of nodes of t, is a finite prefix closed set of strings over the
natural numbers, such that if v · i ∈ Nodes then v · i′ ∈ Nodes
for all i′ < i, and lab : Nodes → Σ is a labelling function
assigning symbols of Σ to each node in Nodes. The size of a
tree equals its number of nodes. A node v ∈ Nodes is a leaf
node if there is no v′ ∈ Nodes such that v is a prefix of v′.

The root of t is the empty string in Nodes. The children of
a node v in t are all nodes v′ ∈ Nodes such that v′ = v · i for
i ∈ N. The subtree of a tree t at a node v of t is the set of
nodes with prefix v. For the tree consisting of a single leaf
node v labelled with the symbol σ, we write σ(ε), and for
any node v labelled with σ and having subtrees t1, t2, . . . , tn
rooted at its children, we write σ(t1, t2, . . . , tn), denoting the
subtree of t rooted at v. The set of all trees over Σ is denoted
by TreesΣ and a tree language T over Σ is a subset of TreesΣ.
The set of trees over Σ that have exactly k nodes is denoted
by Trees=kΣ , for k ∈ N. For a tree language T , T =k denotes
the set of trees with m nodes, namely T =k = T ∩ Trees=kΣ .

DTDs and extended DTDs. A DTD over some finite
alphabet Σ is a tuple D = (Σ, R, d, Sd) where R is a set of
deterministic regular expressions over Σ, d is a function that
maps symbols in Σ to expressions in R, and Sd ⊆ Σ is the
set of start symbols. We refer to the regular expressions in
R as the content models of the DTD. A finite tree t is valid
with respect to a DTD D or satisfies D, if its root is labelled
by an element of Sd and, for every node labelled with some
a ∈ Σ, the sequence a1 · · · an of labels of its children, is in
the language defined by d(a).

A DTD-DFA (Σ, A, d, Sd) over some finite alphabet Σ is a
DTD whose content models are represented by the DFAs in
the finite set A, instead of regular expressions.

An extended DTD (EDTD) over a finite alphabet Σ is a
tuple (Σ,∆, R, d, Sd, µ), where ∆ is a finite set of types,
(∆, R, d, Sd) is a DTD and µ is a mapping from ∆ to Σ. A
tree t is valid with respect to an EDTD D or satisfies D if
t = µ(t′) for some tree t′ that satisfies the DTD (∆, R, d, Sd),
where µ is extended to trees. We call t′ a witness to t.

An EDTD-DFA (Σ,∆, A, d, Sd, µ) over a finite alphabet Σ
is an EDTD where (∆, A, d, Sd) is a DTD-DFA.

The tree language consisting of trees that are valid with re-
spect to a DTD or EDTD D is denoted by L(D). An EDTD
D is reduced if, for every type τ , there exists a witness tree
t ∈ L(D) such that the label τ occurs somewhere in t. Any
EDTD can be transformed to an equivalent reduced EDTD
in polynomial time [1, 27]. In the following, we assume that
all EDTDs are reduced.

Let D be an EDTD (Σ,∆, d, Sd, µ). Then, for any τ ∈ ∆,
we denote by Dτ the EDTD (Σ,∆, d, {τ}, µ). In particular
the set of start symbols Sd of D is changed to {τ}. We use
the same notation for EDTD-DFAs.

Subclasses of EDTDs. We recall the following sub-
classes of EDTDs: single-type EDTDs, restrained compe-
tition EDTDs, and bottom-up deterministic EDTDs. Intu-
itively, these classes have the following significance. Single-
type EDTDs are the formal abstraction of XSDs [28] and
are therefore central in this paper. The class of restrained
competition EDTDs corresponds to the EDTDs that can be
correctly typed in a one-pass preorder manner [28]. This
means that, when visiting the children of a node from left
to right it is clear which type is associated with each node
without looking ahead at the nodes to the right. Restrained
competition EDTDs form a strict superclass of the single-
type EDTDs. Finally, bottom-up deterministic EDTDs are
a class of EDTDs that are equally expressive as general
EDTDs, i.e., they recognize all regular tree languages. They
correspond to bottom-up deterministic tree automata [13].

3



More formally, let D = (Σ,∆, R, d, Sd, µ) be an EDTD.

• D is single-type if Sd does not contain two conflict-
ing types and no regular expression in R contains two
conflicting types. Here, two types τ 6= τ ′ conflict if
µ(τ) = µ(τ ′).

• D is restrained competition if Sd does not contain two
conflicting types and all regular expressions in R re-
strain competition. Here, a regular expression r over
∆ restrains competition if there are no strings wτv and
wτ ′v′ in L(r) with τ 6= τ ′ and µ(τ) = µ(τ ′).

• D is bottom-up deterministic, if for any two distinct
types τ1, τ2 ∈ ∆, it holds that L(d(τ1))∩L(d(τ2)) = ∅.

These notions are defined analogously for EDTD-DFAs. The
class of all single-type (resp. restrained competition,bottom-
up deterministic) EDTDs is denoted by By EDTDst (resp.
EDTDrc, EDTDbud).

We note that translating between EDTDsts and EDTDbuds
gives rise to unavoidable exponential blow-ups. The follow-
ing proposition holds for all formalisms used for representing
content models of EDTDs in this paper.

Proposition 2.1. There is a class (Dn)n∈N of EDTDsts
such that each Dn has size O(n) and the smallest EDTDbud

for L(Dn) has size 2Ω(n). Likewise, there is a class (Dn)n∈N
of EDTDbuds such that each Dn has size O(n) and the small-

est EDTDst and EDTDrc for L(Dn) has size 2Ω(n). 2

To conclude this section, we next provide two examples of
EDTDs that will also be used in Section 3.

Example 2.2. Consider the EDTDst D1 = (Σ,∆, d,
Sd, µ) with Σ = {a}, ∆ = {τo, τe}, d(τe) = (τoτo)

∗,
d(τo) = τe(τeτe)

∗, Sd = {τe} and µ(τo) = µ(τe) = a. Then
D1 defines trees of even height where each node at even
height has an even number of children and each node at odd
height has an odd number of children. Here, the root has
height 0. Let D2 be the EDTD (Σ,∆, d′, Sd, µ), where d′ is
such that d′(τo) = τe(τeτe)

∗ and d′(τe) = (τoτoτoτo)
∗. Then,

D2 defines trees where a node at odd height has an odd num-
ber of children, but nodes at even height have 0 (mod 4)
number of children. 2

2.3 Unambiguous EDTDs

We next define the class of unambiguous EDTDs and show
that this class captures the single-type, restrained competi-
tion, and bottom-up deterministic EDTDs previously de-
fined.

Definition 2.3. An EDTD or EDTD-DFA is unambigu-
ous, denoted by EDTDun, if every tree t ∈ L(D) has a
unique witness tree t′ with µ(t′) = t. 2

In the remainder of the paper, we regularly use the fol-
lowing observation. The correctness of this observation im-
mediately follows by contraposition.

Observation 2.4. If an EDTD or EDTD-DFA is unam-
biguous then, for all types τ ∈ ∆ and any two distinct trees
t1, t2 over ∆, if t1 and t2 are witnesses to trees in L(Dτ ),
then µ(t1) 6= µ(τ2). 2

Proposition 2.5. Let D = (Σ,∆, d, Sd, µ) be an EDTD.
If D is single-type, restrained competition, or bottom-up
deterministic then D is unambiguous. 2

The following result readily follows from the standard prod-
uct construction of automata (see, e.g., [18]). We add the
observation that, if the input EDTDs are EDTDuns, then
the product EDTDs for the union and intersection are also
EDTDuns.

Proposition 2.6. Let D1 and D2 be two EDTD-
DFAuns. Then we can construct, in quadratic time, an
EDTD-DFAun for L(D1)∪L(D2) and an EDTD-DFAun for
L(D1) ∩ L(D2). 2

Finally, we recall that deciding whether a given EDTD is in
of one of the particular classes we use here is in polynomial
time.

Proposition 2.7 ([28, 32]). Deciding whether a given
EDTD is a EDTDst, EDTDrc, EDTDbud, or EDTDun is in
PTIME. 2

3. Counting Tree Languages
In this section, we consider the counting problem for tree

languages L(D), where D is an EDTD. More specifically,
we show that the counting problem can be efficiently solved
when D is unambiguous, even when shape constraints are
provided. These results imply that the similarity between
unambiguous EDTDs can be efficiently computed. In con-
trast, the counting problem is shown to be #P-complete for
general EDTDs. It does, however, allow for a randomised
approximation scheme.

More formally, the general counting problem for languages
can be stated as follows:

Definition 3.1. For a class of languages C, given a lan-
guage C ∈ C and m ∈ N, we define #C as the problem of
finding the number of members in C of size m. 2

For instance, #DFA reduces to counting the number of
paths in a graph, while #NFA is known to be #P-
complete [23]. Here, we consider #EDTD and #EDTD-
DFAun and establish our results by exploiting the close re-
lationship between (unambiguous) EDTDs and derivation
trees of (unambiguous) context-free grammars. We first
make this relationship precise.

3.1 From EDTDs to CFGs

Recall that a context-free grammar (CFG) G is a tu-
ple (N,Σ, R, S) such that N is a finite set of non-terminal
symbols, Σ is a set of terminal symbols, R is a subset of
N × (N ∪ Σ)∗ and S ∈ N is the start symbol. We denote
the tuples (V,w) ∈ R by V → w.

A string w ∈ (N ∪ Σ)∗ is derived from some non-terminal
symbol V ∈ N , denoted by V ⇒ w, if V → w. The transi-
tive and reflexive closure of ⇒ is denoted by ⇒∗. The lan-
guage accepted by G is the set of strings w ∈ Σ∗ such that
S ⇒∗ w, and is denoted by L(G). If T ∈ N , then L(GT )
is the set of strings w such that T ⇒∗ w. A context-free
grammar G is unambiguous if, for every string w ∈ L(G), w
has exactly one derivation tree for G.

4



It is well-known that regular expressions and (deterministic)
finite automata can be translated to equivalent context-free
grammars. Here, we use a variation of this result for which
the actual translation is referred to the Appendix:

Lemma 3.2. Let r be a regular expression and let A be
a DFA over alphabet ∆. Then we can construct in linear
time a CFG G with start symbol S such that τ1 · · · τn ∈
L(r) (resp. ∈ L(A)) if and only if S ⇒∗ τ1 · · · τn in G.
Furthermore, if r (resp. A) is deterministic, then G is
unambiguous. 2

In the remainder of this section, if r is a regular expression,
we denote by CFG(r, V ) the set of CFG rules obtained by
taking rules of G from Lemma 3.2, replacing the start sym-
bol S by V , and replacing each terminal symbol τ ∈ ∆ in
the derivation rules by a non-terminal Tτ . That way, we
have that τ1 · · · τn ∈ L(r) if and only if V ⇒∗ Tτ1 · · ·Tτn in
CFG(r, V ). We define CFG(A, V ) for a DFA A similarly.

Let D = (Σ,∆, X, d, Sd, µ) be an EDTD, where X is a set
of DFAs or REs. Let RN,Σ denote the class of context-free
grammar rules over the set of terminal symbols Σ and the
set of non-terminal symbols N . Let ψD : ∆→ ℘(RN,Σ′), for
Σ′ = Σ∪ {[, ]}, be a function mapping types to sets of CFG
rules, defined as:

ψD(τ) = {Tτ → σ[Rτ ]} ∪ CFG(d(τ), Rτ )

where σ = µ(τ). In the following, we assume that the non-
terminals in the rules CFG(d(τ), Rτ ) that are not of the
form Tτ , for some τ ∈ ∆, are not used elsewhere. However,
this can always be achieved by renaming non-terminals ac-
cordingly. Let ΨD be the set {ψD(τ) | τ ∈ ∆} ∪ {S → Tτ |
τ ∈ Sd}. Notice that, for each type τ there exists exactly
one rule in ΨD whose left-hand side is Tτ .

The next lemma shows how EDTDs and CFGs are related:

Lemma 3.3. For every EDTD D = (Σ,∆, X, d, Sd, µ) the
CFG GD = (N,Σ ∪ {[, ]},ΨD, S) is such that for all n ∈ N,
|L(D)=n| = |L(GD)=3n|. Furthermore, if D is an EDTD-
DFAun, then G is unambiguous. 2

Proof Sketch. We show that |L(D)=n| = |L(GD)=3n|
by establishing an isomorphism str between the languages
L(D) and L(GD). More precisely, str : TreesΣ → (Σ ∪
{[, ]})∗ is inductively defined as follows:

str(σ(ε)) = σ · [·],
str(σ(t1, . . . , tm)) = σ · [·str(t1) · · · str(tm)·].

It then suffices to show that for each n, str : Trees=mΣ →
(Σ ∪ {[, ]})3m is injective.

3.2 #EDTD

It readily follows from the hardness of #NFA [23] that
#EDTD is hard as well.

Proposition 3.4. #EDTD is #P-complete. 2

The relationship between EDTDs and CFGs as specified in
Lemma 3.3, however, can be used to provide a randomised
approximation scheme for #EDTD.

We recall the notion of randomised approximation schemes

for languages from Gore et al. [20]. A randomised approxi-
mation scheme for languages is a randomised procedure that
takes as input a description for a language L ⊆ Σ∗ and a
tolerance ε > 0, and produces as output a number L̂ such
that (1 + ε)−1|L| ≤ L̂ ≤ (1 + ε)|L| with probability at least
3
4
. For instance, an approximation scheme exists for #CFG:

Theorem 3.5 ([20]). There is a randomized approxi-
mation scheme for #CFG, i.e., finding the number of ele-
ments of size m of a language defined by a given CFG G,
with running time ε−2(m|G|)O(logm). 2

The approximation scheme for #EDTDs then immedi-
ately follows from Lemma 3.3 and Theorem 3.5.

Corollary 3.6. For an EDTD D, there is a random-
ized approximation scheme for finding the number of ele-
ments of size n of the language L(D), which runs in time

ε−2(3n|D|)O(logn). 2

3.3 # EDTD-DFAun

We again rely on the relationship between EDTD-DFAuns
and unambiguous CFGs as specified in Lemma 3.3. That is,
we provide an efficient algorithm for #L(GD) (and hence
for #L(D)) by formulating the CFG GD as a so-called com-
binatorial specification [17], which we recall below. The ad-
vantage of such a specification is two-fold: (1) one can easily
bound the complexity of computing the number of objects
of a certain size; and (2) one obtains a general sampling
procedure for objects in the specification (cf. Section 4)

Combinatorial specifications. A combinatorial class is a
finite or denumerable set on which a size function is defined,
satisfying the following two conditions:

(i) the size of an element is a non-negative integer,

(ii) the number of elements of any given size is finite.

If A is a class, the size of an element a ∈ A is denoted by
|a|. The set of objects in A of size n is denoted by An. The
counting sequence of a combinatorial class is the sequence of
integers (An)n≥0 where An = |An| is the number of objects
in class A that have size n. Two combinatorial classes A and
B are said to be combinatorially isomorphic, written A ∼= B
if and only if their counting sequences are identical. This
condition is equivalent to the existence of a bijection from
A to B that preserves size.

A calculus for combinatorial classes introduced in [17], is
presented below. Here, E and Z are atoms that denote the
classes containing exactly one object of size 0 and size 1
respectively.1 In the following, we allow different instantia-
tions Za, Zb, . . . of the same atom Z. Let B and C be com-
binatorial classes. Then the combinatorial class A = B + C
is the disjoint union of the classes B and C. In particular,
Z+Z contains two objects of size 1. Furthermore, A = B×C
denotes the combinatorial class {α = (β, γ) | β ∈ B, γ ∈ C}
and for each α = (β, γ) ∈ A, the size of α is the sum of the
sizes of β and γ. For each α = (β1, . . . , βn) ∈ A, the size of
α is the sum of the sizes of βi for i ∈ [1, n]. For all n the
following hold when A is a combinatorial class:

if A = B + C then |An| = |Bn|+ |Cn|,
if A = B × C then |An| =

∑n
k=0 |Bn−k| · |Ck|

1E is denoted as 1 in [17].

5



In the following, we assume an infinite set of variables C,
C0, C1, . . .. Each variable will define a combinatorial class
L(C).

Definition 3.7 ([17]). A specification for (C1, . . . ,
Cn) is a collection of n equations, with the i-th equation
being of the form

Ci := Ψi(C1, . . . , Cn)

where Ψi is a term built from E ,Z and the Cj , using the
constructors + and ×. For each j ∈ [1, n], let C0

j = ∅ and

for each i ∈ N, let Ci+1
j = Ψj(C

i
1, . . . , C

i
n). Then L(Cj) is

defined to be
⋃
i≥0 L(Cij). For k ∈ N, we denote by L(Cj)

=k

the objects in L(Cj) of size k. 2

We say that a specification is in normal form if each equation
is either a single atom, or a single operation Ci := Cj + Ck
or Ci := Cj × Ck.

Theorem 3.8 ([17]). Given a specification for (C1,
. . . , Cn) in normal form and an integer k, the counting se-
quence up to size k can be computed in O(n ·k2) arithmetic
operations. 2

From CFGs to combinatorial specifications. We
know from Lemma 3.3 that for a given EDTD-DFAun

D = (Σ,∆, X, d, Sd, µ), the corresponding CFG GD =
(N,Σ ∪ {[, ]},ΨD, S) is unambiguous. Furthermore, it is
well-known ([17]) that an unambiguous CFG in Chomsky
normal form can be translated into a linear-size combina-
torial specification (C1, . . . , Cn) in normal form by simply
replacing concatenation (·) by ×, disjunction (∪) of rules
with the same left hand side by +, and finally each σ ∈ Σ
by Zσ. Hence, together with Theorem 3.8 we immediately
get:

Theorem 3.9. For an EDTD-DFAun D = (Σ,∆, X, d,
Sd, µ), the number of trees in L(D) of size up to k can
be computed using O(|∆||Qmax|2k2) arithmetic operations,
where Qmax denotes the largest state space of an automaton
in X. 2

Proof. It suffices to show that the Chomsky normal form
G′D of the CFG GD = (N,Σ ∪ {[, ]},ΨD, S) has at most
O(|∆||Qmax|2) non-terminals, which we prove in the Ap-
pendix.

We stress that the size of the numbers |L(D)=k| can grow
very fast. To implement the algorithm of Theorem 3.9, a
Mathematical Software package is needed. Actually, Maple
provides an implementation in the combstruct module of
the combinatorial specifications. We implemented our
specification for the EDTD-DFAun D1 given in Example
2.2. As an illustration, we computed the number of trees of
size 1001 valid with respect to D1 and obtained a number
with 314 decimals:

5187950237123931732051175236954451756169819365598840423158521214
8190894888949535843265681593434395020810002443582868233520387650
9254373728438806292876525845302947032070990934669778240958562432
2318852268438965431780372366645013594586870608079034900002010371
20152303965795554922650323287553303269884549851688819208474

The computation remains under the 60 seconds on a 1.8GHz
iMac with 1GB of RAM.

3.4 Shape Constraints

Given an EDTDun D = (Σ,∆, A, d, Sd, µ), it is often de-
sirable to count the number of trees in L(D) that satisfy
certain shape constraints. Here, by shape constraints we
mean certain restrictions on the allowed combinations of the
size, depth and/or width of trees in the language. More for-
mally, a shape constraint on the depth (δ) (resp. branching
width (w)) of trees consists of a function φδ(k)(resp. φw(k))
that assigns to each tree of size k its maximal allowed depth
(resp. branching width). For instance, to avoid string-like
trees one can take φδ(k) = log k; to only consider binary
trees one simply lets φw(k) = 2. As previously described,
the counting sequences of trees in L(D) can be computed
using the combinatorial specification corresponding to the
CFG GD. In the presence of shape constraints, we need to
augment this specification with parameters corresponding
to the depth and width of objects.

We next describe in detail the specification for GD: Let
D = (Σ,∆, A, d, Sd, µ) be an EDTD-DFAun. Let A = {Aτ |
τ ∈ ∆} such that, for each τ ∈ ∆, Aτ = (∆, Qτ , δτ , qτ,0,
Fτ ) is the DFA such that d(τ) = Aτ and let Qτ = {qτ,0, . . . ,
qτ,mτ }. We assume w.l.o.g. that the Qτ are pairwise disjoint
and also disjoint with ∆. Also, let init : {Aτ | τ ∈ ∆} →
{qτ,0 | τ ∈ ∆} be the function mapping each automaton to
its initial state. Finally, we let Q =

⋃
τ∈∆ Qτ .

Given the maximal tree depth d and width w, the spec-
ification is defined over the set of variables Var(d,w) =
{R≤δ,≤wτ , R≤δ,≤wq ,Zµ(τ) | τ ∈ ∆, q ∈ Q, δ ∈ [1, d], w ∈ [0,w]}
and is given by the following set of equations:

For τ ∈ ∆, (δ, w) ∈ N2, δ ≥ 1 :

T
(≤δ,≤w)
τ := Zµ(τ) ×Z[ ×R(≤δ−1,≤w)

init(d(τ)) ×Z].

For q ∈ Q, (δ, w) ∈ N2, δ ≥ 1 :

R
(≤δ,≤w)
q :=

∑
τ∈∆,q′∈Q
q′∈δτ′ (q,τ)

(
T

(≤δ,≤w)
τ ×R(≤δ,≤w−1)

q′

)
+ E︸ ︷︷ ︸

iff q∈Fτ′

.

We denote by L(D)(=k,≤d,≤w) the set of trees of size k, maxi-
mal depth d and maximal width w. A straightforward gener-
alization of Lemma 3.3 then shows that |L(D)(=k,≤d,≤w)| =
|
(
L
(∑

τ∈Sd
T

(≤d,≤w)
τ

))=3k|. Hence, Theorem 3.9 implies:

Corollary 3.10. For an EDTD-DFAun D =
(Σ,∆, X, d, Sd, µ), size k, depth d and width w, the

cardinality of L(D)(=k,≤d,≤w) can be computed using
O(|∆||Qmax|2 · d ·w · k2) arithmetic operations, where Qmax

denotes the largest state space of an automaton in X. 2

Proof. This follows immediately from Theorem 3.9. In-
deed, it is easily verified that the normalization of the spec-

ification
∑
τ∈Sd

T
(≤d,≤w)
τ contains O(|∆||Qmax|2d · w) non-

terminals.

We remark that when shape constraints φδ(k) and φw(k)

are provided, |L(D)(=k,φδ(k),φw(k))| is easily obtained from
Corollary 3.10. Moreover, when only φδ(k) or φw(k) is pro-
vided one simply removes the w or δ parameter, respectively,
from the above specification and the complexity is adjusted
correspondingly. Finally, we observe that when no shape

6



constraint is specified, the specification reduces to the one
for GD.

3.5 Similarity Measure

We return to computing the similarity between two tree
languages as defined in the introduction using the machinery
obtained above. Specifically, for tree languages S and T ,
define,

sim≤n(S, T ) :=

n∑
k=0

|(S ∩ T )=k|
n∑
k=0

|(S ∪ T )=k|
,

where 0
0

is taken to be 1.

Then we can prove the following result:

Proposition 3.11. Assume S and T are specified as un-
ambiguous EDTD-DFAs. Then for any n, sim≤n(S, T ) can
be computed using O(|∆||Qmax,S |2|Qmax,T |2n2) arithmetic
operations, where Qmax,S and Qmax,T denote the largest
state space of an automaton in S and T , respectively. 2

Proof. Since sim≤n(S, T ) requires both |(S ∩ T )=k| and
|(S∪T )=k|, for k ∈ [0..n], it suffices to bound the operations
needed to compute these quantities. By Proposition 2.6,
EDTDuns can be computed for S ∩ T and S ∪ T . Hence,
all |(S ∩ T )=k| for k ∈ [0..n] can be computed from the
specification of S ∩T using O(|∆||Qmax,S |2|Qmax,T |2n2) op-
erations, where Qmax,S and Qmax,T denote the largest state
space of an automaton in S and T , respectively. Indeed,
this follows from Theorem 3.9 and the fact that the au-
tomata in S ∩ T consist of product automata of S and T .
Due to trees common to S and T , we cannot use S ∪ T .
Instead, we simply use |S=k| + |T=k| − |(S ∩ T )=k| for
the counting sequence of the union of S and T . From
Theorem 3.9 it follows again that these quantities can
be computed up to k = n using O(|∆S ||Qmax,S |2|n2),
O(|∆T ||Qmax,T |2|n2) and O(|∆||Qmax,S |2|Qmax,T |2n2) oper-
ations, respectively. As a consequence, sim≤n(S, T ) requires
O(|∆||Qmax,S |2|Qmax,T |2n2) operations.

To illustrate feasibility, we used our implementation in
Maple to compute sim≤100(D1, D2) = 2.405906249 · 10−7

taking D1 and D2 as defined in Example 2.2. The score was
computed in as little as a few seconds.

The above definition of the function sim is just one pos-
sibility. A related but more general approach would be to
consider a probability distribution p on the natural numbers,
and define simp(S, T ) as∑

n≥0

p(n)
|(S ∩ T )=n|
|(S ∪ T )=n| =

∑
t∈S∩T

p(|t|) 1

|(S ∪ T )=|t||
, (1)

where |t| denotes the size of t. This means that simp(S, T )
is the expected probability that a tree t drawn from S ∪ T
with probability p(|t|) belongs to S ∩ T . So, this measure
assigns the same probability to trees of equal size.

4. Sampling tree languages
We next turn to the problem of sampling trees of a certain

size in a tree language L uniformly at random. The sam-
pling procedure closely follows the general uniform sampling

methodology for combinatorial classes, as outlined in [17, 19,
25]. The general result for sampling objects of size k in a
combinatorial class is as follows:

Theorem 4.1 ([17]). Any combinatorial specification
for (C1, . . . , Cn) in normal form has a random generation
routine that uses precomputed tables of size O(nk) and
achieves O(nk log k) worst case time complexity. The com-
putation of the tables requires O(nk2) operations. 2

In other words, for any tree language L that is equivalent
to a combinatorial specification, one automatically obtains
a sampling procedure. This is in particular true for EDTD-
DFAuns with and without shape constraints, as we have seen
in the previous section.

5. Uniform XSD generation
In this section, we provide an algorithm to generate uni-

formly at random XSDs of a given size. A first step towards
XSD generation is sampling of content models.

5.1 Generating Content Models

Almeida et al. provide a uniform sampler for deterministic
connected complete DFAs through a string representation of
the automata [2]. We next generalize their approach to de-
terministic k-OAs, by additionally allowing to parameterize
on occurrences of alphabet symbols. While the underly-
ing ideas remain the same, the new parameters introduce
a higher level of complexity. Furthermore, we employ the
formalism of combinatorial specifications to automatically
obtain a generation procedure (cf Section 4).

k-Occurrence Automata As mentioned in the introduc-
tion, regular expressions in real-world XSDs can have large
alphabets, but each of these alphabet symbols typically oc-
curs only a small number of times.2 A k-occurrence regu-
lar expression or k-ORE is a regular expression where ev-
ery alphabet symbol occurs at most k times. For instance,
a · (a+ b)∗ is a 2-ORE. However, we will not consider these
regular expressions as such.

The reason is that there is little known on uniform regu-
lar expression generation. One approach could be to use
for instance the context-free grammar of [24] defining all
almost reduced regular expressions. However, this would
not exclude different regular expressions defining the same
language. Rejection sampling can not be used as there is
no notion of minimal regular expression. Therefore, instead
of using k-OREs, we turn to the corresponding (but slightly
larger) class of k-occurrence automata as defined next. Note
that these automata are node labelled.

Definition 5.1. A k-occurrence automaton A (k-OA)
over Σ is a tuple (V,E, I, F, lab, e) where V is a finite set
of states, E ⊆ (V × V ) is the edge relation, I ⊆ V is the
initial set of states, F is the set of final states, lab : V → Σ
is the labeling function, and e is a Boolean which is true
when A accepts the empty string. We have the additional
requirement that every Σ-symbol labels at most k states. 2

We say that two k-OAs A1 = (V1, E1, I1, F1, lab1, e1) and
A2 = (V2, E2, I2, F2, lab2, e2) are isomorphic, if there exists
a bijective function β : V1 → V2 such that for all v1, v2 ∈ V1,

2Actually, most alphabet symbols occur only once.

7



a
q1

start

b
q2

start
b
q3

a
q4

b
q5

(1)

(2)

(4)

(3)

(5)

Figure 1: k-OA A

(v1, v2) ∈ E1 if and only if (β(v1), β(v2)) ∈ E2, v1 ∈ I1 if
and only if β(v1) ∈ I2, v1 ∈ F1 if and only if β(v2) ∈ F2,
lab1(v1) = lab2(β(v1)) and e1 = e2.

A k-OA A is deterministic if for every state s ∈ V and σ ∈ Σ
there is at most one state s′ ∈ V such that (s, s′) ∈ E and
lab(s′) = σ, and there are no two distinct states s, s′ ∈ I
with the same label. A k-OA A is complete if for every state
s ∈ V and every σ ∈ Σ, there exists a state s′ ∈ V such that
lab(s′) = σ and (s, s′) ∈ E, and for every label σ there is a
state s ∈ I with lab(s) = σ. Finally, a k-OA A is connected,
if every state s is reachable from an initial state in I. We call
a deterministic, complete and connected k-OA, admissible.

String encoding of k-OAs. We next provide a string
representation of k-OAs that is inspired by [2]. If A is a
deterministic k-OA over Σ with M states, then for every
s ∈ V we denote by N(s) the neighbours of s, which are
the states s′ ∈ V such that (s, s′) ∈ E. A string encoding,
similar to the one introduced in [2], is presented in what
follows. This encoding is canonical in the sense that isomor-
phic automata have the same encoding. For an alphabet Σ
of size `, let o : Σ→ [0, `− 1] be a total order over the sym-
bols of Σ. Given that ordering o, define a canonical total
order c : V → [1,M ] as follows. First, for each state s ∈ I
let c(s) = o(lab(s)) + 1. Then, traverse the automaton in a
breadth-first way, where at each state s, assign to each of
the neighbours of s, that are not yet in the domain of c, and
in the order induced by o, the smallest number n ∈ [1,M ]
that has not been assigned to a state.

Consider the k-OA A shown in Fig. 1, over the alphabet
Σ = {a, b}, where o(a) = 0 and o(b) = 1, and let ε ∈ L(A).
Notice that A is both connected and complete. The canon-
ical total order c : V → [1,M ] is defined as follows. The
initial state q1 with label a is assigned the number 1, and
the initial state q2 is assigned the number 2. Now, travers-
ing the automaton in a breadth-first order, the number 3 is
assigned to the state q4, which is a neighbour of q1 and has
label a. Similarly, the state q3, which is a neighbour of q1
with label b is assigned the number 4. Finally, proceeding
to the neighbours of q2, the state q5 is assigned the number
5 and all states are now ordered. The ordering of the states
is annotated between parentheses in Fig. 1.

Given an admissible k-OA A over Σ with M states, the
string encoding of A is a string enc(A) = S1 ·S2 · s of length
(M + 1) · `+M + 1, where S1 is the substring encoding the
transitions of the automaton and is of length (M+1)·`, S2 is
the substring encoding the set of final states and is of length
M , and finally s is 1 if A accepts the empty string and 0
otherwise. The substring S1 = s0 · · · s(M+1)·`−1 is such that

for each j ∈ [0, `−1] sj = c(i) where i ∈ I and o(lab(i)) = j,
and for each j′ ∈ [1,M ] and j ∈ [0, `− 1], sj′·`+j is equal to
c(v) where v is the state of A such that lab(v) = o−1(j) and
(c−1(j′), v) ∈ E. Informally, the latter denotes that sj′·`+j
is the number corresponding to the state reached from state
with number j′ reading the alphabet symbol o−1(j). For
the substring S2 = s(M+1)·` · · · s(M+1)·`+M−1 encoding the
set of final states, for each j ∈ [0,M − 1], s(M+1)·`+j is 1 if

the state c−1(j) is final and is 0 otherwise.

For example, the string encoding for the k-OA A shown in
Fig. 1, is the string

12︸︷︷︸
0

34︸︷︷︸
1

15︸︷︷︸
2

35︸︷︷︸
3

12︸︷︷︸
4

35︸︷︷︸
5

00001︸ ︷︷ ︸
final

1︸︷︷︸
ε

.

The first two digits of the string encode that state 1 (q1)
is the initial state with label a and that state 2 (q2) is the
initial state with label b. The next two digits encode the
outgoing transitions of state 1. The outgoing a-transition
goes to state 3 (q4) and the outgoing b-transition goes to
state 4 (q3). The outgoing transitions for states 2–5 are
encoded similarly.

The lemma below assures the correctness of the encoding:

Lemma 5.2. 1. The function c is a bijection for admis-
sible k-OAs.

2. For two admissible k-OAs A1 and A2 with n states
over an alphabet Σ of size `, with a total order o : Σ→
[0, `−1] defined on this alphabet, if enc(A1) = enc(A2)
then A1 is isomorphic to A2. 2

Characterisation of string encodings. We next provide
a characterisation of strings that correspond to encodings of
admissible k-OAs. We will leverage upon this characterisa-
tion and give a combinatorial specification for these string
encodings later on.

For every string s = s0 . . . s(n+1)·`−1, n ∈ N, we let (fi)i∈[1,n]

be a sequence of numbers such that for each i ∈ [1, n], fi
denotes the first position in the string s where the number
i appears. Then consider the strings s0, . . . , s(n+1)·`−1 that
satisfy the following 4 rules:

(A1) ∀i ∈ [1, n− 1], fi < fi+1,
(A2) ∀i ∈ [1, n], fi < i · `,
(A3) ∀i ∈ [0, `− 1], |{sp | p = i (mod `)}| ≤ k,
(A4) ∀i, i′ ∈ [0, `− 1], where i 6= i′,

{sp | p = i (mod `)} ∩ {sp | p = i′ (mod `)} = ∅.

Intuitively, the above rules express the following: Rule (A1)
expresses that for each state i, the first time i appears in the
string is before the first time state i+1 appears in the string.
Rule (A2) expresses that for each state i, the first occurrence
of i is in the part of the string encoding the transitions of
the first i − 1 states, which means that state i is reachable
from a state i′ < i. Rule (A3) expresses that for any symbol
σ, there are at most k different states that can be reached
by reading σ. Finally, rule (A4) expresses that each state
has a unique label.

The precise relationship between the set of strings satisfying
(A1)− (A4) and k-OAs is given by the following lemma:

8



Lemma 5.3. For each n ∈ N, enc is a bijection from the
set of non-isomorphic admissible k-OAs with n states, over
an alphabet Σ of size ` to the strings of size (n+1) ·`+n+1
whose prefix s = s0, . . . s(n+1)·`−1 satisfies the rules (A1) −
(A4) above, and whose suffix s′ = s(n+1)·` · · · s(n+1)·`+n uses
only 0 and 1. 2

In other words, Lemma 5.3 characterizes the strings corre-
sponding to encodings of k-OAs. We next use this charac-
terization to build a combinatorial specification for the set
of strings encoding k-OAs.

Combinatorial specification of k-OAs. Let Σ be an al-
phabet of size ` and let A be an admissible k-OA over Σ
with n states. Recall that enc(A) = S1 · S2 · s is a string of
length (n+ 1)`+ n+ 1, where S1 is the substring of length
(n+ 1)` encoding the transitions of A, S2 is the substring of
length n encoding the set of final states, and finally s is 1 if
A accepts the empty string and 0 otherwise. Furthermore,
the prefix of S1 of size ` is equal to 1 · 2 · · · ` and the suffix
S2 · s solely contains 0 or 1. Such fixed strings can easily be
combinatorially specified. Indeed, for i ∈ [1, n], let Zi de-
note the atom corresponding to state i. Then, Z1×· · ·×Z`
corresponds to the prefix 1 ·2 · · · `, whereas for B := Z0 +Z1,
we have that Bn × B corresponds to the set of all possible
suffices of size n+ 1 in encodings of k-OAs.

Given these, it remains to specify the remaining symbols in
S1. We need the following notation: For m ∈ [` + 1, n], let
W

m
= [W0, . . . ,W`−1] be a partition of [1,m] in which each

part is of cardinality at most k. We denote by W
m
m+1,j the

partition of [1,m+1] obtained from W
m

by adding {m+1}
to Wj . Finally, if W is a subset of [1, n] thenW denotes the
specification

∑
i∈W Zi.

From Lemma 5.3 it follows that the class of strings corre-
sponding to k-OAs of size n can be combinatorially specified
as:

OAn := Z1 × · · · × Z`×(`2+(`−1)∑
p=`

(

p−`−1∏
i=0

Zi (mod `))×Z`+1 × S(j′,j)
`+1 [W

`
`+1,j (mod `)]

)
× BM × B,

where j′ and j are such that p = j′`+ j, provided that the

class S
(j′,j)
`+1 [W

`
`+1,j (mod `)] consists of all strings of length n·`

satisfying rules (A1)− (A4), with a fixed prefix s0 . . . sj′·`+j ,
where `+ 1 occurs in the string at position j′ · `+ j for the
first time, and for each i ∈ [0, `− 1], and q ∈ [0, j′ · `+ j], it
holds that {sq | q = i (mod `)} = Wi.

We next claim that the specification given in Figure 2 defines
precisely this class of strings. Intuitively, for ` < m ≤ n, the
equations in the specification reflect that the strings satisfy-
ing the rules (A1)− (A4) and in which letter m appears for
the first time at position j′ · ` + j is equal to the (disjoint)
union of possible strings where m + 1 appears for the first
time in one of the positions between j′ ·`+j+1 and m ·`−1.
In the specification this union is partitioned as follows: The
class Q1 covers the case where between the positions j′ ·`+j
and (j′+ 1) · `+ j no new state m+ 1 is introduced, whereas
the class Q2 covers the cases where at some position J be-
tween the positions j′ ·`+j and (j′+1)·`+j, the state m+1 is
introduced. Finally, two cases need special attention: First,

in case that j′ = m − 1, the rule (A2) implies that symbol
m must appear directly afterwards. In the specification this
is reflected by the class defined by Q3. Second, when m = n
and j′ = n− 1, the end of string is nearby and the recursive
specification must end. The last equation in the specifica-
tion deals with this case. Indeed, it simply pads the string
with symbols until the desired length of n` is reached.

Theorem 5.4. For `, k, n, j′, j, n0, . . . , n`−1 ∈ N and m ≥
`, the class S(j′,j)

m [W0, . . . ,W`−1] defined by the specifica-
tion in Figure 2 corresponds to the class of strings of length
(n + 1) · ` satisfying rules (A1) − (A4), with a fixed pre-
fix s0 . . . sj′·`+j , where m occurs in the string at position
j′ · ` + j for the first time, and for each i ∈ [0, ` − 1], and
q ∈ [0, j′ · `+ j], it holds that {sq | q = i (mod `)} = Wi. 2

As a consequence, the specification OAn consists of all
strings that correspond to the encoding of a k-OA of size
n.

Lemma 5.5. Let n, k, ` ∈ N. The number of operations
required to compute |OAn| is bounded by O(n2 · `2 · k`). 2

Proof. This is a direct consequence of Theorem 3.8 and
the fact that normal form of the specification OAn has at
most O(n2 · `2 · k`) non-terminals.

Uniform generation procedure for k-OAs. Given the
specification for k-OAs one can rely on Theorem 4.1 to ob-
tain a uniform random generation procedure. This proce-
dure, referred to as k-OA-uniform-generation(n, `), takes as
input the size ` of the alphabet and the desired number of
states n, and returns uniformly at random (with probability
1/|OAn|) a string enc(A) encoding a k-OA A over Σ and n
states.

From Theorem 4.1 and Lemma 5.5 it follows immedi-
ately that k-OA-uniform-generation(n, `) requires O(n2 · `2 ·
k`n log(n)) worst case time complexity.

Finally, we observe that an alternative generation procedure
for k-OAs, similar to the one presented in [2], can be devised.
The difference is that while generating the string encoding of
the admissible k-OAs, one needs to additionally keep track of
which alphabet symbols have been assigned to which states,
so that no symbol is assigned to more than k states.

5.2 XSD generation

In what follows, we present an algorithm that generates
uniformly at random an XSD, whose content models are
described by k-OAs, for some k ∈ N. We make use of the
notion of DFA-based XSDs (which is equivalent to XSDs
and introduced in [26]) with k-OA content models.

Definition 5.6. A DFA-based k-OA XSD is a tuple D =
(Σ, A, λ), where A is a DFA with set of states ∆ over the
alphabet Σ, and λ is a function mapping each non-initial
state q of A to some k-OA over Σ. A tree t is valid with
respect to D if for every node v of t, the sequence a1 · · · an
of labels of its children is in L(λ(q)), where q is the state
reached by A when started in its initial state, and by reading
the string of labels on the path from the root to v. 2

It therefore suffices to generate DFA-based k-OA XSDs.

9



For m ≥ `, j′ < m− 1 and j < `:

S(j′,j)
m [W

m
] := Q1 +Q2

Q1 := (
∏`+j
i=j+1Wi (mod `))× S(j′+1,j)

m [W
m

]

Q2 :=
∑`+j
i=j+1

(∏i−1
i′=iWi′ (mod `)

)
×Zm+1 × S(j′,j+i)

m+1 [W
m
m+1,j+i (mod `)]

For m ≥ `, j′ = m− 1 and j < `:

S(j′,j)
m [W

m
] := Q3

Q3 :=
∑2`−1
i=j+1

(∏i−1
i′=iWj+i′ (mod `)

)
×Zm+1 × S(j′,j+i)

m+1 [W
m
m+1,j+i (mod `)]

For m = n, j′ = n− 1 and j < `:

S(n−1,j)
n (W

n
) :=Wj+1 × · · · ×W`−1 ×

(∏`−1
i=0Wi

)

Figure 2: Combinatorial specification of k-OAs.

Example 5.7. We provide an example of a DFA-based k-
OA XSD. Consider the following DFA without final states:

sstart

q1

q2

q

a

b

c

c

Furthermore, we define λ(q1) = kOA(c), λ(q2) = kOA(cc),
and λ(q) = kOA(ε), where kOA(r) denotes the minimal k-
OA for the regular expression r. This DFA-based k-OA XSD
accepts two trees, namely a(c) and b(c, c). 2

We next discuss the algorithm we need for generating the
DFA of a DFA-based k-OA XSD. Example 5.7 illustrates
that we need to generate possibly incomplete connected
DFAs. Indeed, we cannot simply resort to methods gener-
ating minimal DFAs, since the DFA in Example 5.7, having
no final states, is obviously not minimal. Furthermore, even
when we would define the states that can be reached when
reading an entire path from root to leaf in a tree of the lan-
guage to be final, the resulting DFA is not minimal. Indeed,
this approach would define state q to be a final state, but
then minimization of the DFA in Example 5.7 would merge
states q1 and q2, thereby changing the language of the DFA-
based XSD. In fact, it can be shown that the DFA-based
XSD from Example 5.7 is minimal [29].

This justifies our choice for a method that generates possi-
bly incomplete connected DFAs. More precisely, for m ∈ N
and any ordered alphabet Σ where |Σ| = `, we consider the
algorithm generate-DFA(m, `) from Bassino et al. that gen-
erates a possibly incomplete connected DFA with m states
(and no final states) over the alphabet Σ [4]. Note that the
generated DFAs are not necessarily minimal.

We next show to generate the k-OAs. Whereas we already
know to generate k-OAs of a given size, we now need to
uniformly range over the sizes of the k-OAs. Let A be a k-
OA over an alphabet Σ such that |Σ| = `. Then notice that
the number of states for A can only be larger than or equal

to ` and smaller than or equal to k · `. For any two values
n1, n2 such that n1, n2 ∈ [`, k · `], the number of k-OAs with
n1 states and the number of k-OAs with n2 states is not
necessarily the same, and therefore, to choose uniformly at
random the number of states of a k-OA, these numbers have
to be taken into account. The algorithm generate-k-OA-
num-states relies on the specification OAi for k-OAs in order
to compute the number of k-OAs with i states over Σ. We
next use these numbers to produce a uniform distribution
over the number of states for the automaton.

Algorithm 1 generate-k-OA-num-states

Input: `
max =

∑k·`
i=1 |OAi|;

return j ∈ [1, k · `] with probability
|OAj |
max

Algorithm 2 generate-k-OA-XSD

Input: m, `
Output: DFA-based XSD (A, λ)
A = generate-DFA(m, `);
for every state j ∈ [2,m] of A do
`j = |{σ | δA(j, σ) is defined in A}|
nj = generate-k-OA-num-states(`j);

end for
for every state j ∈ [2,m] of A do

repeat
λ(j) = k-OA-uniform-generation(nj , `j);

until is-minimal-complete-k-OA(λ(j))
end for

Consider then Algorithm 2. The algorithm generate-k-OA-
XSD, given m and `, first generates a (possibly incomplete)
DFA A with m states over the alphabet [0, `− 1] uniformly
at random. We assume that A’s states are numbered from
1 to m and its initial state is 1. Then, for each j ∈ [2,m],
i.e., for each state apart from the initial one, we compute
the alphabet size `j of the k-OA that will be associated to
state j. This alphabet size must correspond precisely to the
number of outgoing transitions of state j (see Example 5.7)
in order for the DFA-based k-OA XSD to be well-defined.

10



Then we choose the number of states nj of a k-OA for state
j uniformly at random using generate-k-OA-num-states. Fi-
nally, we generate a k-OA for state j of A with nj number of
states and alphabet size `j using k-OA-uniform-generation.

Our aim for Algorithm 2 is to produce, uniformly at random,
non-isomorphic admissible DFA-based k-OA XSDs, that is,
DFA-based XSDs in which the inner DFA is connected and
the k-OAs are admissible and minimal.

We note that testing minimality of a deterministic k-OA
can be done by a simple adaptation of the standard DFA
minimization algorithms. In particular, only states bearing
the same alphabet symbol are allowed to be merged.

Proposition 5.8. Testing minimality of a deterministic
k-OA can be done in PTIME. 2

Therefore, the test is-minimal-complete-k-OA(sstart,end) runs
in polynomial time.

The above discussion leads to the following result.

Theorem 5.9. Algorithm generate-k-OA-XSD generates,
given m and `, uniformly at random an admissible DFA-
based k-OA XSD with m types and alphabet size `. 2

Finally, we note that the DFA-based k-OA XSDs generated
by generate-k-OA-XSD are not necessarily minimal and there
can be two such automata A1 and A2 generated by the algo-
rithm that generate the same language. We can, therefore,
go through a rejection stage that checks if the resulting au-
tomaton is minimal, and keeps generating such automata
until a minimal one is found. This test whether the gener-
ated DFA-based k-OA XSD is minimal can be performed in
polynomial time using Proposition 5.8 and the minimization
algorithm for XSDs from [29].

As a final remark, we note that generating EDTDuns in a
similar manner is computationally harder. Indeed, as an im-
mediate consequence from [11], already testing minimality
of a EDTDun is coNP-complete.

6. Related Work
Sampling. Our approach towards counting of tree languages
is based on the recursive method, which was initiated by
Nijenhuis and Wilf [31], and then formalized by Flajolet,
Zimmermann and Van Cutsem [17] in the more general set-
ting of combinatorial specifications. In the current paper we
only use a restricted class of specifications (called context-
free) in that only atoms, union and product are allowed.
General recursive specifications allow many more operators
(cf. [17]).

The computational complexity of variants of computing the
number of strings of given length in context-free languages is
investigated by Bertoni et al. [6]. We choose to employ the
method of going through the combinatorial specification as
it gives rise to an immediate implementation in Maple and
is versatile enough to incorporate shape constraints (which
are not context-free definable).

Sampling of trees that adhere to a probabilistic tree model is
investigated in [15, 16]. In particular in [16] a sampling pro-
cedure for trees that additionally satisfy a bottom-up tree
automaton is provided. These methods differ from ours in

that trees are sampled in accordance with their probabilities
specified by the probabilistic model rather than uniformly.

XSD generation. There has been substantial work on the
uniform generation of regular languages represented by
DFAs. To the best of our knowledge, no algorithm exists
that uniformly generates minimal DFAs. The works [2, 5]
and [4] do consider the non-isomorphic uniform generation
of admissible and connected DFAs, respectively, but need re-
jection sampling to sample minimal DFAs. This approach,
however, has no proven guarantees on running times.

Our string encoding for k-OAs is inspired by [2]. For the
generation procedure, however, we rely on a sampling proce-
dure for combinatorial specifications [17]. Although Héam,
Nicaud and Sylvain [21] show that non-isomorphic deter-
ministic tree-walking automata can be generated uniformly
at random through an encoding into string transducers, it
is not clear how to use their results to generate XSDs.

To the best of our knowledge, the present paper presents the
first step uniform XSD generation. The papers [9, 8] only
dealt with DTDs which reduce to regular expressions. In
[10], the experimental validation used one real-world XSD
and 8 hand-crafted XSDs. The XSD generation algorithm
presented in this paper could be used to generate a bench-
mark of XSDs. We did not address generation of XML cor-
pora adhering a given schema as is for instance implemented
in ToXGene [3].

7. Conclusion
In this paper, we presented a first step towards the foun-

dation for an experimental testbed for XSD generating algo-
rithms. We addressed uniform XSD generation as well as the
machinery to compute similarity measures based on count-
ing of trees of a certain size in tree languages. Finally, we
provided a sampling procedure for (unambiguous) tree lan-
guages using the formalism of combinatorial specifications.

An initial implementation in Maple shows that the approach
through combinatorial specifications is promising. Although
the approach to assess similarity through counting of the
number of different and common trees is intuitive, in depth
experimental validation of efficiency and effectiveness re-
mains needed to obtain a concrete robust similarity mea-
sure.

Directions for future work include the following:

The complexity of the generation algorithm for k-OAs re-
veals an exponential behavior in the size of the alphabet.
The main reason is that implicitly for each alphabet symbol
it needs to be remembered how many times it has already
occurred. Fortunately, in real-world content models the far
majority of the symbols occur only once. It would be inter-
esting to see how this constraint can be incorporated into
the algorithm.

Furthermore, it would be most interesting to extend the
XSD generation algorithm to generate k-OREs rather than
k-OAs. This would require a useful canonical representation
for regular expressions.

Finally, we want to explore the possibility of using specifi-
cations (possibly extended with probabilities) to get a non-
uniform sampling procedures of trees in a tree language.
This would be particularly useful in the probabilistic XML
setting, among others.

11



8. References

[1] J. Albert, D. Giammerresi, and D. Wood. Normal form
algorithms for extended context free grammars. Theo-
retical Computer Science, 267(1–2):35–47, 2001.

[2] M. Almeida, N. Moreira, and R. Reis. Enumeration and
generation with a string automata representation. The-
oretical Computer Science, 387(2):93–102, 2007.

[3] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and
K. A. Lyons. ToXgene: a template-based data gener-
ator for XML. In International Symposium on Man-
agement of Data (SIGMOD), page 616, 2002.

[4] F. Bassino, J. David, and C. Nicaud. Enumeration and
random generation of possibly incomplete deterministic
automata. Pure Mathematics and Applications, 19(2–
3):1–16, 2008.

[5] F. Bassino and C. Nicaud. Enumeration and random
generation of accessible automata. Theoretical Com-
puter Science, 381(1–3):86–104, 2007.

[6] A. Bertoni, M. Goldwurm, and N. Sabadini. The com-
plexity of computing the number of strings of given
length in context-free languages. Theoretical Computer
Science, 86(2):325–342, 1991.

[7] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Sim-
plifying XML Schema: effortless handling of nondeter-
ministic regular expressions. In International Sympo-
sium on Management of Data (SIGMOD), pages 731–
744, 2009.

[8] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the in-
ference of schemas from XML data. In International
World Wide Web Conference (WWW), pages 825–834,
2008.

[9] G. J. Bex, F. Neven, T. Schwentick, and S. Vansum-
meren. Inference of concise regular expressions and
DTDs. ACM Transactions on Database Systems, 2010.

[10] G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML Schema Definitions from XML data. In Interna-
tional Conference on Very Large Data Bases (VLDB),
pages 998–1009, 2007.

[11] H. Björklund and W. Martens. The tractability fron-
tier for NFA minimization. In International Colloquium
on Automata, Languages and Programming (ICALP),
pages 27–38, 2008.

[12] A. Brüggemann-Klein. Regular expressions into finite
automata. In Latin American Symposium on Theoreti-
cal Informatics (LATIN), pages 87–98, 1992.

[13] A. Brüggemann-Klein, M. Murata, and D. Wood. Reg-
ular tree and regular hedge languages over unranked
alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of
Science and Technology, 2001.

[14] A. Brüggemann-Klein and D. Wood. One-unambiguous
regular languages. Information and Computation,
142(2):182–206, 1998.

[15] S. Cohen, B. Kimelfeld, and Y. Sagiv. Incorporating
constraints in probabilistic XML. ACM Transactions
on Database Systems, 34(3):1–45, 2009.

[16] S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree au-
tomata on probabilistic XML. In International Sympo-
sium on Principles of Database Systems (PODS), pages
227–236, 2009.

[17] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A
calculus for the random generation of labelled com-
binatorial structures. Theoretical Computer Science,
132(2):1–35, 1994.

[18] W. Gelade, T. Idziaszek, W. Martens, and F. Neven.
Simplifying XML Schema: Single-type approximations
of regular tree languages. In International Symposium
on Principles of Database Systems (PODS), 2010.

[19] M. Goldwurm. Random generation of words in an alge-
braic language in linear binary space. Information Pro-
cessing Letters, 54:229–233, 1995.

[20] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, and S. R.
Mahaney. A quasi-polynomial-time algorithm for sam-
pling words from a context-free language. Information
and Computation, 134(1):59–74, 1997.

[21] P.-C. Héam, C. Nicaud, and S. Schmitz. Random gener-
ation of deterministic tree (walking) automata. In In-
ternational Conference on Implementation and Appli-
cation of Automata (CIAA), pages 115–124, 2009.

[22] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Intro-
duction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 3 edition, 2007.

[23] S. Kannan, Z. Sweedyk, and S. R. Mahaney. Count-
ing and random generation of strings in regular lan-
guages. In ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 551–557, 1995.

[24] J. Lee and J. Shallit. Enumerating regular expressions
and their languages. In International Conference on
Implementation and Application of Automata (CIAA),
pages 2–22, 2004.

[25] H. G. Mairson. Generating words in a context-free lan-
guage uniformly at random. Information Processing
Letters, 49(2):95–99, 1994.

[26] W. Martens, F. Neven, and T. Schwentick. Simple
off the shelf abstractions of XML Schema. Sigmod
RECORD, 36(3):15–22, 2007.

[27] W. Martens, F. Neven, and T. Schwentick. Com-
plexity of decision problems for XML schemas and
chain regular expressions. SIAM Journal on Comput-
ing, 39(4):1486–1530, 2009.

[28] W. Martens, F. Neven, T. Schwentick, and G.J.
Bex. Expressiveness and complexity of XML Schema.
ACM Transactions on Database Systems, 31(3):770–
813, 2006.

[29] W. Martens and J. Niehren. On the minimization of
XML Schemas and tree automata for unranked trees.
Journal of Computer and System Sciences, 73(4):550–
583, 2007.

[30] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Tax-
onomy of XML schema languages using formal lan-
guage theory. ACM Transactions on Internet Technol-
ogy, 5(4):660–704, 2005.

[31] A. Nijenhuis and H. Wilf. Combinatorial algorithms.
Academic Press Inc., 1979.

[32] H. Seidl. Deciding equivalence of finite tree automata.
SIAM Journal on Computing, 19(3):424–437, 1990.

12



A. Appendix

Proofs for Section 2

Proposition 2.1. There is a class (Dn)n∈N of EDTDsts
such that each Dn has size O(n) and the smallest EDTDbud

for L(Dn) has size 2Ω(n). Likewise, there is a class (Dn)n∈N
of EDTDbuds such that each Dn has size O(n) and the small-

est EDTDst and EDTDrc for L(Dn) has size 2Ω(n).

Proof. The class (Dn)n∈N of EDTDsts defines the unary
trees that, when read as a string from root to leaf, obey the
regular expression (a+ b)na(a+ b)∗. The fact that the mini-

mal EDTDbud for L(Dn) has size 2Ω(n) immediately follows
from the fact that the smallest DFA for (a + b)∗a(a + b)n

has size 2Ω(n). The direction from EDTDbuds to EDTDsts
is analogous.

Proposition 2.5. Let D = (Σ,∆, d, Sd, µ) be an EDTD.
If D is single-type, restrained competition, or bottom-up de-
terministic then D is unambiguous.

Proof. If D is single-type, then D is also restrained com-
petition. Therefore, let us first assume that D is restrained
competition. We prove that D is also unambiguous. To-
wards a contradiction, assume that D is not unambiguous.
Then there is a type τ ∈ ∆ and two distinct trees t1, t2 over
∆ that are witnesses to some tree t ∈ L(Dτ ) and are such
that µ(t1) = µ(t2). Let v be a node in t such that the type
of v in t1, say τ1, is different from the type of v in t2, say
τ2. Moreover, let v be such that none of its ancestors or left
siblings have this property. Notice that v cannot be the root
of t since the type of the root is τ in both t1 and t2. Let v′

be the parent of v in t, and let its type (which is the same
both in t1 and t2) be τ ′. Then the child-string of v′ in t1 is
of the form wτ1u1 and the child-string of v′ in t2 is of the
form wτ2u2 by the assumption that v is the leftmost child
with this above property. Therefore, the regular language
associated with τ ′ does not restrain competition, which is a
contradiction.

Finally, assume that D is bottom-up deterministic. To-
wards a contradiction, assume D is not unambiguous. Then
there is a type τ ∈ ∆ and two distinct trees t1, t2 over ∆
that are witnesses to some tree t ∈ L(Dτ ) and are such that
µ(t1) = µ(t2). Notice that t1, t2 and t are the same trees
with different type-labeling. Let v be a node in t such that
the type τ1 of v in t1 is different from the type τ2 of v in t2,
and such that none of v’s descendants have this property.
Since none of v’s descendants have this property, v’s child
string is the same in t1 and t2. Denote this child string by
s ∈ ∆∗. However, this means that s ∈ L(d(τ1)) ∩ L(d(τ2)),
which contradicts that D is bottom-up deterministic.

Proposition 2.7. Deciding whether a given EDTD is a
EDTDst, EDTDrc, EDTDbud, or EDTDun is in PTIME.

Proof. The result for EDTDst and EDTDrc is proved in
[28]. Testing whether an EDTD is a EDTDbud simply boils
down to testing emptiness of finite string automata, which
is in PTIME.

Finally, Seidl has shown that testing m-ambiguity of a
ranked tree automaton is in PTIME, for each fixed m [32].
When translating an EDTD to a ranked tree automaton us-
ing a variant of the standard first-child next-sibling encoding
(in polynomial time), the resulting ranked tree automaton

is unambiguous (i.e., 1-ambiguous in Seidl’s terminology) if
and only if the original EDTD was unambiguous. There-
fore, testing whether an EDTD is an EDTDun is also in
PTIME.

Proofs for Section 3.1

Let REGΣ denote the class of regular expressions over the
alphabet Σ, and let N be an infinite set of non-terminal
symbols. Also, let RN,Σ denote the class of context-free
grammar rules over the set of terminal symbols Σ and the set
of non-terminal symbols N . We define the function ϕ : N ×
REGΣ → ℘(RN,Σ) to be a function mapping each regular
expression to a set of context-free grammar rules. To this
end, we slightly adapt a translation given by Hopcroft et
al. [22]. The function is defined inductively as follows:

ϕ(R, r) = {R→ ε} if r = ε,
ϕ(R, r) = {R→ σ} if r = σ,
ϕ(R, r) = {R→ R1, R→ R2}∪

ϕ(R1, r1) ∪ ϕ(R2, r2) if r = r1 + r2,
ϕ(R, r) = {R→ R1R2}∪

ϕ(R1, r1) ∪ ϕ(R2, r2) if r = r1 · r2,
ϕ(R, r) = {R→ RR1, R→ ε}∪

ϕ(R1, r1) if r = r∗1 ,

where the non-terminal symbols introduced in the rules
above, are not used elsewhere.

We recall the translation from finite automata to context-
free grammars. To this end, let A = (Σ, Q, I, F, δ) be an
NFA. Then, a context-free grammar GA such that L(GA) =
L(A) can be constructed as follows. The grammar GA =
(NA,Σ, RA, SA) is defined with NA = SA ] {Rq | q ∈ Q}
and the set of rules RA which is defined as the union of all
rules of the form

• SA → Rq, for every q ∈ I,

• Rq → ε for every q ∈ F , and

• Rq1 → aRq2 for every a ∈ Σ and q2 ∈ Q such that
q2 ∈ δ(q1, a).

Observe that if A is a DFA thenGA is an unambiguous CFG.
In particular, there is only one rule of the form SA → Rq
since I is a singleton.

These translations are standard from the literature. It
is well-known that they obey the properties listed in the
following lemma.

Lemma 3.2. Let r be a regular expression and let A be
a DFA over alphabet ∆. Then we can construct in linear
time a CFG G with start symbol S such that τ1 · · · τn ∈ L(r)
(resp. L(A)) if and only if S ⇒∗ τ1 . . . τn in G. Furthermore,
if r (resp. A) is deterministic, then G is unambiguous.

Lemma A.1. Let D = (Σ,∆, X, d, {sd}, µ) be an EDTD
or EDTD-DFA and G = (N,Σ ∪ {[, ]},ΨD, Tsd) be its as-
sociated context-free grammar. Then, for any R ∈ N , and
for any w ∈ (Σ ∪ {[, ]})∗ such that R ⇒∗ w, it holds that
|w| = 3n for some n ∈ N.

Proof. We first prove the lemma for the EDTD case
and then for the EDTD-DFA case. Let D be an EDTD
as defined in the lemma, and G the corresponding context-
free grammar, and let R be any non-terminal symbol in N .
Let R ⇒∗ w. We proceed by induction on the number of
derivation steps n. Suppose that n = 1 and hence that
R ⇒ w. By definition, the only rule in ΨD that produces
a string of only terminal symbols, is R ⇒ ε, and |ε| =

13



0 = 3 · 0. Suppose then that the statement holds for all
k < K derivation steps, for some K ∈ N, and consider the
case where the number of derivation steps is K. Suppose
that R ⇒ R1R2 and therefore there exist w1, w2 such that
w = w1w2 and R1 ⇒ w1 and R2 ⇒ w2. Then by the
inductive hypothesis, |w1| = 3n1 and |w2| = 3n2 for n1, n2 ∈
N. Therefore, |w| = 3(n1 +n2). The argument is similar for
the other cases that are in the image of ϕ given some regular
expression r.

The only remaining case is whereR⇒ σ·[·R′·], whereR′ ∈
N . Therefore, if R ⇒K w, there exists w′ such that w =
σ · [·w′·] and R′ ⇒(K−1) w′. By the inductive hypothesis,
|w′| = 3n for some n ∈ N and therefore |w| = 3n + 3 =
3(n+ 1).

The case where D is an EDTD-DFA is similar to the pre-
vious case, with the difference that, in the inductive step we
need to consider a production of the form R⇒ TτR

′. Again,
by induction, we have that there exist w1, w2 such that
w = w1w2 and Tτ ⇒ w1 and R′ ⇒ w2 and by the inductive
hypothesis, |w1| = 3n1 and |w2| = 3n2 for n1, n2 ∈ N.

We prove that, using the translation from EDTD-DFA to
CFGs, EDTD-DFAun are translated to unambiguous CFGs.

Lemma A.2. If D = (Σ,∆, A, d, Sd, µ) is an EDTD-
DFAun, then its associated context-free grammar G =
(N,Σ ∪ {[, ]},ΨD, S) is unambiguous.

Proof. Let w be a string in L(G). Let Σ′ = Σ ] {[, ]}.
We want to show that there exists a unique derivation tree
for w. We show the equivalent statement that each w has
a unique left derivation, i.e., a derivation in which at each
step the leftmost non-terminal is replaced.

We show by induction on n that for any B ∈ N ∪ Σ′ and
any string w ∈ (Σ′)∗, B ⇒n w implies that there is a unique
left derivation for w from B. Let n = 0. Then w = σ for
some σ ∈ Σ or w = ε. In both cases, B = w and therefore
there is a unique left derivation for w. Suppose then that
the statement is true for all n < K for some K ∈ N, and let
B ⇒K w.

Suppose first that B is equal to Rqτ ∈ RAτ for some
τ and qτ ∈ Aτ . There are two cases: either w = ε or
w = a·w′ where a ∈ Σ. In the first case, the only possible left
derivation for w from B is the one with the single production
Rqτ , if qτ is a final state from Aτ . In the second case, let
w = a ·w′ where a ∈ Σ. Then there exists a unique q′τ ∈ Aτ
such that Rqτ ⇒ aRq′τ and Rq′τ ⇒

(K−1) w′ because Aτ is

deterministic. By the inductive hypothesis, w′ has a unique
left derivation from Rq′τ , and therefore w also has a unique
left derivation from Rqτ .

Suppose then that B is equal to Tτ for some τ . For each
τ there is a unique rule Tτ → σ[SAτ ] with Tτ at the left
hand side, and therefore w is of the form σ · w′, where
SAτ ⇒(K−1) w′. By the inductive hypothesis, w′ has a
unique left derivation from SAτ , and therefore so does w
from B = Tτ .

Let B be equal to SAτ for some τ ∈ ∆. Since D is a
DFA, for each τ ∈ ∆, there exists a unique q ∈ Aτ such
that SAτ → Rq. Therefore, Rq ⇒(K−1) w, and by the
inductive hypothesis w has a unique left derivation from Rq
and therefore also from SAτ .

Finally let B be equal to the start symbol S. Since D is an
EDTD, there are no two distinct types τ1, τ2 ∈ ∆ such that
µ(τ1) = µ(τ2) and τ1, τ2 ∈ Sd. So suppose that w = σ · w′.

Then by the assumption above, there exists a unique type
τ ∈ Sd such that Tτ ⇒ σ[SAτ ]. In particular, Tτ ⇒(K−1) w
and therefore there is a unique left derivation of w from
Tτ by the inductive hypothesis. Hence w has a unique left
derivation from S.

Lemma 3.3. For every EDTD D = (Σ,∆, X, d, Sd, µ) the
CFG G = (N,Σ ∪ {[, ]},ΨD, S) is such that for all n ∈ N,
|L(D)=n| = |L(G)=3n|. Furthermore, if D is an EDTD-
DFAun, then G is unambiguous.

Proof. We will show by induction on n that, for any
n ∈ N and any type τ , str is a bijection between L(Dτ )=n

and L(GTτ )=3n.3 Namely the following statement holds.
For any tree t, if t ∈ L(Dτ )=n then str(t) ∈ L(GTτ )=3n

and, for any string w, if w ∈ L(GTτ )=3n then w = str(t) for
some tree t such that t ∈ L(Dτ )=n. Since the function str

is injective and well-defined, the statement of the Lemma
follows.

For the base case, let n = 1. For the first direction, sup-
pose that for some tree t, t ∈ L(Dτ )=1. Then t = σ(ε)
for σ = µ(τ). By definition of ψD(τ), the string σ[] is
in L(GTτ )=3 if and only if ε ∈ L(GRτ ). We know that
ε ∈ L(d(τ)) and therefore by induction on the structure of
d(τ), as shown in Lemma 3.2, it holds that ε ∈ L(GRτ ).

For the second direction suppose that for some type
τ , a string w is in L(GTτ )=3. Notice that each rule in
G that produces terminal symbols, produces 3 terminal
symbols and is of the form Tτ → σ[R], for some non-
terminal symbol R and terminal symbol σ. So suppose
that σ[] ∈ L(GTτ )=3. Then, since the set of rules of
GTτ is equal to {S → Tτ ′ | τ ′ ∈ Sd} ∪

⋃
τ ′∈∆ ψ(τ ′) with

ψ(τ ′) = {Tτ ′ → σ[R]} ∪ CFG(d(τ ′), R), where σ = µ(τ ′),
it holds by induction on the structure of d(τ ′), as shown in
Lemma 3.2, that ε ∈ L(d(τ)) and therefore σ(ε) ∈ L(Dτ ).

So suppose that the statement holds for all n < K for
some K ∈ N. We want to show that the statement holds for
K.

For the first direction, suppose that, for some tree t and
type τ , t ∈ L(Dτ )=K . Then t = σ0(t1, . . . , tm) for some
m such that for each i ∈ [1,m], ti ∈ L(Dτi)

=ni , where
ni < K,

∑m
i=1 ni = K − 1, and where τ1 . . . τm ∈ d(τ).

By the inductive hypothesis, str(ti) ∈ L(GTτi )
=3ni for

each i ∈ [1,m]. Notice that K = 1 +
∑m
i=0 ni and there-

fore 3K = 3 +
∑m
i=0 3ni. By the definition of ψD(τ) =

{Tτ → σ[R]} ∪ CFG(d(τ), R), it suffices to show that
str(t1) · · · str(tm) ∈ L(GR). From the assumption above,
that for all i ∈ [1,m], str(ti) ∈ L(GTτi )

=3ni , it is enough
to show that R ⇒∗ Tτ1 . . . Tτm by the rules in G. However,
this is true by construction of G and by Lemma 3.2.

For the second direction, suppose that for some type τ
and string w, w ∈ L(GTτ )=3K . Since the set of rules
of GTτ is equal to

⋃
τ ′∈∆ ψD(τ ′) and ψD(τ) = {Tτ →

σ[R]} ∪ CFG(d(τ), R) where σ = µ(τ), it holds that w ∈
L(GTτ )=3K if and only if there exists string w′ such that

w = σ · [·w′·] and w′ ∈ L(GR)=3(K−1). Furthermore,

w′ ∈ L(GR)=3(K−1) if and only if R ⇒∗ Tτ1 . . . Tτm for
some m and w′ = w1 . . . wm such that for each i ∈ [1,m],
wi ∈ L(GTτi )

=ni , where
∑m
i=1 ni = 3(K − 1). Notice that

for each i ∈ [1,m], ni = 3n′i for some n′i by Lemma A.1,
and therefore

∑m
i=1 n

′
i = K − 1. By the inductive hypoth-

esis, there exist trees t1, . . . , tm such that for all i ∈ [1,m],
3Recall that Dτ and GTτ denote the EDTD D and the gram-
mar G with start symbols τ and Tτ , respectively.

14



wi = str(ti) and ti ∈ L(Dτi)
=n′

i . Furthermore, by in-
duction on the structure of d(τ), as shown in Lemma 3.2,
R ⇒∗ Tτ1 . . . Tτm if and only if τ1 . . . τm ∈ L(d(τ)). There-
fore, t = σ(t1, . . . , tm) ∈ L(Dτ ) and in addition t ∈ L(Dτ )K .

Finally, if D is an EDTD-DFAun, we have shown in
Lemma A.2 that G is an unambiguous grammar.

Proofs for Section 3.3

Theorem 3.9. For an EDTD-DFAun D =
(Σ,∆, X, d, Sd, µ), the cardinality L(D)=k can be computed
using O(|∆||Qmax|2k) arithmetic operations, where Qmax de-
notes the largest state space of an automaton in X.

Proof. It suffices to show that the Chomsky normal form
G′D of the CFG GD = (N,Σ ∪ {[, ]},ΨD, S) has at most
O(|∆||Qmax|2) non-terminals. For this we observe that the
number of non-terminals |N | of GD is O(|∆||Qmax|), where
Qmax the largest set of states in any automaton in X. Fur-
thermore, a close inspection of the rules in GD reveals that
only two rules are not in normal form: (1) the initial rule
corresponding to S → Ts1

d
∪· · ·∪Tsp

d
where Sd = {s1

d, . . . , s
p
d};

and (2) the rules corresponding to the outgoing transitions
in each state: Rq →

⋃
(ai,qj)

ai ·Rqj , where the (ai, qj) range

over all ai ∈ Σ and qj ∈ Q such that qj ∈ δ(q, ai). Hence,
after normalization (1) results in |Sd| new non-terminals and
(2) in at most |Q|2 new non-terminals. As a consequence,
G′ has O(|∆||Qmax|2) non-terminas and hence Theorem 3.8
and Lemma 3.3 imply that L(D)=k can be computed us-
ing O(|∆||Qmax|23k) = O(|∆||Qmax|2k) arithmetic opera-
tions.

Proofs for Section 3.2

Proposition 3.4. #EDTD is #P-complete.

Proof. It is shown in [23] that the problem #NFA is
#P-complete, where, given m ∈ N and an NFA N , #NFA
is the problem of finding |L(N)∩Σm|. Let A = (Σ, Q, I, F, δ)
be any NFA. We define D to be the EDTD (Σ ] {σ0},∆ =
Q × Σ, R, d, Sd, µ), where the following holds. The symbol
σ0 is a distinguished symbol not in Σ. Furthermore, for
any τ ∈ Q × Σ, if τ = (q, a) then µ(τ) = a, d is defined
as the function mapping any τ = (q, a) to the disjunction
of the elements of the set {(q′, a′) | q′ ∈ δ(q, a′)} ∪ {ε | if
q ∈ F}, and Sd = {(q, σ0) | q ∈ I}. Since each d((q, a)) is a
finite language, it can be represented by a polynomial-size
deterministic regular expression. We want to show that for
any string w ∈ Σ∗, w ∈ L(A)⇔ σ0 · w ∈ L(D).

For the only if direction, suppose that for some string
w = a1 . . . an, w ∈ L(A). Then there is a successful run
ρ = q0, . . . , qn of A on w. To show that σ0a1 . . . an is tree
that satisfies D, it suffices to show that there is a tree t′ =
ττ1 . . . τn that is a witness to t with τ ∈ Sd and such that for
all i ∈ [1..n], µ(τi) = ai. But t′ = (q0, σ0)·(q1, a1)·. . . (qn, an)
is such a tree by definition.

For the if direction, suppose that a tree t = σ0a1 . . . an
is in L(D). Notice that the letter of the root of t is always
labelled by σ0 by definition of D. We want to show that
there is an accepting run ρ of A on w = a1 . . . an. Let
t′ = (q, σ0)(q1, a1) . . . (qn, an) be the witness of t. Then the
run ρ = q, q1, . . . , qn is an accepting run of A on w. The
translation of NFAs to EDTDs above can be performed in
PTime and therefore #EDTD is #P-hard.

Finally, deciding whether there is a tree of a given size k in
the language of an EDTD is in NP. Therefore, the problem

is also in #P

Proofs for Section 5

Lemma 5.2.

1. The function c is a bijection for admissible k-OAs.

2. For two admissible k-OAs A1 and A2 with n states over
an alphabet Σ of size `, with a total order o : Σ →
[0, `− 1] defined on this alphabet, if enc(A1) = enc(A2)
then A1 is isomorphic to A2.

Proof. For (1), let A be an admissible k-OA with M
states. Since c(I) = [1, `], every state s is mapped to some
n ∈ [1,M ]. To show that every n ∈ [1,M ] is in the image of
c, we need to show that c is injective, since |V | = M . But
notice that every time a number is assigned to a state, it
is the smallest number that has not yet been assigned to a
state.

For (2), let Ai = (Vi, Ei, Ii, Fi, labi, ei) for i ∈ [1, 2], let
s = enc(A1) and let A = (V,E, I, F, lab, e) be the following
k-OA. The set of states V is equal to [1, n], where n is the
largest number appearing in s, for any state v ∈ V , lab(v) =
o−1(j (mod `)), where j is the first position in s where v
appears, for any two states v1, v2 ∈ V , let (v1, v2) ∈ E if
v2 = sv1·`+o(lab(v2)) and let I = [1, `]. Note that, enc(A) =
enc(A1).

We want to show that A1 is isomorphic to A. By sym-
metry it will follow that A2 is also isomorphic to A and
therefore isomorphic to A1. Let c be the ordering of the
states of A1 and notice that the ordering of the states of A
is the identity function. We define the function α : V1 → V
that maps a state s ∈ V1 to the state c(s) ∈ V . Suppose
that α is not an isomorphism for the two automata A and
A1. Then one of the following holds.

• There exists k ∈ [1, n] such that lab(k) 6= lab1(c−1(k)).
Then o(lab(k)) 6= o(lab1(c−1(k))) and the first position
in enc(A) that k occurs is different from the first posi-
tion that k occurs in enc(A1).

• The final states of A are different than the final states
of A1. Then enc(A) 6= enc(A1).

• It’s not the case that ε ∈ A ⇔ ε ∈ A1. But then the
last letter in enc(A) is different from the last letter in
enc(A1).

• There exist k, k′ ∈ [1, n] such that k has a transition to
k′ but the state s1 = c−1(k) does not have a transition
to the state s2 = c−1(k′). Then the (k ·`+o(lab(k′)))-th
position in the string enc(A) is k′ and the same position
in enc(A1) is not k′, which is a contradiction.

Lemma 5.3. For each n ∈ N, enc is a bijection from the
set of non-isomorphic admissible k-OAs with n states, over
an alphabet Σ of size ` to the strings of size (n+1) ·`+n+1
whose prefix s = s0, . . . s(n+1)·`−1 satisfies the rules (A1) −
(A4) above, and whose suffix s′ = s(n+1)·` · · · s(n+1)·`+n uses
only 0 and 1.

Proof. From Lemma 5.2, it follows that the function
enc is injective, so it remains to be shown that it is also
surjective. Consider any string of size (n + 1) · ` satisfying
(A1)−(A4), and let A be the automaton obtained by letting
the set of states be [1, n], and for each i ∈ [0, ` − 1], let Si
be the set of states {sj | j < (n + 1) · `, j = i (mod `)}.

15



Then for each s ∈ Si let lab(s) = i. According to rule
(A3) for each i ∈ [0, ` − 1], |Si| ≤ k. Furthermore, for each
i ∈ [`, (n+ 1) · `−1], if i = j′ · `+ j, with j < `, let (j′, si) be
a member of E. Finally, let I = [1, `] and let e and the final
states of A be determined by the suffix of length n+1 of the
string. This automaton is complete, and it remains to show
that it is initially connected. But from rule (A2) for each
i ∈ [1, n], there is j < i · ` such that sj = i, and therefore
state i in A is reachable from state b j

`
c. By induction, every

state is reachable from one of the states in [1, `], the initial
states.

By Lemma 5.3, sampling of admissible k-OAs reduces to
uniform generation of strings satisfying the rules (A1)−(A4).
We next show that the specification given in Section 5 cor-
rectly generates this set of strings. From Lemma 5.3 it fol-

lows that it suffices to show that the class S(j′,j)
m [W ] is com-

binatorially equivalent to the set of strings of length (n+1)·`
satisfying rules (A1)− (A4), with a fixed prefix s0 . . . sj′·`+j ,
where m occurs in the string at position j′ · `+ j for the first
time, and for each i ∈ [0, `−1], and p ∈ [0, j′ · `+ j], it holds
that |{sp | p = i (mod `)}| = ni, where ni = |Wi|.

To this end, we first count the number of valid extensions
of such a given prefix and then show that this number coin-
cides with the number of objects in the corresponding class.

Let Σ be an alphabet of size `. For ` and k as above, and
m, j′, j, n, n0, . . . , n`−1 ∈ N, letN(m, j′·`+j, n, n0, . . . , n`−1)
be defined inductively as follows:

N(m, j′`+ j, n, n0, . . . , n`−1) = 0 if ∃i ∈ [0, `− 1] s.t. ni > k,
N(m, j′`+ j, n, n0, . . . , n`−1) = 0 if j′ ≥ m,
N(m, j′`+ j, n, n0, . . . , n`−1) = 0 if m > n

(2)

N(n, (n− 1)`+ j, n, n0, . . . , n`−1) =

`−1∏
i=0

ni ·
`−1∏
i=j+1

ni, (3)

and for j′ < m− 1 and j < `,

N(m, j′ · `+ j, n, n0, . . . , n`−1) = N1 +N2, (4)

and for j′ = m− 1

N(m, j′ · `+ j, n, n0, . . . , n`−1) = N3, (5)

where:

N1 =
(
n0 · . . . · n`−1

)
·N
(
m, (j′ + 1) · `+ j, n, n0, . . . , n`−1

)
,

N2 =
∑`
i=1

((∏i−1
i′=1(nj+i′)

)
·

N(m+ 1, j′`+ j + i, n, n0, . . . , nj+i (mod `) + 1, . . . , n`−1)

)
,

N3 =
∑2`−j−1
i=1

((∏i−1
i′=1(nj+i′)

)
·

N(m+ 1, j′`+ j + i, n, n0, . . . , nj+i (mod `) + 1, . . . , n`−1)

)
.

Informally, the number of strings satisfying the rules
(A1) − (A4) where letter m appears for the first time at
position j′ · `+ j is equal to the sum of the number of pos-
sible strings where m + 1 appears for the first time in one
of the positions between j′ · ` + j + 1 and m · ` − 1. In
equation (4), N1 covers the case where between the posi-
tions j′ · ` + j and (j′ + 1) · ` + j no new state m + 1 is
introduced, and N2 covers the cases where at some position

J between the positions j′ · ` + j and (j′ + 1) · ` + j, the
state m + 1 is introduced. In the case where j′ = m − 1,
since N(m, (j′ + 1) · `+ j, n, n0, . . . , n`−1) = 0 by the defini-
tion of the base case that also complies with the rule (A2),
the equation is different in order to take into account the
remaining positions until position m · `− 1.

Lemma A.3. For `, k, n, j′, j, n0, . . . , n`−1 ∈ N and m ≥
1, the number N(m, j′ ·`+j, n, n0, . . . , n`−1) is the number of
strings of length (n+ 1) · ` satisfying rules (A1)− (A4), with
a fixed prefix s0 . . . sj′·`+j, where m occurs in the string at
position j′ · `+ j for the first time, and for each i ∈ [0, `−1],
and p ∈ [0, j′ ·`+j], it holds that |{sp | p = i (mod `)}| = ni.

Proof. We proceed by inverse induction on m to show
that the statement above holds. For the base case, let m =
n. Notice that if m = n+ 1, N(n+ 1, J, n, n0, . . . , n`−1) = 0
for all values of the other parameters. We show that
N(n, J, n, n0, . . . , n`−1) is the number of strings described
by the Lemma, by inverse induction on J .

Let J ∈ [n · `, (n+ 1) · `− 1]. Then J = n · `+ j for some
j < `, and by equation (2), N(n, n·`+j, n, n0, . . . , n`−1) = 0
which is the correct number of strings according to the rule
(A2).

If J = (n− 1) · `+ j for some j ∈ [0, `− 1], then

N(n, (n− 1) · `+ j, n, n0, . . . , n`−1) =

`−1∏
i=0

ni ·
`−1∏
i=j+1

ni,

by equation (3), which is the correct number according to
the rules (A1)− (A2).

For the inductive case, suppose that for all r > J ′

for some J ′ ∈ [0, (n + 1) · ` − 1], N(n, r, n, n0, . . . , n`−1)
is the correct number of strings. Consider the number
N(n, J ′, n, n0, . . . , n`−1). If for any i ∈ [0, ` − 1], ni > k
then this number is equal to 0 which complies with the rule
(A3) of strings. Suppose then that for all i ∈ [0, ` − 1],
ni ≤ k and let J ′ = J ′0 · ` + J ′1, for J ′0 maximal. Notice
that, since the last state n occurs at position J ′ for the
first time, no state number can appear in the string at a
position to the right of the position J ′ that has not ap-
peared to the left or exactly at the position J ′. Therefore,
from the rules (A3) and (A4), each position to the right
of position J ′ can be occupied by states that have already
appeared before that position, and furthermore, have ap-
peared at the appropriate σ-position. Consider therefore,
the next ` positions, starting with J ′0 · ` + J ′1 + 1. For this
position there are nJ′

1+1 possible values for the string to

comply with the rules (A1) − (A4). Similarly, for the posi-
tion J ′0 · ` + J ′1 + 2 there are nJ′

1+2 possible symbols, and

so on, until position J ′0 · ` + J ′1 + ` = (J ′0 + 1) · ` + J ′1 for
which there are nJ′

1
possible values. By the inductive hy-

pothesis, N(n, J ′0 · `+ J ′1 + `, n, n0, . . . , n`−1) is the number
of possible strings with a fixed prefix s0, . . . , s(J′

0·`+J
′
1+`),

that satisfy the rules (A1) − (A4) and state n appears
for the first time at position J ′0 · ` + J ′1 + `. Therefore,
N(n, J ′0 · `+ J ′1, n, n0, . . . , n`−1) = n0 · . . . · n`−1 ·N(n, (J ′0 +
1) · `+ J ′1, n, n0, . . . , n`−1), which is also what N1 is defined
to be according to equation (4). Notice that N2 = 0, ac-
cording to equation (2), which complies with the fact that
no new state can appear to the right of J ′.

Suppose then that for some M < n and all m > M ,
the number N(m,J, n, n0, . . . , n`−1) is the correct number
for all j ∈ [0, (n + 1) · ` − 1], and consider the value of

16



N(M,J ′, n, n0, . . . , n`−1). We show that this is the correct
number of strings by inverse induction on J ′. For all values
of J ′ larger than M ·`, the number N(M,J ′, n, n0, . . . , n`−1)
is equal to 0 which complies with rule (A2). Suppose J ′ =
(M−1) ·`+J ′1. Then, N(M, (M−1) ·`+J ′1, n, n0, . . . , n`−1)
is determined by equation (5). The number of strings where
state M first appears at position (M − 1) · `+ J ′1 is equal to
the sum of the number of strings where state M +1 appears
in some position in the next 2 · `− J ′1 positions, and this is
the number given by equation (5).

For the inductive hypothesis, suppose that
N(M, r, n, n0, . . . , n`−1) is the correct number of strings
for all r > J ′ for some J ′ ∈ [0, (n + 1) · ` − 1]. Consider
N(M,J ′, n, n0, . . . , n`−1). If for any i ∈ [0, ` − 1], ni > k
then this number is equal to 0 which complies with the rule
(A3) of strings.

Otherwise, the possible strings with n states that sat-
isfy rules (A1) − (A4) and with prefix s0 · · · sJ′ , where
M occurs for the first time at position J ′, are the fol-
lowing. Either, no new symbol appears in the follow-
ing ` positions to the right of J ′, or at least one does.
For the first case, the number of possible strings is then
n0 · . . . ·n`−1 ·N(M,J ′+ `, n, n0, . . . , n`−1), where by the in-
ductive hypothesis, N(M,J ′ + `, n, n0, . . . , n`−1) is the cor-
rect number of the appropriate strings. This is the number
given by the term N1 of equation (4). For the second case,
let J ′ = J0 · ` + J1 and let us consider all possible ` po-
sitions to the right of position J ′ where the new symbol
appears. Suppose that this position is J ′ + i for i ≤ `.
Then, the number of possible strings complying with rules
(A1) − (A4) is the following. For position J ′ + 1 there are
nJ1+1 possible values, for position J ′ + 2 there are nJ1+2

possible values, and so on until the position J ′ + i, where
the number of allowed strings with prefix s0 · · · sJ′+i, and
where state M + 1 first appears at position J ′ + i, is given
by N(M+1, J ′+i, n, n0, . . . , nJ1+i (mod `), . . . , n`−1), by the
inductive hypothesis. Considering all possible values where
the new symbol can appear, we get a sum equal to the term
N2 of equation (4). Notice that any string counted in one
of the terms of this sum, is not counted in any other term
of this sum. Therefore, N(M,J ′, n, n0, . . . , n`−1) is equal to
N1 +N2, which is what is described by equation (4).

We next show that the number of objects in S(p,j)
m coin-

cides with N(m, p · ` + j, n, n0, . . . , n`−1), from which the
desired combinatorial equivalence follows.

Lemma A.4. Let `, k,m, n, p, j, n0, . . . , n`−1 ∈ N, ` < m.

The number of objects in S(p,j)
m [W ] is equal to N(m, p · ` +

j, n, n0, . . . , n`−1), where for each i ∈ [0, `− 1], ni = |Wi|.
Proof. We show by induction on m that the state-

ment holds. Suppose first that m = n. We then
show that the statement holds by induction on p. For
the base case, suppose that p = n − 1. Then

S(n−1,j)
n [W ] :=

∏`−1
i=j+1Wi ×

∏`−1
i=0Wi, and N(n, (n− 1)`+

j, n, n0, . . . , n`−1) =
∏`−1
i=j+1 ni ·

∏`−1
i=0 ni and hence the state-

ment holds for p = n − 1. Next, assume that the state-
ment holds for m = n and p > P for some P ∈ N and

consider the case where p = P . The class S(P,j)
m [W ] is

given by Q1 + Q2. Consider first Q1, defined as Q1 =
(
∏`+j
i=j+1Wi (mod `)) × Sm,(P+1,j)[W ]. Since for m − 1 = n,

N(m − 1, P · ` + j, n, n0, . . . , n`−1) =
(
n0 · . . . · n`−1

)
·

N
(
m − 1, (P + 1) · ` + j, n, n0, . . . , n`−1

)
. From the induc-

tive hypothesis, we may conclude that the statement holds
m − 1 = n and p = P . Similarly, the class Q2 is de-
fined by the equation Q2 :=

∑`+j
i=j+1

(∏i−1
i′=iWi′ (mod `)

)
×

Zm+1×Sm+1,(P,j+i)[Wm+1,j+i (mod `)] and N2 is defined to

be equal to
∑`
i=1

((∏i−1
i′=1(nP+i′)

)
· N(m + 1, P · ` + j +

i, n, n0, . . . , nP+i (mod `) + 1, . . . , n`−1)

)
. We have that Q2

is undefined whereas N called for m + 1 is equal to 0 by
definition, since m+ 1 > n. Hence, the statement holds for
m = n and p = P .

Suppose next that the statement holds for all m > m0 for
some m0 ∈ N, and consider the case where m = m0. For the

base case, let p = m0−1, we have that the class S(p,j)
m0 [W ] is

defined by Q3 :=
∑2`−1
i=j+1

(∏i−1
i′=iWj+i′ (mod `)

)
× Zm0+1 ×

S(p,j+i)
m0+1 [Wm0+1,j+i (mod `)], whose number of elements of

size (n+ 1) · ` is equal to N3 =
∑2`−j−1
i=1

((∏i−1
i′=1(nj+i′)

)
·

N(m0+1, p·`+j+i, n, n0, . . . , nj+i (mod `)+1, . . . , n`−1)

)
by

the inductive hypothesis. Finally, assume that the statement
holds for all p > P for some P ∈ N, and consider the case

where p = P . The class S(p,j)
m0 [W ] is defined by the equation

Q1 + Q2. Since Q1 := (
∏`+j
i=j+1Wi (mod `)) × S(P+1,j)

m0 [W ],

its number of elements is equal to N1 =
(
n0 · . . . ·

n`−1

)
· N

(
m0, (P + 1) · ` + j, n, n0, . . . , n`−1

)
, by the

inductive hypothesis. Similarly, the number of ele-
ments in Q2 defined by

∑`+j
i=j+1

(∏i−1
i′=iWi′ (mod `)

)
×

Zm0+1 × S(P,j+i)
m0+1 [Wm0+1,j+i (mod `)] is equal to

N2 =
∑`
i=1

((∏i−1
i′=1(nj+i′)

)
· N(m0 + 1, P · ` + j +

i, n, n0, . . . , nj+i (mod `) + 1, . . . , n`−1)

)
, by the inductive

hypothesis.

17


