
Conjunctive Query Containment over Trees ⋆

Henrik Björklund Wim Martens Thomas Schwentick

Technical University of Dortmund
Germany

Abstract

The complexity of containment and satisfiability of conjunctive queries over finite,
unranked, labeled trees is studied with respect to the axes Child , NextSibling , their
transitive and reflexive closures, and Following . For the containment problem a
trichotomy is presented, classifying the problems as in PTIME, coNP-complete, or
ΠP

2 -complete. For the satisfiability problem most problems are classified as either
in PTIME or NP-complete.

1 Introduction

Conjunctive query containment for relational databases is one of the most
thoroughly investigated problems in database theory. It is known to be essen-
tially equivalent to conjunctive query evaluation and to Constraint Satisfaction
in AI [11]. From the database point of view, the importance of conjunctive
queries on relational structures lies in the fact that they are the most widely
used queries in practice. More precisely, they correspond to the select-from-
where queries from SQL that only use “and” as a Boolean connective.

Recently, conjunctive queries have also been studied over tree structures [9]. It
is somewhat surprising that they have not been studied earlier, as they arise
very naturally in various settings, such as data extraction and integration,
computational linguistics, and dominance constraints [9]. Moreover, unary and
binary conjunctive queries over trees form a very natural fragment of XPath

⋆ This work was supported by the DFG Grant SCHW678/3-1. The present paper
is the full version of reference [2], which appeared in the Symposium on Data Base
Programming Languages 2007.

Email addresses: henrik.bjoerklund@udo.edu (Henrik Björklund),
wim.martens@udo.edu (Wim Martens), thomas.schwentick@udo.edu (Thomas
Schwentick).

Preprint submitted to Elsevier 31 January 2008

Child Child+ Child∗ NextSibling NextSibling+ NextSibling∗ Following

Child in P ΠP
2 ΠP

2 coNP coNP coNP ΠP
2

Child+ coNP coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

Child∗ coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

NextSibling in P coNP coNP ΠP
2

NextSibling+ coNP coNP ΠP
2

NextSibling∗ coNP ΠP
2

Following coNP

Table 1
Complexities of Conjunctive Query Containment.

2.0 [1], and therefore also of XQuery [4]. Indeed, unary and binary conjunc-
tive queries over trees correspond to Core XPath without negation and union
(see, e.g., [8]), but with path intersection, as introduced in XPath 2.0 (see,
e.g., [10,14]). Gottlob et al. already showed that unary conjunctive queries
over trees can be translated to XPath 1.0 queries, albeit with an exponential
blow-up [9], and the above-mentioned Core XPath queries with path intersec-
tion can be translated into conjunctive queries by identifying variables. Hence,
our complexity upper bounds transfer to positive Core XPath expressions with
path intersection, but without union.

In this paper, we consider conjunctive query containment on trees. We mainly
focus on Boolean containment of conjunctive queries, i.e., given two conjunc-
tive queries P and Q, is L(P) ⊆ L(Q), where L(P) (resp., L(Q)) denotes the
set of trees on which P (resp., Q) has a non-empty output. Conjunctive query
containment over trees is a problem that needs to be solved for conjunctive
query optimization. The latter is, for instance, important for XQuery engines,
but is also relevant in the other settings mentioned above. Moreover, conjunc-
tive query satisfiability, which we also study and which is a simplified form
of containment, needs to be solved if one wants to decide well-definedness for
important XQuery fragments [15]. There is a further relevant setting in which
the set of trees under consideration is restricted by a schema and the contain-
ment question is asked relative to this schema. We give a brief overview of our
results.

Containment. We obtain a similar classification as Gottlob et al. [9]. The
most essential differences are that the PTIME membership results for conjunc-
tive query evaluation translate to coNP membership results for containment
and that NP-completeness results for evaluation translate to ΠP

2 -completeness
results for containment. The former translation is easy to obtain due to a poly-
nomial size witness property for counter-examples (Lemma 10). For the latter
translation, we build on some of the NP lower bound reductions by Gottlob et

2

Child Child+ Child∗ NextSibling NextSibling+ NextSibling∗ Following

Child in P NP [10] NP in P in P in P NP

Child+ in P in P ? ? ? ?

Child∗ in P ? ? ? ?

NextSibling in P NP NP NP

NextSibling+ in P in P in P

NextSibling∗ in P in P

Following in P

Table 2
Complexities of Conjunctive Query Satisfiability.

al. for our ΠP
2 lower bound proofs. They had to be significantly adapted, how-

ever, as unlike in the relational setting, conjunctive query containment on trees
cannot be reduced in a straightforward manner to conjunctive query evaluation
on a canonical model. Most of our complexity results on conjunctive query con-
tainment are summarized in Table 1. From the above-mentioned polynomial
size witness property and the results by Gottlob et al. [9], we can also con-
clude that containment is in coNP for the fragments CQ(Child, NextSibling,
NextSibling∗, NextSibling+), CQ(Child∗, Child+), and CQ(Following). Com-
bined with the results from the table, this gives us a complete trichotomy of
the complexity of conjunctive query containment with respect to all subsets
of the axes we consider.

Unfortunately, as we can see from the table, conjunctive query containment
on trees is quite a hard problem. We only identify two tractable fragments,
that is, CQ(NextSibling) and CQ(Child). For the latter fragment, PTIME
membership is already non-trivial. All other combinations of axes are at least
coNP-hard.

Satisfiability. Conjunctive query satisfiability can be seen as a simplification
of the containment problem. Indeed, Q is satisfiable if and only if L(Q) 6⊆
L(false). Our results on satisfiability are summarized in Table 2. Interestingly,
we see here that the dichotomy drawn by the evaluation and the containment
problem shifts. For the satisfiability problem, we obtain significantly more
tractable fragments than for the containment problem. Some cases, however,
still remain NP-hard.

We note that the NP lower bound for satisfiability of CQ(Child ,Child+) was
already obtained by Hidders [10]. We give an alternative proof (Theorem 31).

Related Work. Most of the related work has already been mentioned. We
note, however, that conjunctive query containment has also been investigated

3

for object-oriented database systems [5]. In particular, it is shown that con-
junctive query containment is ΠP

2 -complete. The classes of conjunctive queries
studied in [5] are, however, incomparable to ours.

2 Preliminaries

2.1 Trees

By Σ we always denote a fixed but infinite set of labels. For a finite set S,
we denote by |S| the number of elements of S. The trees we consider are
rooted, ordered, finite, labeled, unranked trees, which are directed from the
root downwards. That is, we consider trees with a finite number of nodes
and in which nodes can have arbitrarily many children. We view a tree t as
a relational structure over a finite number of unary labeling relations a(·),
where each a ∈ Σ, and binary relations Child(·, ·) and NextSibling(·, ·). Here,
a(u) expresses that u is a node with label a, and Child(u, v) (respectively,
NextSibling(u, v)) expresses that v is a child (respectively, next sibling) of u.
We assume that each node in a tree bears precisely one label, i.e., for each u,
there is precisely one a ∈ Σ such that a(u) holds in t.

Notice that, in contrast to standard practice, we have an infinite set of labels
from which our (finite) trees can choose. This reflects how trees occur in an
XML-context: an XML tree is a finite structure, but there is no restriction on
how it should be labeled (if no schema is provided).

In addition to Child and NextSibling, we use their transitive closures (denoted
Child+ and NextSibling+) and their transitive and reflexive closures (denoted
Child∗ and NextSibling∗). We also use the Following-relation, which is inspired
by XPath [6] and defined as

Following(u, v) = ∃x∃yChild∗(x, u) ∧ NextSibling+(x, y) ∧ Child∗(y, v).

We denote the set of nodes of a tree t by Nodes(t). We define the size of t,
denoted by |t|, as the number of nodes of t. We refer to the above-mentioned
binary relations as axes.

A tree t′ is a subtree of a tree t if t′ is a tree and a substructure of t. In
other words, t′ is connected and the relations in t′ are subsets of the (Child ,
NextSibling) relations in t. Furthermore, the labels of nodes are the same in t

and t′. Our definition of subtree implies that siblings in t′ are also siblings in
t. Sometimes, we do not want this restriction on subtrees. Therefore, for a set
R of axes, we say that t′ is an R-subtree of t if t′ is a tree and, for each axis R

4

in R, R(x, y) in t′ implies that R(x, y) holds in t. Just as in normal subtrees,
t′ preserves the labels of t.

2.2 Conjunctive Queries

Let X = {x, y, z, . . . } be a set of variables. A conjunctive query (CQ) over
alphabet Σ is a positive existential first-order formula without disjunction
over a finite set of unary predicates a(x) where each a ∈ Σ, and the binary
predicates Child , Child+, Child∗, NextSibling , NextSibling+, NextSibling∗, and
Following . In this paper, we will mainly focus on Boolean satisfaction of con-
junctive queries. We will therefore consider conjunctive queries without free
variables. As our queries do not contain free variables, we often omit the exis-
tential quantifiers to simplify notation. For a conjunctive query Q, we denote
the set of variables appearing in Q by Var(Q). We use CQ(R1, . . . , Rk) or
CQ(R) (where R = {R1, . . . , Rk}) to denote the fragment of CQs that uses
only the unary alphabet predicates and the binary predicates R1, . . . , Rk. We
use the terminology on valuations of a query and query graphs from Gottlob
et al. [9].

Definition 1 Let Q be a conjunctive query, and t a tree. A valuation of Q on
t is a total function θ : Var(Q) → Nodes(t). A valuation is a satisfaction if it
satisfies the query, that is, if every atom of Q is satisfied by the assignment.
A tree t models Q (t |= Q) if there is a satisfaction of Q on t. The language
L(Q) of Q is the set of all trees that model Q.

We say that a tree t is a minimal model of Q if t |= Q and the number of
nodes in t is minimal among all trees in L(Q).

The following example illustrates a conjunctive query.

Example 2 Consider the conjunctive query Q = Child+(x1, x2)∧Child+(x2, x4)∧
Child+(x1, x3)∧Child+(x3, x4)∧a(x1)∧ b(x2)∧ c(x3)∧d(x4)∧ e(x5). For read-
ability, we often represent queries graphically. For example, Figure 1 depicts
query Q. For readability of the figures, we often omit the variable names of
the queries in the figures. Any tree t that models Q must have an a-labeled
node u with a d-labeled descendant v such that the path from u to v contains
a b-labeled node and a c-labeled node (in arbitrary order). Moreover, t must
contain an e-labeled node somewhere.

Definition 3 Let Q be a conjunctive query over Σ with variables Var(Q).
The query graph Q is the directed multigraph GQ = (V, E) with edge labels
and node labels such that V = Var(Q), node x is labeled a if and only if a(x)

is an atom in Q; and E contains the labeled directed edge x
R
→ y if and only

if R(x, y) is an atom in Q.

5

a

b

d

c

e

Fig. 1. Graphical representation of the query in Example 2. Double arrows represent
Child+ relations.

We assume familiarity with standard graph-related terminology such as reach-
ability, connected components, etc. Subgraphs of GQ correspond to subqueries
of Q. We will sometimes slightly abuse the terminology by using graph-related
concepts when talking about queries. Thus “variable x is reachable from vari-
able y in Q” means that x is reachable from y in GQ. Similarly, “maximal
connected component of Q” means a subquery corresponding to a maximal
connected component of GQ.

Sometimes, we use the notation Ri(x, y), where R is an axes and i ∈ N. This
means that y can be reached from x using i steps of R, and is shorthand for
R(x, x1)∧R(x1, x2)∧ · · · ∧R(xi−1, y), where x1, . . . , xi−1 are variables that do
not appear anywhere else in the query.

The following decision problems for conjunctive queries are the main topic of
interest for this paper.

Definition 4 • Containment: Given two conjunctive queries P and Q, is
L(P) ⊆ L(Q)?

• Satisfiability: Given a conjunctive query Q, is L(Q) 6= ∅?

The above problems are in a sense both instances of the containment problem.
That is, satisfiability for Q is testing whether L(Q) 6⊆ L(false).

For the containment problem, many of our algorithms will search for a tree t

such that t ∈ L(P) − L(Q). If t ∈ L(P) − L(Q), we call t a counterexample.
Similarly, for the satisfiability problem, we will often search for a tree t ∈ L(Q),
which we call a witness.

As mentioned above, we consider conjunctive queries without free variables.
The result of evaluating such a query on a tree is therefore boolean. In general
one can also consider k-ary conjunctive queries, i.e., CQs with k free variables,
returning a k-ary relation when evaluated on a tree. For two k-ary queries
P and Q, P is contained in Q if, for every tree t, the relation returned by
P is a subset of the relation returned by Q. Using a result of Miklau and
Suciu [12], this problem reduces to containment for Boolean queries for all
fragments that include the Child -axis. For instance, consider the left query
P (x1, x2, x3) in Figure 2. By introducing, for each free variable xi, a new
variable x′

i and adding the atoms Child(xi, x
′

i)∧Xi(x
′

i) to the query, where Xi

6

a

b c

e

dx1 x2 x3

a

b c

e

dx1 x2 x3

X2X1 X3

Fig. 2. How to reduce from k-ary queries to 0-ary queries.

is a new label, the query P ′(x1, x2, x3), depicted on the right of Figure 2, is
obtained. It is now easy 1 to see that, for two queries P (x) and Q(x) 2 with
k free variables, P is contained in Q if and only if L(P ′) ⊆ L(Q′), where P ′

and Q′ are obtained by adding the atoms Child(xi, x
′

i) ∧ Xi(x
′

i) to P and Q,
respectively. For satisfiability, it is of course immediate that the complexities
are the same for 0-ary and k-ary queries.

2.3 Basic Properties

In this section we list a few basic properties of conjunctive queries which are
quite well-known and easy to prove. We use them further on in our proofs. If t

and t′ are trees, h is a function from t to t′, and R is a set of binary relations,
we say that h is an R-homomorphism if h(u) is defined for every node u in t,
a(u) in t implies a(h(u)) in t′, for each a ∈ Σ, and R(u, v) holds in t implies
that R(h(u), h(v)) holds in t′, for each R ∈ R.

Observation 5 Let t be a tree and let Q ∈ CQ(R) be a query such that t |= Q.
If t′ is a tree and there exists an R-homomorphism h : t → t′, then t′ |= Q.

Observation 6 Conjunctive queries are monotonous. More precisely, let Q

be a CQ(R) and let t |= Q. Then t′ |= Q for all trees t′ for which t is an
R-subtree of t′.

For the next observation, we extend the notion of R-homomorphisms to queries.
That is, if P and Q are in CQ(R), we say that h : Var(P) → Var(Q) is an
R-homomorphism from P to Q if h is total, a(x) in P implies that a(h(x)) in
Q for each a ∈ Σ, and R(x1, x2) in P implies that R(h(x1), h(x2)) occurs in
Q, for each R ∈ R.

Observation 7 Let P and Q be in CQ(R). If there exists a homomorphism
from Q to P , then L(P) ⊆ L(Q).

As we will see in the proof of Theorem 9, the other direction of Observation 7
does not always hold.

1 The proof is analogous to the one of Proposition 1 in [12].
2 We can assume w.l.o.g. that the free variables are the same in P and Q.

7

3 Containment

When we investigate whether query P is contained in query Q, i.e., L(P) ⊆
L(Q), we will always assume that the graph of Q has only one maximal con-
nected component.

Observation 8 Let P and Q be CQs and let Q1, . . . , Qk be the maximal
connected components of Q. Then L(P) ⊆ L(Q) if and only if L(P) ⊆
L(Q1) ∩ · · · ∩ L(Qk).

3.1 PTIME Upper Bounds.

Theorem 9 Containment is in PTIME for CQ(Child) and CQ(NextSibling).

PROOF. The proof for CQ(NextSibling) is straightforward. For testing whether
L(P) ⊆ L(Q), we first test that both queries are satisfiable. This can be done
in polynomial time by Theorem 27. If P is unsatisfiable, containment trivially
holds. If Q is unsatisfiable while P is satisfiable, containment fails. Next, we
simplify both queries by applying the chase for the relation NextSibling(A, B)
with functional dependencies A → B and B → A. (For details on how this pro-
cedure works, see the proof of Theorem 27.) After this, none of the queries has
variables x 6= y 6= z such that both NextSibling(x, y) and NextSibling(x, z) or
NextSibling(y, x) and NextSibling(z, x) are atoms. In other words, each query is
a collection of linear maximal connected subqueries. Further more, by Obser-
vation 8, we can assume that Q has only one maximal connected component.

We now claim that containment holds if and only if there is a homomorphism
from Q to P . Since the queries are linear, testing if there is a homomorphism
can be done in polynomial time. If there is such a homomorphism, containment
trivially holds. If not, we construct a counter-example tree t ∈ L(P) − L(Q)
as follows. Let P1, . . . , Pk be the maximal connected components of P . Each
such Pi has variables xi

1, . . . , x
i
ni

, binary atoms NextSibling(xi
j , x

i
j+1) for each

j ∈ {1, . . . , ni − 1}, and a number of unary atoms. With each Pi we associate
a string Si of length ni. Position j of Si has label a ∈ Σ if a(xi

j) is an atom of
Pi. If there is no such atom, position j gets label #, where # ∈ Σ is a symbol
that occurs in neither P nor Q.

The tree t has levels 0, 1, . . . , k. On each level, except level k, there is exactly
one node that has children—all the others are leaves. On level 0, there is only
the root, which has label #. All nodes on level i, for i ∈ {1, . . . , k} are children
of the sole non-leaf node on level i−1. Level i has ni nodes, which are labeled,

8

a

b c

b

b c

*

*

b c

Query P . Query Q.

Fig. 4. Example for which L(P) ⊆ L(Q), but there is no homomorphism from Q to
P . Each arrow denotes a Child-axis.

from left to right, with the symbols of Si. The construction of t is depicted in
Figure 3.

...

S1

S2

Sk

Fig. 3. The tree
construction for
CQ(NextSibling)
containment.

Clearly, t satisfies P . Also, if there was a satisfaction for
Q on t, this satisfaction would immediately give a homo-
morphism from Q to P .

The proof for CQ(Child) is considerably more involved.
A naive algorithm would try to find an embedding of Q

into P and accept iff it can be found. However, Figure 4
illustrates that not finding an embedding of Q into P does
not imply that L(P) 6⊆ L(Q).

Let P and Q be two queries in CQ(Child). We want to
decide whether L(P) ⊆ L(Q). First, we check if the two
queries are satisfiable. This can be done in polynomial
time by Theorem 27. If at least one of the queries is not
satisfiable, we already have our answer, so we assume in
the remainder of the proof that both are satisfiable.

Any satisfiable query P in CQ(Child) can be transformed in polynomial time
into an equivalent one that is tree-shaped, i.e., such that there are no variables
x 6= y 6= z such that both Child(x, z) and Child(y, z) are atoms of the query.
This is achieved by applying the chase procedure for the Child(A, B) relation
with the functional dependency A → B (see the proof of Theorem 27). Thus
we can assume that both P and Q are tree-shaped.

We now test containment of L(P) in L(Q) by performing a series of tests.

First, we test whether there is a homomorphism from Q to P . As we can
assume that the queries are tree-shaped, this can be done in polynomial time;
see, e.g., [12].

If there is a homomorphism, we can conclude that L(P) ⊆ L(Q). If there is
no embedding and P has only one maximal connected component, we can
conclude that L(P) 6⊆ L(Q), since none of P ’s minimal models model Q.
However, if there is no homomorphism from Q to P and P has more than one

9

maximal connected component, it is still possible that L(P) ⊆ L(Q) holds.
An example is given in Figure 4.

We try to find a counter-example to containment, that is, a tree that satisfies
P but not Q. As usual, by Observation 8, we can assume that Q has only one
maximal connected component.

Since Q is tree-shaped, it has a unique root variable rQ. Let C1, . . . , Ck be
the subqueries of Q such that the root rCj

of each Cj is a child of rQ (i.e.,
Child(rQ, rCj

) is an atom of Q). Also, let P1, . . . , Pm be the maximal connected
components of P , where the root variable of each Pi is rPi

. If rQ has a label
(i.e., a(rQ) is an atom of Q for some a ∈ Σ), we can easily find a counter-
example tree: a root labeled with a new symbol # which has the roots of
minimal models for P1, . . . , Pm as children. Since there is no homomorphism
from Q to P , in particular, there is no homomorphism from Q to Pi for any
i. Thus we assume that rQ has no label.

#

#

#

...

#

b

Pi

j

Fig. 5. P
j
i .

In the following, we will reason about what criteria a
counter-exampel tree must satisfy, and try to construct
one that does satisfy them. If we succeed with the con-
struction, it is clear that containment fails. On the other
hand, if we find that it is impossible to construct a tree
that satisfies the criteria, containment holds.

Let n = |Var(Q)|. For each j ∈ {0, . . . , n − 1} and i ∈
{1, . . . , m}, let P

j
i be the query obtained by adding new

variables z1, . . . , zj to Pi, each of them labeled by the new
symbol #, adding the atoms Child(zl, zl+1) for 1 ≤ l < j,
and Child(zj , rPi

); see Figure 5. In particular, P 0
i = Pi.

Now, for each 1 ≤ i ≤ m, we define vi to be the largest
number smaller than n + 1 such that there is no homo-
morphism from Q to P vi

i . Notice that if there is no homo-
morphism fro Q to P n

i , there is no homomorphism from
Q to P l

i for any l ∈ N, since Q has n variables, is connected, and only uses
the Child axes.

The intuition behind the above construction is the following. If vi < n, then
there is a homomorphism from Q to P vi+1

i . This means that for any counter-
example tree t in L(P) − L(Q), and any satisfaction θ of P on t, it must be
the case that the distance from the root of t to θ(rPi

) is at most vi. Indeed,
since the label # doesn’t occur in Q and there is a homomorphism from Q to
P vi+1

i , any tree which has a path of length vi + 1 above a model for P also
satisfies Q.

10

For some Pi, we may have vi = 0. This means that there is a homomorphism
from Q to P 1

i . Using the above arguments, for any counter-example tree t and
any satisfaction θ for P on t, the root variable rPi

of Pi must be assigned to
the root of t by θ. Let r be the number of maximal connected components
Pi of P such that vi > 0. Without loss of generality, we assume that vi > 0
for all i in {1, . . . , r} while vj = 0 for all j in {r + 1, . . . , m}. If there are two
components, Pi1 and Pi2 such that i1, i2 > r and the roots of Pi1 and Pi2 have
different labels, they cannot both be assigned to the root of a counter-example
tree. Thus no witness tree exists, and we can conclude that containment holds.

Next, for each 1 ≤ j ≤ k and each 1 ≤ i ≤ r, we define Si
j to be the subset of

{0, . . . , vi − 1} such that for each l ∈ Si
j, there is a homomorphism h from Cj

to P l
i such that h(rCj

) is the root of variable of P l
i . The intuition behind this

definition is the following. Suppose t is a tree in L(P) and θ is a satisfaction
for P on t such that the distance t to θ(rPi

) is d, and d − 1 ∈ Si
j. Then there

is a satisfaction θCj
for Cj on t such that θCj

(rCj
) is a child of the root of t.

Now, for each Cj (1 ≤ j ≤ k) we will try to find out whether concentrating on
Cj can help us find a counter-example tree. To be more specific, we will try to
construct a tree t in L(P) such that there is no satisfaction for Cj on t that
assigns the root variable of Cj to a child of the root of t. The rationale is that
we will also ensure that there is no satisfaction for Q on t that assigns the
root variable of Q to any other node than the root of t. Together, this means
that if we can find such a t, then containment fails.

For each 1 ≤ i ≤ r, we pick a number xi from {0, . . . , vi −1}−Si
j . If, for some

i, there is no such number, i.e., {0, . . . , vi − 1} = Si
j , then we set xi = −1.

Given these values x1, . . . , xr we try to construct a witness tree t as follows.
For each 1 ≤ i ≤ r such that xi ≥ 0, we place the root rPi

of a minimal model
for Pi at depth xi + 1 (where 0 is the depth of the root). Between the root
and rPi

, we place a non-branching path of nodes labeled #. For the remaining
maximal subqueries of P , i.e., the Pi such that i ∈ {r + 1, . . . , m} or xi = −1,
we take a minimal model of Pi and identify its root with the root of t. This
may cause a conflict, if two or more of these minimal models already have
fixed and different labels. If this is the case, the test for Cj fails. Otherwise, if
at least one of them has a fixed lablel a, the root of t gets label a. If not, the
we give the root label #. This construction is depicted in Figure 6. Clearly,
t ∈ L(P). For each Pi such that i ≤ r, the distance from the root to rPi

is
smaller than vi. This means that it is impossible for Q to match along any of
the branches from the root, i.e., the root rQ of Q has to be matched at the
root of t if it can be matched at all.

We now test whether t |= Q. If it doesn’t, containment clearly fails, and our
test for Cj was successful. If it does, let θQ be a satisfaction for Q on t. We

11

b

#

...

#

b

#

...

#

b

P1 Pr

Pr+1 Pm

x1 xr

Fig. 6. The construction of the candidate counter-example tree for Cj .

know that θQ(rQ) must be the root of t. Also, θQ must assign all variables of
Cj completely within a subtree of t corresponding to the the minimal model
of some Pi with i > r or such that xi = −1. Otherwise, θQ(rC−j) would have
to be a child of the root of t that corresponds to a minimal model of P xi

i , for
some i ≤ r and xi ≥ 0. But we know that xi 6∈ Si

j for any i ≤ r. Thus there is
no P xi

i such that Cj can be matched in a corresponding minimal model. This
means that Cj can always be matched one step away from the root in any
possible witness tree, and our test for Cj failed.

If we go through all subqueries Cj of Q without being able to construct a
witness tree, we argue that containment holds. Indeed, suppose there were a
tree in L(P)−L(Q) and let θ be a satisfaction of P on t. We summarize why
this is impossible:

(1) For each i ∈ {1, . . . , m} the distance from the root of t to θ(rPi
) can be

at most vi. This is because there is a homomorphism from Q to P vi+1
i .

(2) For every vector (d1, . . . , dm) of distances from the root of t to θ(rP1
), . . . , θ(rPm

)
such that di ≤ vi for all i, and every j ∈ {1, . . . , k} we know that there
is a satisfaction for Cj on t that assigns rCi

to a child of the root of t.
(3) Since we have assumed that rQ has no label in Q, there is nothing to stop

rQ from being assigned to the root of t.
(4) Thus there is also a satisfaction for Q on t, which is a contradiction.

2

12

3.2 coNP and ΠP
2 Upper Bounds.

We first show that if CQ P is not contained in CQ Q, then there is a polynomial
size witness tree.

Lemma 10 Let P and Q be conjunctive queries. If L(P) 6⊆ L(Q) then there
exists a tree t such that t |= P , t 6|= Q, and |t| ≤ 2 · |Var(P)| · (|Var(Q)| + 4).

PROOF. Let t be a tree such that t |= P and t 6|= Q. Let θ be a satisfaction
of P on t, and let T = {θ(x)|x ∈ Var(P)}. Further, let S be the set of nodes v

of t such that v is the least common ancestor of some nonempty subset of T .
Now we remove all nodes from t that are not located on a path between two
nodes in S. Thus we obtain a new tree t′. Clearly, t′ |= P , θ is a satisfaction
of P on t, and, by Observation 6, t′ 6|= Q. Notice that |S| < 2 · |Var(P)|, and
that t′ only branches at nodes in S.

Now suppose that |t′| > 2 · |Var(P)| · (|Var(Q)|+4). We will prove that we can
obtain a tree tsmall in L(P) − L(Q) which is smaller than t′. There is a pair
u, v of nodes in t′ from S such that

(1) u is an ancestor of v;
(2) the path ρ from u to v has length at least |Var(Q)| + 3; and
(3) no internal node on ρ belongs to S.

We now show how we obtain tsmall from t′. First, we change the label of every
node in Nodes(t′) − T to a new Σ-symbol # that does not appear in Q. Call
the obtained tree t#. Notice that such a Σ-symbol always exists because Q

only makes use of a finite subset of our infinite labeling alphabet. This clearly
preserves satisfaction of P and non-satisfaction of Q. Next, we remove the
parent of v from t′, by making v a child of its grandparent, thereby obtaining
tree tsmall. We next show that tsmall is indeed the tree we are looking for.

First of all, notice that tsmall still models P , as θ is still a satisfaction of P on
tsmall. Furthermore, towards a contradiction, suppose there is a satisfaction θQ

for Q on tsmall. As the length of the path ρ′ from u to v in tsmall is at least
|Var(Q)|+2, there is at least one interior node w of ρ′ such that no variable of
Q is assigned to w by θQ. Partition Var(Q) into the set Y of variables assigned
by θQ to nodes of the subtree of tsmall rooted at w, and the set X of those
that are not. Then Q cannot contain a predicate Child(x, y) for any variables
x ∈ X and y ∈ Y . Now we can insert a node labeled # between w and its
child, obtaining a tree isomorphic to t′#. It is straightforward to verify that
θQ is a satisfaction for Q on this new tree, and thus also on t′#. This is a
contradiction.

13

a1
1 a2

1 . . . an1

1

#
...

... #

a1
m a2

m . . . anm
m

Fig. 7. Structure of query P in the proof of Theorem 12.

The above process can be repeated until we have a witness tree of size at most
2 · |Var(P)| · (|Var(Q)| + 4). 2

The above lemma puts conjunctive query containment in ΠP
2 . Indeed, for test-

ing whether L(P) 6⊆ L(Q), the algorithm would guess a tree tsmall of size at
most 2·|Var(P)|·(|Var(Q)|+4), test in NP whether tsmall |= P and test in coNP
whether tsmall 6|= Q. As Gottlob et al. showed that conjunctive query evalu-
ation is in PTIME for CQ(Child , NextSibling , NextSibling∗, NextSibling+),
CQ(Child∗,Child+), and CQ(Following) [9], the above algorithm gives us a
coNP upper bound for containment for these fragments. We can therefore
state the following theorem.

Theorem 11 (1) Containment is in ΠP
2 for CQs.

(2) Containment is in coNP for CQ(Child∗,Child+), CQ(Following),
and CQ(Child,NextSibling,NextSibling∗,NextSibling+).

3.3 coNP Lower Bounds.

For the coNP lower bounds, we will either reduce from the complement of
the Shortest Common Supersequence problem; or from the Short-

est Common Superstring problem, both of which are known to be NP-
complete [13,7]. The Shortest Common Supersequence (respectively,
Shortest Common Superstring) problem asks, given a set of strings S,
and an integer k, whether there exists a string of length at most k which is
a supersequence (respectively, superstring) of each string in S. Here, s is a
supersequence of s0 if s0 can by obtained by deleting symbols from s, and s

is a superstring of s0 if s0 can be obtained by deleting a prefix and a postfix
of s.

Theorem 12 Containment is coNP-hard for CQ(NextSibling+),
CQ(NextSibling∗), CQ(Child+), CQ(Child∗), and CQ(Following).

PROOF. All cases are proved by a reduction from the complement of Short-

est Common Supersequence. To this end, let S and k be an instance of
Shortest Common Supersequence. We now define conjunctive queries

14

P and Q such that P 6⊆ Q if and only if there exists a shortest common su-
persequence for S of length at most k. Let S = {s1, . . . , sm} where, for each
i = 1, . . . , m, si = a1

i · · ·a
ni

i . Let # be a symbol not occurring in any string in
S.

We first show how the proof works for NextSibling+. The query P is defined
as in Figure 7, where each arrow represents a NextSibling+-axis and # and
each a

j
i is a Σ-symbol. The query Q now essentially states that each tree must

have a string of siblings with at least k + 1 + 2 different nodes. Formally, we
define Q as

NextSibling+(x1, x2) ∧ · · · ∧ NextSibling+(xk+2, xk+3).

It is not difficult to see that P 6⊆ Q if and only if there exists a shortest
common supersequence for S of length at most k. The proofs for Child+and
Following are completely analogous. For Child∗and NextSibling∗, we need to
insert dummy #-symbols between all a

j
i labels in P , and adapt the query Q

accordingly. 2

The proof of the next theorem is along the same lines as the previous one,
but this time we reduce from the Shortest Common Superstring prob-
lem. The essential difference is that P now does not contain the leftmost and
rightmost #-labeled symbol in Figure 7, the arrows in Figure 7 now denote
NextSibling-axes, and that all the ai

j-labeled nodes are connected to a common
parent by Child -axes.

Theorem 13 Containment is coNP-hard for CQ(Child,NextSibling).

3.4 ΠP
2 Lower Bounds

The ΠP
2 lower bounds in this section will all be obtained by a reduction from ∀∃

positive 1-in-3 SAT, which is formally defined as follows. A set C1, . . . , Cm of
clauses is given, each of which has three Boolean variables from {x1, . . . , xnx

}⊎
{y1, . . . , yny

}. No variable is negated. The question is whether, for every truth
assignment for {x1, . . . , xnx

}, there exists a truth assignment for {y1, . . . , yny
}

such that each Ci contains precisely one true variable.

The proof of the following lemma is analogous to a standard proof showing
that positive 1-in-3 SAT is NP-complete.

Lemma 14 ∀∃ positive 1-in-3 SAT is ΠP
2 -complete.

PROOF. Membership of the problem in ΠP
2 is trivial. For ΠP

2 -hardness, we

15

reduce from ∀∃ 3SAT. First, we convert a ∀∃ 3SAT formula φ into a ∀∃ 1-in-3
SAT formula φ′. Second, we show how to get rid of negative literals.

Let C = (x∨y∨z) be a clause of φ (here, x, y, z are literals, not variables). We
introduce six new existentially quantified variables, a, b, c, d, e, f , to simulate
C. To do this, we introduce the new clauses (x∨ a∨ d), (y ∨ b∨ d), (a∨ b∨ e),
(c∨d∨ f), and (z ∨ c). It is easy to verify that there is an assignment of truth
values to the new variables that makes exactly one literal per clause true if
and only if at least one of the literals x, y, z is true.

We show next how to make all literals positive. For each variable x that appears
both positively and negatively, we replace all occurrences of ¬x with a new
existentially quantified variable x̄, and add the clause (x∨ x̄). This makes sure
that exactly one of x and x̄ is assigned true.

Finally, we show how to ensure that each clause contains exactly three liter-
als. Thereto, suppose that we have a clause (x ∨ y). We introduce four new
existentially quantified variables f, a, b, c and rewrite (x ∨ y) as (x ∨ y ∨ f),
(f ∨ a ∨ b), (f ∨ b ∨ c), and (a ∨ b ∨ c). The intuition is that f can never be
chosen to be true and that, if f is false, we can choose b to be true. 2

Theorem 15 Containment is ΠP
2 -complete for CQ(Child, Child+) and CQ(Child,

Child∗).

PROOF. We present a proof for CQ(Child , Child+) and discuss in the end
how to adapt it for CQ(Child , Child∗).

The proof is an adaptation of a proof by Gottlob et al., showing that the query
complexity of evaluation for CQ(Child,Child+) is NP-hard [9]. We reduce from
∀∃ positive 1-in-3 SAT, which is ΠP

2 -complete according to Lemma 14.

For the readability of this proof, we will first assume that each tree node can
carry multiple labels. We explain at the end of the proof how it can be modified
to work for the standard definition of labeled trees, where each node has only
one label.

Let ∀x∃yC1, . . . , Cm be an instance of ∀∃ positive 1-in-3 SAT, where x =
{x1, . . . , xnx

} and y = {y1, . . . , yny
}. We may assume that no clause contains

a particular literal more than once. Let Φ denote the formula

∀x∃yC1, . . . , Cm, Cm+1, . . . Cm+nx
.

Here, for each i = 1, . . . , nx, Cm+i denotes the clause (y′

i, xi, y
′′

i), where y′

i and
y′′

i are new existentially quantified variables. It is easy to see that there is a

16

v0

A v1

A v2 X1 x1 · · · Xnx
xnx

A v3

B w1,1

w1,2

w1,3

L2, L3
w1,4

L2, L3
w1,5

L1, L2, L3
w1,6

L2, L3
w1,7

L2, L3
w1,8

L2, L3
w1,9

L2, L3
w1,10

C w2,1

B w2,2

w2,3

L1, L3
w2,4

L1, L3
w2,5

L1, L3
w2,6

L1, L2, L3
w2,7

L1, L3
w2,8

L1, L3
w2,9

L1, L3
w2,10

D w3,1

w3,2

B w3,3

L1, L2
w3,4

L1, L2
w3,5

L1, L2
w3,6

L1, L2
w3,7

L1, L2, L3
w3,8

L1, L2
w3,9

L1, L2
w3,10

Fig. 8. Illustration of the definition of query P in the proof of Theorem 15.

∀∃ 1-in-3 SAT solution for the original formula if and only if there is one for
Φ.

Let query P be defined as in Figure 8, where single lines represent the Child
axis, double lines represent the Child+axis, the symbols inside the nodes are
variables of P and the symbols to the left of nodes are the Σ-symbols.

For the query Q, we introduce variables ai, bi for each i = 1, . . . , m + nx and
in addition a variable ck,l,i,j whenever the k-th literal of Ci coincides with the
l-th literal of Cj (1 ≤ j ≤ m + nx, i 6= j, 1 ≤ k, l ≤ 3).

The query Q consists of the following atoms:

17

• for each i = 1, . . . , m + nx, A(ai) ∧ B(bi) ∧ Child3(ai, bi);
• for each variable ck,l,i,j, Lk(ck,l,i,j)∧Child+(bi, ck,l,i,j)∧Child8+k+l(aj, ck,l,i,j);

and,
• for each i = m + 1, . . . , m + nx, Xi−m(ai).

Before we show that the reduction is correct, we start with an observation.
Consider the set of minimal models of P . It is easy to see that this set is not
empty, and every minimal model of P has the shape of the tree in Figure 8 with
the addition that, for every i = 1, . . . , nx, at least one of the nodes v1, v2, v3

is labeled with Xi. Let TP be the subset of the minimal models such that, for
each Xi, precisely one of v1, v2, v3 is labeled Xi. We refer to TP as the set of
intended models.

The following observation is immediate from the monotonicity of conjunctive
queries (Observation 6) and the fact that each t ∈ L(P) has a {Child}-subtree
in TP . 3

Observation 16 The following statements are equivalent:

• ∀tP ∈ TP : tP |= Q

• ∀t ∈ L(P) : t |= Q.

We show that the reduction is correct; that is,

∀x∃yC1, . . . , Cm ⇔ L(P) ⊆ L(Q).

(⇒) Assume that, for every truth assignment σx : {x1, . . . , xnx
} → {true, false},

there exists a truth assignment σy : {y1, . . . , yny
} → {true, false} such that

each clause Ci, 1 ≤ i ≤ m, contains precisely one true literal under σx and σy.
We show that tP |= Q for every tP ∈ TP . According to Observation 16, this
implies that L(P) ⊆ L(Q).

Let tP be an arbitrary, but fixed, tree in TP . Then there exists a satisfaction
θP of P on tP . From θP , we define a truth assignment σtP : {x1, . . . , xnx

} →
{true, false} as follows:

• if θP (v2) is labeled Xi, then we set σtP (xi) = true;
• otherwise, we set σtP (xi) = false.

By definition of P , σtP assigns a truth value to every xi, 1 ≤ i ≤ nx. Hence,
there exists a σy : {y1, . . . , yny

} → {true, false} such that each clause Ci,
1 ≤ i ≤ m, contains precisely one true literal under σtP and σy. From σy, we
now construct a truth assignment σ′

y : {y1, . . . , yny
, y′

1, . . . , y
′

nx
, y′′

1 , . . . , y
′′

nx
} →

{true, false} as follows:

3 Recall the definition of R-subtrees from Section 2.

18

• for each i = 1, . . . , ny, σ′

y(yi) = σy(yi);
• if θP (v2) is labeled Xi, then we set σ′

y(y
′

i) = σ′

y(y
′′

i) = false;
• otherwise, if θP (v1) is labeled Xi, then we set σ′

y(y
′

i) = true and σ′

y(y
′′

i) =
false;

• otherwise, we set σ′

y(y
′′

i) = true and σ′

y(y
′

i) = false.

It is easy to see that each clause C1, . . . , Cm contains precisely one true lit-
eral under σtP and σy if and only if each clause C1, . . . , Cm, Cm+1, . . . , Cm+nx

contains precisely one true literal under σtP and σ′

y.

We will show how σtP and σ′

y induce a satisfaction θQ of Q on tP . Let σ :
{1, . . . , m + nx} → {1, 2, 3} be defined as σ(i) = k′ if and only if the k′-th
literal in Ci is true under σtP and σ′

y. Notice that σ is total and well-defined.
We first define a valuation θQ of Q on tP and then show that all query atoms
are satisfied. We set

• θQ(ai) = θP (vσ(i)) for each i = 1, . . . , m + nx;
• θQ(bi) = θP (wσ(i),σ(i)) for each i = 1, . . . , m + nx; and
• θQ(ck,l,i,j) = θP (wσ(i),5+k−l+σ(j)) for each variable ck,l,i,j.

We now prove that θQ is a satisfaction of Q on tP . Our choice of θQ implies that
the variables ai and bi are mapped to nodes with labels A and B, respectively.
Furthermore, θQ(bi) = θP (wσ(i),σ(i)) can be reached from θQ(ai) = θP (vσ(i))
with three child-steps. For every variable of the form ck,l,i,j, we know that
θQ(ck,l,i,j) = θP (wσ(i),5+k−l+σ(j)) is always a descendant of θP (wσ(i),σ(i)). If
σ(i) 6= k, then θQ(ck,l,i,j) = θP (wσ(i),5+k−l+σ(j)) has label Lk because 4 ≤
5 + k − l + σ(j) ≤ 10 and the nodes θP (wσ(i),4), . . . , θP (wσ(i),10) all have (at
least) the two labels Lk′ for which σ(i) 6= k′. If σ(i) = k, then σ(j) = l. By go-
ing 8+k−l steps downward from θP (vσ(j)), passing through θP (wk,k), we reach
node θP (wk,5+k), which has label Lk. Since θQ(ck,l,i,j) = θP (wσ(i),5+k−l+σ(j)) =

θP (wk,5+k), the query atoms Child8+k+l(aj , ck,l,i,j) are satisfied. For each i =
m+1, . . . , m+nx, we have that σ(i) = k if and only if θP (vk) is labeled Xi−m.
Hence, for each i = m + 1, . . . , m + nx, θQ(ai) = θP (vσ(i)) is labeled Xi−m.
Therefore, θQ is indeed a satisfaction of Q on tP and tP |= Q.

(⇐) Assume that tP |= Q for every tP ∈ TP . We show that, for each truth
assignment σx : {x1, . . . , xnx

} → {true, false}, there exists a truth assignment
σy : {y1, . . . , yny

} → {true, false} such that each clause Ci, 1 ≤ i ≤ m, contains
precisely one true literal under σx and σy.

Let σx : {x1, . . . , xnx
} → {true, false} be a truth assignment. We define the

tree tx as the tree implied by the variables and Child -axes in in Figure 8 with
the additions that, for each i = 1, . . . , nx,

• if σx(xi) = true, then only v2 is labeled Xi; and
• if σx(xi) = false, then only v1 is labeled Xi.

19

Obviously, tx is in TP and therefore tx models P . Hence, tx |= Q.

Let θ be a satisfaction of Q on tx. We show that θ induces a truth assignment
σy : {y1, . . . , yny

} → {true, false} such that each clause Ci, 1 ≤ i ≤ m contains
precisely one true literal under σx and σy. We first show that θ induces a truth
assignment σ′

y : {y1, . . . , yny
, y′

1, . . . , y
′

nx
, y′′

1 , . . . , y
′′

nx
} → {true, false} such that

each clause Ci, 1 ≤ i ≤ m + nx contains precisely one true literal under σx

and σ′

y.

To this end, if θ(ai) = vk, we interpret this as the k-th literal of clause Ci being
chosen to be true. Obviously, under any valuation of Q on tx, we select precisely
one literal from each clause Ci in this way. Because of the constructions of tx,
we know that the literal xi is selected for clause Cm+i if and only if σx(xi) =
true. We have to verify that if a literal L occurs in two clauses Ci and Cj

and we select L in Ci, we also select L in Cj. Let L be the k-th literal of Ci

and the l-th literal of Cj, and let θ(ai) = vk (i.e., L is selected in Ci). Then
θ(ck,l,i,j) = wk,5+k because that is the only node below θ(bi) = wk,k that has
label Lk. The query contains the atom Child8+k−l(aj, ck,l,i,j) for variable ck,l,i,j.
From node wk,5+k, by 8 + k − l upward steps we arrive at node vl. Hence
θ(aj) = vl, and we select L from clause Cj.

The truth assignment σy we are looking for is σ′

y restricted to {y1, . . . , yny
}.

To conclude the proof, we discuss how to deal with the multiple node labels.
The idea is to replace each variable z of P that has k labels by k +1 variables
{z0, z1, . . . , zk}. In the construction from Figure 8, z0 takes the place of z,
while each zi, 1 ≤ i ≤ k carries one of the k labels, and is required to be a
child of z0 (Child(z0, zi)). In query Q, the same transformation is then used.

Finally, we describe what changes have to be made for the proof to work in
the CQ(Child,Child∗) case. In the reduction, we replace each pair of atoms
Child+(v0, Xi),Child+(Xi, w2,1) of P (for 1 ≤ i ≤ nx) with the pair Child∗(v1, Xi),
Child∗(Xi, v3). In Q, we can simply replace Child+ with Child∗. The correctness
proof is then analogous. 2

Theorem 17 Containment is ΠP
2 -hard for CQ(Child, Following).

PROOF. We adapt the proof of Theorem 15 by simulating Child+with Child
and Following . To this end, we begin by equipping each of the variables u in
query P defined in Figure 8 that has an outgoing Child+-axes by two “dummy”
children z1 and z2. These new variables are used nowhere else, and get a new Σ-
label # that doesn’t appear in the queries P and Q of the proof of Theorem 15.
Now, whenever Child+(u, v) is used in one of the queries, we can replace it by

Child(u, z1) ∧ Child(u, z2) ∧ Following(z1, v) ∧ Following(v, z2).

20

D

L1

1

A L1 2

A

D

L2
3

D L2 4

B

B L2 5

B

D

L3

6

D L3 7

C

C

(a) Fragment T .

Dfalse

Dfalse

W Dtrue

Z Z Z Z

X1 · · · Xnx

(b) Fragment X.

D

T T X

(c) Query P .

Fig. 9. Definition of query P in the proof of Theorem 18.

It is now enough to note that all variables in the queries P and Q that have
no specified label are required by the queries to have children. Thus none of
them can bind to a node in one of the minimal models of the modified P query
that is labeled by #. 2

L1 L2 L3

A B C

F 2 F 2

F 4 F 4

F 7

(a) The 1-in-3 gad-
get.

L1 Xi L2 Xi L3 Xi

• Z • Z • Z

F 21 F 16 F 13

F 23 F 20 F 15

(b) The X-variable gadgets: varX(1, i) (left),
varX(2, i) (middle), and varX(3, i) (right).

Fig. 10. Gadgets for the definition of query Q in the proof of Theorem 18.

Theorem 18 Containment is ΠP
2 -hard for CQ(Child+, Following) and for

CQ(Child∗, Following).

PROOF. We first explain the proof for CQ(Child+,Following) and argue later
that it works analogously for CQ(Child∗, Following). Let ∀x∃yC1, . . . , Cm be

21

an instance of ∀∃ positive 1-in-3 SAT. Let x = {x1, . . . , xnx
} and let y =

{y1, . . . , yny
}. We can assume that no clause contains a particular literal more

than once.

We construct two queries, P and Q, over the labeling alphabet {A, B, C, D,

Dtrue, Dfalse, L1, L2, L3, X1, . . . , Xnx
, W, Z} such that L(P) ⊆ L(Q) if and only

if ∀x∃yC1, . . . , Cm has a solution. The current proof builds further on a proof
by Gottlob et al. that shows that the query complexity of evaluation for
CQ(Child+,Following) is NP-hard (Theorem 5.2 in [9]).

The construction of query P is illustrated in Figure 9. Here, every double-lined
edge represents a Child+-axis and every directed edge represents a Following-
axis. Figure 10 depicts the gadgets from which query Q will be constructed.
For improved readability, we adopt the terminology of the proof by Gottlob
et al. That is, we will refer to the nodes labeled L1, L2, and L3 in the 1-in-3
gadget from Figure 10(a) by v1, v2, and v3, respectively. Moreover, we annotate
the query fragment T in Figure 9(a) with numbers from 1 to 7. We call the
node 1 (resp., 3, 6) the topmost position of variable v1 (resp., v2, v3).

Let tmin be a minimal model of fragment T from Figure 9(a). That is, tmin is
essentially shaped as the structure given by the Child+ axes in T . Gottlob et
al. show that the following observation holds.

Observation 19 ([9]) Every satisfaction θ of the 1-in-3 gadget on tmin maps
exactly one of the variables v1, v2, and v3 to its topmost position.

Given a clause C, we interpret a satisfaction θ in which variable vk is mapped
to its topmost position as the selection of the k-th literal from C to be true.
Hence, the 1-in-3 gadget would ensure that, on tmin, exactly one variable of
clause C is selected to be true.

We now define the query P as in Figure 9(c). That is, P contains two copies
of the fragment T , followed by a copy of the X-fragment from Figure 9(b).
The ordering between the subqueries of P is enforced by Following-axes: the
root of T ’s left copy has a Following-axis to the root of T ’s right copy, and
the root of T ’s right copy has a Following-axis to the root of the X-fragment.

Intuitively, the purposes of the different parts of the query P are as follows.
The left copy of the T -fragment in P , together with the 1-in-3 gadget, is used
to verify that the truth assignments we consider for x and y actually make
one literal per clause of ∀x∃yC1, . . . , Cm true. The second copy of T in P is
needed to ensure consistency of variable assignments between clauses: if we
pick a variable to be true in one clause, that variable must be true in all
clauses. Finally, the fragment X is used in P to generate all possible truth
assignments for the x-variables. Roughly, we interpret xi as “true” if Xi can
be reached from the W -labeled node with a Following-step, and as “false”

22

k\l 1 2 3

1 10 13 18

2 5 8 13

3 2 5 10

Table 3
The function NAND(k, l) [9].

otherwise (see Figure 9(b)). For example, all Xi-labeled descendants of the
Dtrue node are interpreted as “true”, and all Xi-labeled ancestors of the lower
Dfalse node are interpreted as “false”.

The query Q is defined much like the query in the proof of Gottlob et al.,
with the essential difference that we have to transfer the variable assignment
that is generated in the X-fragment of P to the matching of L1, L2, and L3

of the 1-in-3 gadget of Q onto the subtrees that satisfy the two copies of T

in P . This will be taken care of by the X-assignment gadgets in Q, which are
illustrated in Figure 10(b).

Formally, query Q is defined as follows. Each clause Ci is represented by two
copies of the 1-in-3 gadget of Figure 10(a), a left copy Qi and a right copy Q′

i.
The two sets of subqueries Q1, . . . , Qm, Q′

1, . . . , Q
′

m are connected as follows.
Consider the function NAND(k, l) in Table 3, as defined by Gottlob et al.
In a left and right copy of the tree tmin that would match the left and right
copy of T in P , we can enforce that two variables, x and y, labeled Lk and
Ll in their respective subqueries in Q, cannot both match the topmost node
labeled Lk, respectively Ll, in the left, respective right, copy of tmin by adding
an atom of the form FollowingNAND(k,l)(x, y) to the query Q. To see this, we
exemplify the case where k = l = 1. Observe that, from the top L1 node in
the left copy of T in Q, one can reach the upper L1 node in the right copy
of T with 9 Following-steps, but not with 10. The lower L1 node, however,
can be reached with 10 Following-steps. Hence, NAND(1, 1) = 10. The other
cases are analogous.

So, for each pair of clauses Ci, Cj, variable x ∈ Var(Q) such that Qi contains
the atom Lk(x), and variable y ∈ Var(Q) such that Q′

j contains the atom
Ll(y), if

• the k-th literal of Ci also occurs in Cj and
• the k-th literal of Ci and the l-th literal of Cj are different,

then we add an atom FollowingNAND(k,l)(x, y) to Q. As in the proof by Gottlob
et al., these query atoms make sure that if a literal is chosen to be true in one
clause, it is chosen to be true in other clauses as well; and that both copies Qi

and Q′

i of the query gadget of each clause make the same choice of selected

23

literal.

Finally, we need to make sure that the assignment to the universally quantified
variables from x defined by a minimal model of P is respected. If Qi contains
the unary atom Lk(x) and the k-th literal of Ci is a (universally quantified)
variable xl from x, then we add a copy of the gadget varX(k, l) to the query,
in which we identify the Lk-labeled node with the query variable x.

Intuitively, the gadget varX(k, l) ensures that if xl is the k-th literal of Qi,
then Qi picks the value for xl that is generated by the tree. We explain this
more formally. First, observe that, if tP is a minimal model of P , then the
label Xl occurs precisely once in tP . (Because, if Xl occurs multiple times,
tP is not minimal.) Next, we need to define our intended minimal models. A
minimal model tP of P is an intended minimal model if

(1) the Dtrue-labeled node is a child of the lower Dfalse-labeled node;
(2) the W -labeled node is a child of the lower Dfalse-labeled node; and
(3) the three rightmost Z-labeled nodes are children of the Dtrue-labeled

node.

Figure 11 contains an intended (left) and a non-intended minimal model
(right) of the X-fragment of P .

Dfalse

X1

X2

Dfalse

Dtrue

X3

X4

X5

Z

W

Z Z Z

(a) An intended minimal model.

Dfalse

X1

Dfalse

X2

X3

Dtrue

X4

X5

Z

W

Z Z

Z

(b) A non-intended minimal model.

Fig. 11. Minimal models of the X-fragment of P .

Let tP be an intended minimal model of P . We say that tP picks xl to be true if
the Xl-labeled node can be reached with a Following-step from the W -labeled
node in tP (i.e., if it is a descendant of Dtrue), and we say that tP picks xl to
be false otherwise (i.e., if it is an ancestor of the lower Dfalse-labeled node).
We can now make the following observation:

24

Observation 20 Let tP be an intended minimal model of P . Then, for every
satisfaction θ of Q on tP , the following holds. If the k-th literal of Ci is a
universally quantified variable xl, then θ selects the k-th literal xl of Ci to be
true on tP if and only if tP picks xl to be true.

PROOF. Observation 20 can be easily verified by testing the possible ho-
momorphisms from the X-variable gadgets of Q (Figure 10(b)) to the query
P (Figure 9). We provide a proof for one of the cases, the arguments for all
the other cases are analogous. For the direction from left to right, say that
θ chooses the first literal xl of Ci to be true on tP . Then θ also matches the
L1-labeled node of the leftmost X-variable gadget in Figure 10(b) to the upper
L1-labeled node in the first subtree of tP . From here, the W -labeled node in tP
can be reached by 20 Following steps, but not by 21. This means that θ must
match the Xl-labeled node as a descendant of Dtrue. Also note that the upper
L1-labeled node in the first subtree of tP has a descendant (the left A-labeled
child) from which the Z-descendant of Xl can be reached with 23 Following
steps.

For the direction from right to left, say that θ chooses the first literal xl of
Ci to be false on tP . Then θ also matches the L1-labeled node of the leftmost
X-variable gadget in Figure 10(b) to the lower L1-labeled node in the first
subtree of tP . From here, the W -labeled node in tP can be reached by 21
Following steps, so in principle we can still match Xl everywhere. However,
the X-variable gadget also requires that the L1-labeled node has a descendant
(which can only be its A-labeled child in tP), from which we can reach a Z-
labeled descendant of Xl with 23 Following steps. This is only possible if the
Xl-labeled node occurs as an ancestor of Dtrue, which means that tP chooses
xl to be false. This concludes the proof of Observation 20. 2

This concludes the reduction for Theorem 18. We proceed to proving that the
reduction is also correct. That is, we show that

∀x∃yC1, . . . , Cm ⇔ L(P) ⊆ L(Q).

(⇐) Suppose that L(P) ⊆ L(Q). We show that, for each truth assignment σx :
{x1, . . . , xnx

} → {true, false}, there exists a truth assignment σy : {y1, . . . , yny
} →

{true, false} such that each clause Ci, 1 ≤ i ≤ m contains precisely one true
literal under σx and σy.

Let σx : {x1, . . . , xnx
} → {true, false} be an arbitrary but fixed truth assign-

ment. We define an intended minimal model tx of P as follows. The root of tx
has three children. The first and second child correspond to the left and right
T -subquery of P , respectively. For the two copies of subquery T in P , tx has

25

a child relation for every occurrence of a descendant relation in T , and the
ordering of the nodes in tx is given by the Following-relations in P . For the
fragment X, it is slightly more complicated. The third subtree of tx has 8+nx

nodes, corresponding to the Dtrue, two Dfalse, the W , the four Z, and the nx

Xi-labeled nodes in Figure 9(b). The structure of the subtree is given by con-
ditions (1)–(3) of an intended minimal model. Because of condition (1), this
leaves two possibilities for the Xi-labeled nodes to occur: an Xi-labeled node
either occurs between the two Dfalse-labeled nodes (we call this area X false),
or it can occur as a descendant of the Dtrue-labeled node (we call this area
Xtrue).

The correspondence between σx and the third subtree of tx is now encoded as
follows:

• if σx(xi) = true, then the label Xi occurs in Xtrue and not in X false; and
• if σx(xi) = false, then the label Xi occurs in X false and not in Xtrue.

Obviously, tx is an intended minimal model of P . As we assumed that L(P) ⊆
L(Q), we have that tx |= Q.

Let θ be a satisfaction of Q on tx. We show that θ induces a truth assignment
σy : {y1, . . . , yny

} → {true, false} such that each clause Ci, 1 ≤ i ≤ m contains
precisely one true literal under σx and σy.

To this end, if x is an Lk-labeled variable of Qi, the k-th literal of Ci is exis-
tentially quantified, and θ(x) is the topmost position of Lk in tx, we interpret
this as the k-th literal of clause Ci being chosen to be true by σy. We argue
that σy is indeed the truth assignment we are looking for.

As argued in the construction of Q, in every valuation of Q on tx, the 1-in-3
gadgets select precisely one literal from each clause Ci in this way. Further-
more, the FollowingNAND(k,l) atoms ensure that if a literal L occurs in two
clauses Ci and Cj and we select L in Ci, then we also select L in Cj. Finally,
the varX(k, l) gadgets ensure that θ picks the same values for the xi ∈ x as
tx (Observation 20), and therefore also σx. Hence, the existence of θ implies
the existence of a valuation σy such that each clause Ci, 1 ≤ i ≤ m contains
precisely one true literal under σx and σy.

(⇒) Assume that, for every truth assignment σx : {x1, . . . , xnx
} → {true, false},

there exists a truth assignment σy : {y1, . . . , yny
} → {true, false} such that

each clause Ci, 1 ≤ i ≤ m contains precisely one true literal under σx and σy.

We show that L(P) ⊆ L(Q). To this end, let TP be the set of minimal models
of P , including non-intended minimal models. Analogously as in the proof of
Theorem 15, we make the following observation.

26

Observation 21 The following are equivalent:

• ∀tP ∈ TP : tP |= Q

• ∀t ∈ L(P) : t |= Q.

The observation follows from Observation 6, as each tree in L(P) has a
{Child+,Following}-subtree in TP .

We show that tP |= Q for every tP ∈ TP . According to Observation 21, this
implies that L(P) ⊆ L(Q).

Given tP ∈ TP , we define a truth assignment σtP : {x1, . . . , xnx
} → {true, false}

as follows:

• if the Xi-labeled node can be reached from the W -labeled node by a Fol-
lowing-step in tP , then we set σtP (xi) = true;

• otherwise, we set σtP (xi) = false.

By definition of P , σtP assigns a truth value to every xi, 1 ≤ i ≤ nx. Hence,
there exists a σy : {y1, . . . , yny

} → {true, false} such that each clause Ci,
1 ≤ i ≤ m, contains precisely one true literal under σtP and σy.

We will show how σtP and σy induce a satisfaction θ of Q on tP . Let τ :
{1, . . . , m} → {1, 2, 3} be defined as τ(i) = k if and only if the k-th literal
in Ci is true under σtP and σy. Notice that τ is total and well-defined. We
first define a valuation θ of Q on tP and then show that all query atoms are
satisfied. Let Qi be a 1-in-3 gadget of Q and let v1, v2, and v3 be the nodes
labeled L1, L2, and L3 in Qi, respectively. By 1–7 we denote the nodes in tP
that correspond to the nodes 1–7 in the left copy of T in P . We set

• θ(v1) = 1, θ(v2) = 4, θ(v3) = 7 if τ(i) = 1;
• θ(v1) = 2, θ(v2) = 3, θ(v3) = 7 if τ(i) = 2; and
• θ(v1) = 2, θ(v2) = 5, θ(v3) = 6 if τ(i) = 3.

By definition of Qi, θ can be extended to a valuation of Qi on tP for each i. We
define the valuation of Q′

i on the second subtree of tP completely analogously.
By definition, the FollowingNAND(k,l) atoms connecting Qi and Q′

i are also
satisfied. It only remains to show that the gadgets varX(k, l) can be satisfied.

We argue that these gadgets can be satisfied by matching each Xl-labeled node
in varX(k, l) onto the unique occurrence of Xl in tP . Thereto, let z1, z2, z3, z4

be the nodes in tP that correspond to the four Z-labeled nodes in fragment X,
from left to right. If Xl is reachable from the W -node with a Following-step,
then σtP (xl) = true. This means that θ also selects xl to be true. To satisfy
the X-variable gadgets, we can now always map the Z-labeled node in the
gadgets to z1 which is always a descendant of Xl (see also Figure 11). If Xl is

27

not reachable from the W -node with a Following step a descendant of Dtrue,
then we can always map the Z-labeled node in the gadgets to z4 (see also
Figure 11).

This concludes the proof for CQ(Child+,Following). The proof for CQ(Child∗,
Following) is completely analogous. The reason is that, for each occurrence
of Child+(x, y) in P , either x and y bear different alphabet labels, or x has
a descendant z with a different alphabet label, from which y can be reached
with a Following-axis. Hence, y can never be matched to the same node as x.
2

As Following can be defined in terms of Child∗and NextSibling+, we immedi-
ately have the following corollary.

Corollary 22 Containment is ΠP
2 -hard for CQ(Child∗, NextSibling+).

Theorem 23 Containment is ΠP
2 -hard for

(1) CQ(Child∗, NextSibling), (4) CQ(Child+,NextSibling+), and

(2) CQ(Child∗,NextSibling∗), (5) CQ(Child+,NextSibling∗).

(3) CQ(Child+,NextSibling),

PROOF. For each of these fragments, the proof of Theorem 18 can be
adapted by the same methods as in the article by Gottlob et al. [9]. For
the fragments (2)–(5), we also need to adapt the query P , such that P accepts
trees in which the T -fragments have the shape from the proof by Gottlob et
al. This is, however, straightforward for each of the fragments. 2

Theorem 24 Containment is ΠP
2 -hard for CQ(Following,NextSibling).

PROOF. Unfortunately, the arguments we use in Theorem 23 do not work
seamlessly for Following and NextSiblingα, where α ∈ {1, +, ∗}. Even though
we can express that, e.g., y must be a descendant of x by the formula

NextSibling(x1, x) ∧ NextSibling(x, x2) ∧ Following(x1, y) ∧ Following(y, x2)

and by giving x and y different labels, the extra introduced nodes x1 and x2

for this encoding introduce difficulties for the Xi-labeled nodes of the P -query
in the proof of Theorem 23. We therefore need to take a slightly different
approach.

Figures 12 and 13 illustrate how to change P and Q in the proof of Theorem 18.
Here, every solid arrow denotes a NextSibling axis, every dotted arrow denotes

28

a Following axis, and every double line from x to y (where x is above and y

is below) denotes the gadget Descendant(x, y) =

NextSibling(x1, x) ∧ NextSibling(x, x2) ∧ Following(x1, y) ∧ Following(y, x2),

where x1 and x2 are the variables left and right from x in Figure 12, respec-
tively. It is easy to see that Descendant(x, y) expresses that Child+(x, y) must
hold in all cases: either x and y are labeled differently, or one of their siblings
is labeled differently.

Furthermore, the placement of the Xi-labeled nodes is different from their
placement for Theorem 18. Here, the idea is that the Xi labeled nodes are
either descendants of the Z-labeled descendant of the R2-labeled node, or
descendants of one of the two rightmost Z-labeled right siblings of the R2-
labeled node.

Given that a double line denotes the above Descendant gadget, the 1-in-3
gadget of Q are almost the same as in Figure 10(a). The only difference is
that the L1, L2, and L3 labeled nodes need extra left and right siblings in the
gadget to express the descendant relation. This is illustrated in Figure 13(a).
The gadgets Qi and Q′

i are then wired in precisely the same manner as in the
proof of Theorem 18.

The most significant change in the Q-query is in the gadgets for the X-
variables. How to adapt these gadgets is illustrated in Figure 13(b). The re-
mainder of the proof is analogous to the proof of Theorem 18. 2

Theorem 25 Containment is ΠP
2 -hard for CQ(Following, NextSibling+) and

CQ(Following, NextSibling∗).

PROOF. The reduction for CQ(Following , NextSibling+) is analogous to the
one in Theorem 24, i.e., we can replace every NextSibling in the proof of Theo-
rem 24 with a NextSibling+. The reduction of Theorem 24 can be adapted to a
reduction for CQ(Following , NextSibling∗) by replacing every NextSibling(x, y)
in P with NextSibling∗(x, xy)∧H(xy)∧NextSibling∗(xy, y), where H is a new
label; replacing every NextSibling(x, y) in Q with NextSibling∗(x, y); and by
changing the number of Following-steps in the X-gadgets of Q.

Consider a varX(i, j)-gadget from the proof of Theorem 24. We observe that
in an intended minimal model of P , if we take k minimal following steps from
a node labeled Li, we will actually be following a NextSibling-axes k − 4 + i

times. Thus, after the modification of P , where each NextSibling-axes has been
doubled, we will need 2(k−6+ i)+6− i = 2k−6+ i Following steps to reach
the corresponding node. For l, the corresponding new number is 2k − 5 + i.

29

D

D L1

A L1

A

D

L2

D L2

B

B L2

B

D

L3

D L3

C

C

D
1

2

3

4 5

6

7

(a) Fragment T .

Xi

Z• •

D

D R1

W R2

Z Z D

Z Z D

D

(b) Fragment X.

D b b b D

T T X

(c) Query P .

Fig. 12. Definition of query P in the proof of Theorem 24.

L1• •

A

L2• •

B

L3• •

C

Following7

Following2 Following2

Following4 Following4

(a) The 1-in-3 gadget.

Li• •

• Z• •

Xj

• ••
Followingk

Followingℓ

(b) New X-gadgets. For varX(i, j) the values of k and ℓ are
25 and 28 for i = 1, 20 and 25 for i = 2, and 17 and 20 for
i = 3, respectively.

Fig. 13. How to adapt Q for Theorem 24.

This means, that in the new varX(i, j)-gadgets (see Figure 13(b)), when i = 1
we get k = 45 and l = 52. For i = 2 we get k = 26 and l = 47, while the
numbers for i = 3 are k = 31 and l = 38.

The correctness proofs for both cases are obtained through Observation 5. 2

30

4 Satisfiability

We first note that a conjunctive query Q is satisfiable if and only if all its
maximal connected components are satisfiable. We therefore assume in our
proofs that Q has only one maximal connected component.

Proposition 26 Satisfiability for CQs is in NP.

PROOF. It is easy to see that if a CQ is satisfiable, then it is satisfiable in
a linear size tree. Indeed, let Q be a CQ and let t be a tree satisfying Q under
valuation θ. Now let t′ be a tree that

• contains the set T of nodes of t onto which variables are matched by θ;
• contains, for each nonempty S ⊆ T , the least common ancestor of the nodes

in S;
• contains no other nodes; and
• preserves the descendant relation and document order (i.e., depth-first-left-

to-right order) from t.

It is easy to see that t′ contains less than 2 · |Var(Q)| nodes and that t′ models
Q. Thus we can guess this tree, guess a valuation for Q on t′, and verify
in polynomial time that the valuation is actually a satisfaction, i.e., that all
atoms of Q are satisfied. 2

4.1 PTIME Upper Bounds

Theorem 27 Satisfiability is in PTIME for CQ(Child) and CQ(NextSibling).

PROOF. First, we apply the chase on the relations in Q, i.e., we compute
equivalence classes [x] of variables such that [x] is the maximal set of variables
such that for any t ∈ L(Q) and any satisfaction θ for Q on t, we must have
θ(y) = θ(x) for all y ∈ [x].

For Q ∈ CQ(Child), we start with one class for each variable in Var(Q),
and iteratively merge classes [x] and [y] if there are x′ ∈ [x], y′ ∈ [y], and
a variable z such that both Child(x′, z) and Child(y′, z) are atoms of Q. For
Q ∈ CQ(NextSibling) we do the same, with the addition that we also merge
classes [x] and [y] if there are x′ ∈ [x], y′ ∈ [y], and z such NextSibling(z, x′)
and NextSibling(z, y′) are both atoms of Q.

Once we have computed the equivalence classes, i.e., when no more classes
can be merged using the rules above, we rewrite Q, obtaining a new query

31

Q′. This is done by creating a new variable for each class and replacing each
occurance of a variable in Q with the variable representing it’s class. It should
be clear that Q′ is satisfiable if and only if Q is satisfiable.

Our new query Q′ is satisfiable if and only if the following two conditions are
met.

(1) There is no variable x in Q′ that has two labels, i.e., there is no x such
that both a(x) and b(x) are atoms of Q′, with a 6= b.

(2) There are no cycles in Q′, i.e., the query graph of Q′ is acyclic.

Each of these conditions can be tested in polynomial time. 2

Before we state the next theorem, we introduce the concept of a siblinghood,
which will be useful in our next two proofs.

Definition 28 In a tree t, a siblinghood is a subset S of Nodes(t) such that
all nodes in S have the same parent, i.e., there is a node u ∈ Nodes(t) such
that Child(u, v) holds for all v ∈ S.

Theorem 29 Satisfiability is in PTIME for CQ(NextSibling+,NextSibling∗,
Following) and CQ(Child+,Child∗).

PROOF. We start by checking for cycles. If the query graph of Q has a cycle
on which at least one edge is labeled by NextSibling+, Following , or Child+,
then Q is unsatisfiable. Unlike in the proof of Theorem 27, however, a query
may have cycles of Child∗(resp., NextSibling∗) axes and still be satisfiable. On
such cycles, there can be no variables x, y such that a(x) and b(y) are atoms,
for a 6= b. If there is, Q is unsatisfiable. Allowed cycles, i.e., those consisting
of only Child∗(resp. NextSibling∗) axes and without multiple labels, can be
removed by identifying all variables on the cycle. In the remainder of the
proof, we assume that the query is cycle free.

For CQ(NextSibling+,NextSibling∗,Following), we argue that if Q is satisfiable,
then there is a tree t and a satisfaction θ for Q on t such that θ assigns
all variables of Q to nodes of t that belong to the same siblinghood. As a
first step, we note that if Q is satisfiable, then Q′, obtained by replacing all
NextSibling∗-atoms of Q by NextSibling+-atoms is also satisfiable. Indeed, if
θ is a satisfaction of Q on tree t, NextSibling∗(x, y) is an atom of Q, and
θ(x) = θ(y), we can modify t by inserting a new node between θ(x) and its
left sibling (or at the beginning of the siblinghood if there is no left sibling),
and modify θ by assigning x to the new node. After doing this for all such
pairs x, y, the modified θ is a satisfaction of both Q and Q′.

32

Next, we note that any acyclic query Q in CQ(NextSibling+,Following) induces
a strict partial ordering on the variables. A topological sorting according to
this partial ordering gives us a string of variables such that if NextSibling+(x, y)
or Following(x, y) is an atom of Q, then x appears before y in the string. From
such a string it is easy to construct a tree with a siblinghood that satisfies
Q. This shows that any Q ∈ CQ(NextSibling+,NextSibling∗,Following) that
passes the acyclicity tests at the beginning of this proof is satisfiable.

For CQ(Child+, Child∗) we use the same arguments as for CQ(NextSibling+,
NextSibling∗, Following), except that instead of a siblinghood we use a unary
tree, i.e., a tree that does not branch. 2

Theorem 30 Satisfiability is in PTIME for CQ(Child, NextSibling) and CQ(Child,
NextSibling+, NextSibling∗).

PROOF. For a conjunctive query Q in either of the classes above, we let
Qns be the subquery obtained by removing all Child-atoms from Q. Similarly,
let Qc be the subquery obtained by removing all NextSiblingα-atoms, for α ∈
{1, +, ∗}. We note that if variables x and y belong to the same maximal
connected component of Qns, then, for any tree t ∈ L(Q), any satisfaction for
Q on t has to assign x and y to nodes that belong to the same siblinghood of
t.

We first present an algorithm for checking satisfiability of queries Q in CQ(Child ,
NextSibling). If the query graph of Q has cycles, it is always unsatisfiable. Thus
we assume that Q is acyclic.

In the description of the algorithm, we make use of a copy P of Q, which
will be modified by the algorithm. Actually we can see P as being defined on
equivalence classes [x] of variables, which the algorithm sometimes merges. At
the beginning, P thus has one singleton class [x], for each variable x ∈ Var(Q).

The algorithm first iterates over the following three steps, and stops when no
merges occurred in the last iteration.

(1) For each pair [x], [y], check whether there exist [z], [z′] that belong to
the same connected component of Pns and such that Child([x], [z]) and
Child([y], [z′]) are atoms of P . If this is the case, try to merge [x] and [y].
This try fails if there are x ∈ [x] and y ∈ [y] such that a(x) and b(y) are
atoms of Q, for a 6= b. If the check fails, P is unsatisfiable.

(2) For each maximal connected component of Pns, check satisfiability as in
the proof of Theorem 27. When this procedure merges classes of variables,
carry these merges over to Pns, Pc, and P .

(3) For each maximal connected component of Pc, check satisfiability as in
the proof of Theorem 27. When this procedure merges classes of variables,

33

carry these merges over to Pns, Pc, and P .

If the iteration stops without reporting unsatisfiability, the algorithm performs
one extra test. This is an acyclicity test on an extended query graph G+

P of P ,
namely the graph where Child -edges are, as usual, considered directed, while
NextSibling-edges are considered undirected (or, equivalently, can be traversed
in both directions). In G+

P , we test whether there is a cycle that uses at least
one Child -edge. If this is the case, P is unsatisfiable. Indeed, if t is a tree and θ

a valuation for P on t such that θ([y]) is a child of θ([x]), then θ([x]) can never
be reached from θ([y]) by taking any number of Child - or NextSibling-steps in
t.

Notice that the steps of the iteration above only try to merge variables that
always have to be assigned to the same tree node by any satisfaction for P .
They report unsatisfiability if such a merge fails or if a merge has introduced
cycles. This immediately implies that Q is unsatisfiable as well.

If all tests above succeed, we claim that P is satisfiable.

i Since step (1) of the iteration cannot merge any more classes, we know
that for each connected component C of Pns, there is at most one variable
[x] of P that can have child axes to variables in C.

ii Since step (2) cannot merge any more classes, we know that each connected
component of Pns is string-shaped, that is, forms a non-branching sequence
of variable classes, connected by NextSibling-axes.

iii Since step (3) cannot merge any more classes, we know that Pc is forest-
shaped.

iv We also know that no two variable classes that belong to the same con-
nected component of Pns are connected via Child -axes.

Let C = {C1, . . . , Ck} be the maximal connected components of Pns. We define
the relation ≺ on C × C by Ci ≺ Cj if there are variables [x] ∈ Var(Ci) and
[y] ∈ Var(Cj) such that Child([x], [y]) is an atom of P . We argue that the
directed graph G≺ = (C,≺) of ≺ is a forest. To do this, we must show that
G≺ has no cycles, and that there are no i 6= j 6= k such that Ci ≺ Ck and
Cj ≺ Ck.

A cycle in G≺ would immediately imply a cycle in G+
P containing at least one

child axis, which the algorithm has already tested for. Thus G≺ is acyclic.

Suppose there are i 6= j 6= k such that Ci ≺ Ck and Cj ≺ Ck. Then there
must be [x] ∈ Var(Ci), [y] ∈ Var(Cj), and [z], [z′] ∈ Var(Ck) such that both
Child([x], [z]) and Child([y], [z′]) are atoms of P . This is ruled out by (i) above,
and thus a contradiction.

34

Given this knowledge, we can construct a witness tree t and an accompanying
satisfaction θP as follows. For each maximal connected component Ci of Pns,
we construct a siblinghood Si modeling the component, and let θP assign
variables to nodes in the straightforward way. This is always possible by (ii).

For each pair of variables [x], [y] such that Child([x], [y]) is an atom of P ,
we add a child edge from θP ([x]) to each node in the siblinghood θP ([y])
belongs to. Since we know that G≺ is a forest, the resulting structure is a
forest. To complete the construction, we add a new root node, and connect it
to the root of each tree in the forest. It immediately follows that all Child -
and NextSibling-atoms are satisfied. Thus θP is a satisfaction of P on t. It is
straightforward to see that θQ, defined by θQ(x) = θP ([x]) is a satisfaction of
Q on t.

For CQ(Child ,NextSibling+,NextSibling∗), the process is similar. The differ-
ences lie in steps (1) and (2) of the iteration. In (1), we allow merging vari-
ables that are connected with the NextSibling∗-axes, but not those connected
by the NextSibling+-axes. In (2), satisfiability checking for Pns is done as in the
proof of Theorem 29. This means that after the iteration terminates, it is not
necessarily the case that each connected component of Pns is string-shaped.
Each such component is, however, satisfiable, and we can, as argued in the
proof of Theorem 29, find a string model for it by considering a topological
sorting. 2

4.2 NP lower bounds

a1
1 # a2

1 # · · · # an1

1

#
...

... #

a1
m # a2

m # · · · # anm
m

• • • • · · · • •

Fig. 14. Gadget for the proof of Theorem 31.

Theorem 31 Satisfiability is NP-hard for

(1) CQ(Child, Child+), (4) CQ(NextSibling,NextSibling∗),

(2) CQ(Child,Child∗), (5) CQ(NextSibling,Following), and

(3) CQ(NextSibling,NextSibling+), (6) CQ(Child,Following).

PROOF. All reductions are from Shortest Common Supersequence. For cases
(1)–(5), the reductions are very similar. Let let S and k be an instance of
Shortest Common Supersequence. For each of the fragments, we define a
conjunctive query P such that P is satisfiable if and only if there exists a short-
est common supersequence for S of length at most k. Let S = {s1, . . . , sm}

35

where, for each i = 1, . . . , m, si = a1
i · · ·a

ni

i . Let # be a symbol not occurring
in any string in S.

The construction of P is depicted in Figure 14. The dotted arrows denote
Child+, Child∗, NextSibling+, NextSibling∗, or Following-axes and the solid ar-
rows denote Child or NextSibling axes, whichever are relevant for the fragment
under consideration. The bulleted (“•”) nodes represent unlabeled variables.
The idea is that the path with the solid arrows contains 2k−1 bulleted nodes.
Hence, there exists a tree model for the query if and only if there exists a
shortest common supersequence for S of length at most k.

For fragment (6), the above reduction does not work. It can be fixed, however,
by using the same trick as in Theorem 17, i.e., replacing all occurrences of
Child+(u, v) in the proof for CQ(Child ,Child+) by

Child(u, z1) ∧ Child(u, z2) ∧ Following(z1, v) ∧ Following(v, z2).

2

5 Conclusions

We have determined the complexity of the containment problem for all sets of
axes built from Child , NextSibling , their transitive, respectively reflexive and
transitive, closures, and Following . The complexity of the satisfiability prob-
lem was pinpointed for most sets, but the cases involving transitive closures of
Child and NextSibling (which we believe will be quite similar) are still open.

All these results were obtained in a schema-less setting. Since XML processing
is mostly done with respect to a schema, this is far from the complete picture.
In a recent paper [3] we studied the containment, satisfiability, and validity
problems for conjunctive queries with respect to schemas. It turns out that the
presence of a schema dramatically increases the complexity. In particular con-
tainment of CQs with respect to DTDs is shown to be 2EXPTIME-complete.

References

[1] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siméon. XML Path Language (XPath) 2.0. Technical report, World Wide
Web Consortium, January 2007. http://www.w3.org/TR/xpath20/.

[2] H. Björklund, W. Martens, and T. Schwentick. Conjunctive query containment
over trees. In 11th International Symposium on Database Programming
Languages (DBPL), pages 66–80, 2007.

36

[3] H. Björklund, W. Martens, and T. Schwentick. Optimizing conjunctive queries
over trees using schema information. Manuscript, submitted for publication,
2008.

[4] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon.
Xquery 1.0: An XML query language. Technical report, World Wide Web
Consortium, January 2007. http://www.w3.org/TR/xquery/.

[5] E. P. F. Chan and R. van der Meyden. Containment and optimization of object-
preserving conjunctive queries. Siam Journal on Computing, 29(4):1371–1400,
2000.

[6] J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. Technical
report, World Wide Web Consortium, 1999. http://www.w3.org/TR/xpath/.

[7] J. Gallant, D. Maier, and J. A. Storer. On finding minimal length superstrings.
Journal of Computer and System Sciences, 20(1):50–58, 1980.

[8] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath
query evaluation and XML typing. Journal of the ACM, 52(2):284–335, 2005.

[9] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. Journal
of the ACM, 53(2):238–272, 2006.

[10] J. Hidders. Satisfiability of XPath expressions. In 9th International Workshop
on Database Programming Languages (DBPL), pages 21–36, 2003.

[11] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000.

[12] G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.
Journal of the ACM, 51(1):2–45, 2004.

[13] K.J. Räihä and E. Ukkonen. The shortest common supersequence problem over
binary alphabet is NP-complete. Theoretical Computer Science, 16(2):187–198,
1981.

[14] B. ten Cate and C. Lutz. The complexity of query containment in expressive
fragments of XPath 2.0. In 26th International Symposium on Principles of
Database Systems (PODS), pages 73–82, 2007.

[15] S. Vansummeren. On deciding well-definedness for query languages on trees.
Journal of the ACM, 54(4), 2007.

37

