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ABSTRACT
XML Schema Definitions (XSDs) can be adequately ab-
stracted by the single-type regular tree languages. It is well-
known, that these form a strict subclass of the robust class
of regular unranked tree languages. Sadly, in this respect,
XSDs are not closed under the basic operations of union
and set difference, complicating important tasks in schema
integration and evolution. The purpose of this paper is to
investigate how the union and difference of two XSDs can
be approximated within the framework of single-type regular
tree languages. We consider both optimal lower and upper
approximations. We also address the more general question
of how to approximate an arbitrary regular tree language by
an XSD and consider the complexity of associated decision
problems.
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1. INTRODUCTION
Despite the existence of viable alternatives [9], XML Sche-

ma is momentarily the only industrially accepted and widely
supported schema language for XML. Although the presence
of a schema accompanying an XML repository has many ad-
vantages in terms of XML processing and (meta)data inte-
gration, it has already been observed several times that in
practice XSDs are faulty or simply missing [2, 5, 19]. Even
though the exact causes of the absence of schemas and the
high percentage of errors in XSDs are difficult to pinpoint,
the high complexity of XML Schema undoubtedly plays an
important role.

In [4], we therefore initiated a research program to simplify
the use of XML Schema. While the latter paper focused on
the handling of non-deterministic content models (forbidden
by the Unique Particle Attribution (UPA) constraint), the
present paper concentrates on the Element Declaration Con-
sistent (EDC) constraint which imposes restrictions on the
use of the typing mechanism in XSDs. The most immedi-
ate advantage of EDC is that it facilitates a simple one-pass
top-down validation algorithm. On the negative side, the
constraint breaks the equivalence of XML Schema with the
robust class of unranked regular tree languages and, more
specifically, it prevents the closure of XSDs under two of the
Boolean operations: union and set difference. The latter



defect greatly complicates common tasks in XML Schema
integration and evolution where the union and difference
operators play a fundamental role (cf. [3]). Indeed, merg-
ing two (or more) XSDs becomes a non-trivial task when
the target schema can no longer be represented by an XSD.
The same holds true for refactoring a large schema into sev-
eral components. To this end, we investigate in this paper
how to compute optimal approximations of the union and
difference of XSDs. More general, we look into optimal ap-
proximations of arbitrary unranked regular tree languages,
thereby laying the foundation of a translation from Relax
NG to XML Schema.

Approximations come in two distinct flavours. Depend-
ing on the application at hand, we are either interested in
a maximal lower or a minimal upper approximation. For
instance, in a typical data integration scenario, where the
union of two XSDs, X and Y , needs to be represented by
an XSD S, we want to allow all XML data described by X
and Y but at the same time minimize the amount of errors,
that is, XML documents outside X ∪Y . In such a setting S
needs to be a minimal upper approximation of X ∪Y . Max-
imal lower approximations can, for instance, be motivated
by the following kind of data exchange scenario. When a
Web service describes its interface by means of a schema
X in Relax NG, a corresponding XSD S needs to be made
available for general use. To ensure a correct handling of
requests, S should only define XML documents present in
X. That is, S should be a maximal lower approximation of
X.

Contributions. We show that, for every regular unranked
tree langugage X, there is a unique minimal upper XSD-ap-
proximation S. The latter approximation can be computed
in exponential time when X is represented as an extended
DTD (EDTD). Furthermore, S can have exponentially more
types than X and in general this blow-up cannot be avoided.
In strong contrast, the union and difference of two XSDs
can be uniquely approximated in polynomial time. Decid-
ing whether a given single-type EDTD is a minimal upper
XSD-approximation of a EDTD is shown to be complete for
pspace.

Maximal lower XSD-approximations do not behave as nice-
ly as their upper counterparts. Indeed, even for the union
of two XSDs X and Y we show that there can be infinitely
many maximal lower XSD-approximations. We therefore
focus on XSD-approximation which extend either X or Y .
We show such approximations to be unique and to be com-
putable in polynomial time. We show that for the special
case of non-recursive unranked regular tree languages there
always exists a maximal lower approximation and that it is
decidable whether a given XSD is a maximal lower XSD-ap-
proximation. It is unclear whether the same results hold for
arbitrary regular languages.

Using the minimization algorithm from [16], we can also
minimize the output XSDs of our approximation algorithms.
Since minimizing an XSD can be done in polynomial time,
this extra step would cost polynomial time in the size of our
output XSDs. In that sense, we can always deliver optimal
representations of optimal approximations.

Related Work. Murata et al. established a taxonomy
of XML Schema languages in terms of tree languages [17].
More precisely, they classified DTDs as the local tree lan-
guages, XSDs as the single-type tree languages (ST-REG)
and Relax NG as the unranked tree languages. Furthermore,

they obtained a one-pass top-down validation algorithm for
ST-REG and stated (without proof) that ST-REG is not
closed under union and set difference. Martens et al [15]
characterized ST-REG as the subclass of the regular tree
languages closed under ancestor-guarded subtree exchange,
from which the failure of closure of ST-REG under union
and difference easily follows. In the same paper, the au-
thors showed that it is exptime-complete to decide whether
a given regular tree language can be represented by an equiv-
alent single-type one.

To the best of our knowledge, optimal single-type approxi-
mations of regular tree languages have not been investigated.

Outline. Section 2 introduces the necessary definitions.
In Section 3, we discuss minimal upper XSD-approxima-
tions, while we address maximal lower XSD-approximations
in Section 4. Section 5 discusses how our results change
when NFAs and (deterministic) regular expressions are used
as content models. We conclude in Section 6.

2. DEFINITIONS
For a finite set S, we denote by |S| its cardinality.

2.1 Strings, trees, and contexts
By Σ we always denote a finite alphabet. As usual, a (non-

deterministic) finite automaton (NFA) over alphabet Σ is a
tuple N = (Q, Σ, δ, I, F ), where Q is its finite set of states,
Σ is the alphabet, δ : Q×Σ→ 2Q is the transition function,
I is the set of initial states, and F is the set of final states.
The automaton N is state-labeled when, for every state q, all
transitions to q carry the same label. That is for each q ∈ Q,
{a ∈ Σ | q ∈ δ(q′, a) for some q′ ∈ Q} is either empty or a
singleton. In the latter case, we denote this unique alphabet
symbol by label(q). The automaton N is deterministic, or
a DFA, if I is a singleton and the cardinality of each set
δ(q, a) is at most one. By N(w), we denote the set of states
that N can end up in when reading w ∈ Σ∗ started in some
state q ∈ I. The regular expressions (RE) r over Σ are of
the form

r ::= ∅ | ε | a | rr | r + r | (r)? | (r)+ | (r)∗,

where ε denotes the empty string and a ranges over symbols
in the alphabet Σ. Sometimes we also use the symbol ·
for regular expression concatenation to improve readability.
As usual, we write L(r) for the language defined by regular
expression r and L(N) for the language defined by finite
automaton N .

The set of Σ-trees, denoted by TΣ, is inductively defined
as follows: (1) every a ∈ Σ is a Σ-tree; and (2) if a ∈ Σ
and t1, . . . , tn ∈ TΣ for n ≥ 1 then a(t1, . . . , tn) is a Σ-tree.
There is no a priori bound on the number of children of a
node in a Σ-tree; such trees are therefore unranked. In the
following, when we say tree we always mean a Σ-tree. A tree
language is a set of trees.

For every tree t, the set of nodes of t, denoted by Dom(t),
is the set defined as follows: if t = a(t1, . . . , tn) with a ∈ Σ,
n ≥ 0, and t1, . . . , tn ∈ TΣ, then Dom(t) = {ε} ∪ {iu : 1 ≤
i ≤ n, u ∈ Dom(ti)}. Thus, ε represents the root while ui
represents the i-th child of u. For a node v ∈ Dom(t), we
denote the Σ-label of v by labt(v). When v has n children,
we denote by ch-strt(v) the child-string of v, i.e., the string
labt(v1) · · · labt(vn). Denote by t1[v ← t2] the tree obtained
from a tree t1 by replacing the subtree rooted at node v of



t1 by t2; hence, in t1[v ← t2], the label of v is the root label
of t2. By subtreet(v) we denote the subtree of t rooted at v.

A context is a tree with a “hole” marker •. More specifi-
cally, a context C is a tree over the alphabet Σ ∪ (Σ× {•})
in which all nodes are labeled with Σ-symbols, except for
one leaf that is labeled with (a, •) for some a ∈ Σ. Given
a context C with a hole marker at node u and a tree t′ =
a(t1, . . . , tn), we denote by C[t′] the Σ-tree C[u ← t′]. If
C′ is another context with root label a or (a, •), we denote
by C[C′] the context C[u← C ′]. We say that we apply the
context C to tree t′ (respectively, context C ′). Notice that
we can only apply a context C to a tree t′ (respectively, con-
text C′) if the root of t′ (respectively, C′) bears the same
Σ-label as the distinguished leaf in C.

2.2 XML schema languages
We abstract XML Document Type Definitions (DTDs) as

follows:

Definition 2.1. A DTD is a tuple (Σ, d, Sd), where Σ
is a finite alphabet, d is a function that maps Σ-symbols
to regular string languages over Σ, and Sd ⊆ Σ is the set
of start symbols. For notational convenience we sometimes
denote (Σ, d, Sd) by d.

A tree t satisfies d if its root is labeled by an element of Sd

and, for every node v with label a, the child-string ch-strt(v)
is in the language defined by d(a). By L(d) we denote the
language of trees satisfying d.

The size of a DTD is |Σ| + |Sd| + |d| where |d| refers
to the size of the representations of the regular string lan-
guages. Unless specified otherwise, we represent all such
regular string languages by DFAs.1 Hence, |d| is the sum of
the sizes of all DFAs representing languages d(a) for a ∈ Σ.

To boost its expressiveness, the XML Schema specification
extends DTDs with a typing mechanism, abstracted in the
form of extended DTDs as follows [17, 18]:

Definition 2.2. An extended DTD (EDTD) is a tuple
D = (Σ, ∆, d, Sd, µ), where ∆ is a finite set of types, (∆, d, Sd)
is a DTD and µ is a mapping from ∆ to Σ.

A tree t satisfies D if t = µ(t′) for some t′ ∈ L(d). Again,
we denote by L(D) the language of trees satisfying D.

Extended DTDs are well-known to define the class of un-
ranked regular tree languages (UREG) [7, 18]. The size of
an EDTD is |Σ| plus the size of its underlying DTD.

Proviso 2.3. In this paper, we assume that all EDTDs
are reduced. Formally an EDTD (Σ, ∆, d, Sd, µ) is reduced
if, for each type τ ∈ ∆, there exists a tree t′ ∈ L(d) and

a node u such that labt′(u) = τ . It is widely known that
an equivalent reduced EDTD can be computed from a given
EDTD in polynomial time (see, e.g., [1, 14]).

As the Element Declarations Consistent rule severely con-
strains the use of the typing mechanism [10], extended DTDs
do not constitute a satisfactory abstraction of XSDs. There-
fore, XSDs are commonly abstracted as single-type EDTDs
[17, 15, 13]:
1In Section 5, we discuss how our results change when (de-
terministic) regular expressions and NFAs are used. Note
also that XML Schema restricts regular expressions to be
deterministic, a strict subclass of DFAs. In fact, any deter-
ministic regular expression can be translated in quadratic
time to a corresponding DFA.

Definition 2.4. A single-type EDTD (stEDTD in short)
is an EDTD (Σ, ∆, d, Sd, µ) with the property that no two
types τ and τ ′ exist with µ(τ ) = µ(τ ′) such that τ and
τ ′ occur (i) both in Sd or (ii) both in the same regular
expression.

We refer to ST-REG as the class of tree languages defin-
able by single-type EDTDs. The type-size of a language T in
ST-REG is min{|∆| | L(D) = T and D = (Σ, ∆, d, Sd, µ)},
i.e., the smallest number of types among all stEDTDs defin-
ing T .

Martens et al. provided several alternative characteriza-
tions of single-type EDTDs [15, 13]. One of these is a sim-
ple extension of DTDs, which we define next. We denote by
anc-strt(v) the sequence of labels on the path from the root
to v including both the root and v itself.

Definition 2.5. A DFA-based DTD is a pair (A, d), where
A = (Q, Σ, δ, {qinit}) is a state-labeled DFA with initial state
qinit and without final states, and d is a function mapping
Q \ {qinit} to regular languages over Σ.

A tree t satisfies D if, for every node u, A(anc-strt(u)) =
{q} implies ch-strt(u) is in the language defined by d(q).

Proposition 2.6 ([13]). DFA-based DTDs are expres-
sively equivalent to single-type EDTDs and one can translate
between DFA-based DTDs and single-type EDTDs in linear
time.

We next recall a fundamental characterization of single-
type EDTDs in terms of a subtree-exchange property, graph-
ically illustrated in Figure 1.

Definition 2.7. A tree language T is closed under an-
cestor-guarded subtree exchange if the following property
holds. Whenever for two trees t1, t2 ∈ T with nodes v1, v2

respectively, anc-strt1 (v1) = anc-strt2(v2) then

t1[v1 ← subtreet2(v2)] ∈ T.

Theorem 2.8 ([15]). A regular tree language T is de-
finable by a single-type EDTD if and only if it is closed under
ancestor-guarded subtree exchange.

2.3 XSD-Approximations
Here we define the notions of lower and upper XSD-ap-

proximations which constitute the central theme of this work.

Definition 2.9. An upper XSD-approximation of a tree
language T is a language T ′ definable by a single-type EDTD
that contains T . An upper XSD-approximation is minimal
if there is no other upper XSD-approximation X of T such
that T ⊆ X ⊂ T ′.

A lower XSD-approximation of a tree language T is a
language T ′ definable by a single-type EDTD that is con-
tained in T . A lower XSD-approximation is maximal if
there is no other lower XSD-approximation X of T such
that T ′ ⊂ X ⊆ T .

2.4 Complexity-Theoretic Results
We recall a complexity-theoretic result about EDTDs which

we use in the remainder of the paper. The following theo-
rem follows from a well-known result by Seidl [20], and the
close correspondence between EDTDs and tree automata
discussed by Papakonstantinou and Vianu [18].
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Figure 1: Ancestor-guarded subtree exchange (anc-strt1 (v1) = anc-strt2(v2)).

Theorem 2.10 ([18, 20]). The universality problem for
EDTDs, i.e., deciding whether TΣ ⊆ L(D) for an EDTD D,
is exptime-complete.

Notice that, since TΣ is definable by a DTD, also the inclu-
sion problem L(D1) ⊆ L(D2) is exptime-complete if D2 is
an EDTD and D1 is either a DTD or stEDTD.

2.5 Single-type closure and derivation trees

Definition 2.11. We denote by closure(T ) the smallest
tree language closed under ancestor-guarded subtree exchan-
ge which contains T . We will write closure(t1, t2) if T =
{t1, t2}.

By Lemma 2.12 this notion is well-defined.

Lemma 2.12. Let (Xi)i∈I be an arbitrary family of tree
languages where each Xi is closed under ancestor-guarded
subtree exchange. Then the intersection

T

i∈I
Xi is also

closed under ancestor-guarded subtree exchange.

Proof. Let X =
T

i∈I Xi. Let t1, t2 be two trees from

X with nodes v1, v2 resp., and anc-strt1 (v1) = anc-strt2(v2).
For each i ∈ I we have t1, t2 ∈ Xi and thus t = t1[v1 ←
subtreet2(v2)] ∈ Xi. Therefore t ∈ X, and thus X is closed
under ancestor-guarded subtree exchange.

Definition 2.13. Let X be a tree language and t a tree
from closure(X). A derivation tree of t with respect to X
is a binary tree ϑ labeled with trees from closure(X) such
that:

• The root of ϑ is labeled with t: labϑ(ε) = t.

• For each leaf v ∈ Dom(ϑ) we have labϑ(v) ∈ X.

• For each internal node v ∈ Dom(ϑ) and i ∈ {0, 1},
let ti = labϑ(vi). Then there are nodes ui ∈ Dom(ti)
such that anc-strt0 (u0) = anc-strt1 (u1) and labϑ(v) =
t0[u0 ← subtreet1(u1)].

Lemma 2.14. Let X be a tree language. For any tree t,
t ∈ closure(X) if and only if t has a derivation tree with
respect to X.

3. UPPER XSD-APPROXIMATIONS
In this section, we consider upper XSD-approximations of

EDTDs. In general, constructing an optimal upper XSD-ap-
proximation of an EDTD requires exponential time. How-
ever, given two single-type EDTDs D1 and D2, we can
construct optimal upper XSD-approximations for languages
L(D1)∪L(D2), L(D1)∩L(D2), and TΣ\L(D1) in polynomial
time.

3.1 EDTDs
We show that for every regular tree language there exists

an unique upper XSD-approximation. In particular, the lat-
ter approximation can be obtained by determinizing the type
automaton corresponding to the given EDTD. The overall
construction can be computed in exponential time and re-
sults in an approximation of exponential type-size which in
general cannot be avoided.

Definition 3.1. The type automaton of an EDTD D =
(Σ, ∆, d, Sd, µ) is a state-labeled NFA N = (Q, Σ, δ, {qinit})
without final states such that Q = ∆ ] {qinit} and for each
q ∈ Q

• if q = qinit, then δ(q, a) = {τ | µ(τ ) = a and τ ∈ Sd},
and

• otherwise, δ(q, a) = {τ | µ(τ ) = a and τ occurs in
(some string in) d(q)}.

Example 3.2. Consider the following EDTD D = (Σ,
∆, d, Sd, µ), with ∆ = {τa, τ

1
b , τ 2

b }, Sd = {τa} and µ(τa) = a,
µ(τ 1

b ) = µ(τ 2
b ) = b:

τa → τa + τ 1
b

τ 1
b → τ 2

b + ε
τ 2
b → τa + τ 2

b + ε

Then, this is the type automaton of D:

qinitstart τa τ 1
b τ 2

ba

a

b b

b
a

We make the following observations:

Observation 3.3. (1) Given an EDTD, its type automa-
ton can be constructed in linear time.

(2) For each EDTD, the state qinit of its type automaton has
no incoming transitions.

(3) The type automaton of an EDTD D is a DFA if and
only if D is a single-type EDTD.

Here we give a general construction for the upper ap-
proximation of a given EDTD D = (Σ, ∆, d, Sd, µ). Let
N = (QN , Σ, δN , {qinit}) be the type automaton of D, and
let AN = (Q,Σ, δ, {{qinit}}) be the DFA obtained from N
by performing the standard subset construction. That is,
Q ∈ 2QN is the smallest set such that {qinit} ∈ Q and when-
ever S ∈ Q then for every a ∈ Σ,

S

q∈S
δN (q, a) ∈ Q. By

construction and Observation 3.3(2), each non-initial state



consists of a set of types S of D with µ(τ ) = µ(τ ′) for all
τ, τ ′ ∈ S. Then define the DFA-based DTD (AN , d′) with

d′(S) :=
[

τ∈S

µ(d(τ )) for every S ∈ Q.

Here, µ is canonically extended to languages.
Theorem 3.4 will show that (AN , d′) is in fact a minimal

upper XSD-approximation of D.

Theorem 3.4. The minimal upper XSD-approximation of
an EDTD is unique and can be computed in exponential
time. There is a family of EDTDs (Dn)n≥2, such that the
size of every Dn is O(n) but the type-size of the minimal
upper XSD-approximation is Ω(2n).

We conclude this section by discussing the complexity of
testing whether a given single-type EDTD is the minimal
upper XSD-approximation of an EDTD. The proof makes
use of the following lemma which is interesting in its own
right as it contrasts with the exptime-completeness of test-
ing equivalence of an EDTD and a single-type EDTD (The-
orem 2.10). Recall from Section 2 that EDTDs use DFAs
and not NFAs to represent their regular string languages,
which is crucial for the following lemma.

Lemma 3.5. Let D1 be an EDTD and let D2 be a single-
type EDTD. Testing whether L(D1) ⊆ L(D2) is in ptime.

Using the previous lemma and an on-the-fly construction of
the minimal upper XSD-approximation we get the following
theorem.

Theorem 3.6. Deciding whether a single-type EDTD is
a minimal upper XSD-approximation of a given EDTD is
pspace-complete.

3.2 Unions of XSDs
We next address the optimal upper XSD-approximation

for the union of two XSDs.

Theorem 3.7. Let D1 and D2 be two single-type EDTDs.
The minimal upper XSD-approximation of L(D1)∪L(D2) is
unique and can be computed in time O(|D1||D2|). There is
a family of pairs of single-type EDTDs (Dn

1 , Dn
2 )n≥1, such

that the size of every Dn
1 and Dn

2 is O(n) but the type-size of
the minimal upper XSD-approximation for L(Dn

1 ) ∪ L(Dn
2 )

is Ω(n2).

Proof. Let D be an EDTD for the language L(D1) ∪
L(D2). The type automaton of D is the product2 of the type
automata of D1 and D2. The determinization process of Sec-
tion 3.1 can in this case be performed in time O(|D1||D2|).
Therefore, the type-size of the minimal upper XSD-approx-
imation D′ for L(D1)∪L(D2) is O(|D1||D2|). Furthermore,
since each DFA in D′ is the union of at most one DFA in
D1 and one in D2, the size of D′ is also O(|D1||D2|). It fol-
lows from the proof of Theorem 3.4 that this is the unique
minimal upper XSD-approximation. We omit The proof of
the Ω(n2) lower bound.

3.3 Intersection of XSDs

Proposition 3.8. Let D1 and D2 be single type EDTDs.
Their intersection L(D1) ∩ L(D2) is definable by a single-
type EDTD.
2For more details on the standard product construction of
automata, see, e.g., [12].

Proof. This follows from Lemma 2.12, from the fact that
regular languages are closed under intersection, and from
Theorem 2.8.

Therefore, the minimal upper XSD-approximation will in
fact be equal to the intersection.

Theorem 3.9. Let D1 and D2 be two single-type EDTDs.
The minimal upper XSD-approximation of L(D1)∩L(D2) is
unique, accepts precisely L(D1)∩L(D2) and can be computed
in time O(|D1||D2|). There is a family of pairs of single-type
EDTDs (Dn

1 , Dn
2 )n≥1, such that the size of every Dn

1 and Dn
2

is O(n) but the type-size of the minimal upper XSD-approx-
imation for L(Dn

1 ) ∩ L(Dn
2 ) is Ω(n2).

Proof. The construction for the intersection of D1 and
D2 is analogous to the construction in the proof of Theo-
rem 3.7, with the difference that now we need to construct
the intersection of the two internal DFAs. (I.e., for d′(S),
we need to construct

T

τ∈S
µ(d(τ )).) However, since the

standard product construction of DFAs can also construct
the intersection, this construction is also possible in time
O(|D1||D2|). Correctness of this construction can be proved
through the characterization in Proposition 2.6. We omit
the proof of the Ω(n2) lower bound.

3.4 Complements of XSDs
We next show that the complement of an XSD can be

uniquely approximated within polynomial time.

Theorem 3.10. Let D be a single-type EDTD. The min-
imal upper XSD-approximation for the complement of D is
unique and can be computed in time polynomial in |D|.

Proof. Let D = (Σ, ∆, d, Sd, µ) and let (A, f) be the
DFA-based DTD equivalent to D with A = (∆, Σ, δ, {qinit}).
According to the definition of a DFA-based DTD, a tree
t is in L(A, f) if and only if for every v ∈ Dom(t) with
A(anc-strt(v)) = {τ}, we have that ch-strt(v) ∈ L(f(τ )).

We will prove the theorem in two steps: first we will con-
struct an EDTD Dc for the complement of D and then we
will show that the minimal upper approximation of Dc can
be constructed in polynomial time.

A tree t is in TΣ \L(A, f) if and only if there exists a v ∈
Dom(t) with A(anc-strt(v)) = {τ} such that ch-strt(v) /∈
L(f(τ )). When given a tree t, the EDTD Dc guesses the
path until such a node v and tests whether ch-strt(v) /∈
L(f(τ )). Formally, for the definition of Dc = (Σ, ∆c, dc, Sdc

,
µc), we use two sets of types: ∆ and Σ. We use ∆ to guess
the path to v and we use Σ as the set of types that accept
every tree. More formally:

(1) ∆c = ∆ ] Σ;

(2) for every τ ∈ ∆, µc(τ ) = µ(τ ) and, for every a ∈ Σ,
µc(a) = a;

(3) Sdc
= Sd ] (Σ \ µ(Sd));

(4) for every τ ∈ ∆,

dc(τ ) = (Σ∗ \ f(τ )) + Σ∗ ·
[

a∈Σ

δ(τ, a) · Σ∗;

(5) for every a ∈ Σ, dc(a) = Σ∗.

The EDTD Dc accepts TΣ\L(D) and |Dc| = O(|Σ||D|). The
factor |Σ| in this complexity arises from rule (4) in which a



product construction between a complement DFA of D and
a DFA of size O(|Σ|) must be performed.

To prove that the minimal upper approximation of L(Dc)
can be computed in polynomial time, we need to prove that
determinizing the type automaton of Dc using the subset
construction can be done in polynomial time. To this end,
let us first investigate the type automaton Nc of Dc. This
type automaton contains the type automaton A of D as a
sub-automaton: rule (3) includes all the outgoing transitions
from qinit, and rule number (4) includes all other transitions.
The transitions that Nc has in addition, are the ones entering
the states in Σ. These transitions arise from rules (3), (4),
and (5). The Σ-states form a clique due to rule (5).

Due to the structure of Nc, the subset construction results
in an automaton in which every state is a subset of {τ, a}
for some τ ∈ ∆, a ∈ Σ. The reason is that, after reading
a string, Nc can never arrive in two different states of type
∆ or two different states of type Σ. Therefore, the subset
determinization algorithm on Nc can be performed in time
|Σ||Nc|. This shows that the minimal upper approximation
of the complement of D can be computed in polynomial time
in the size of D.

Since single-type EDTDs are closed under intersection,
and we can construct the intersetion in polynomial time, we
also have the following corollary.

Corollary 3.11. Let D1 and D2 be single-type EDTDs.
The minimal upper approximation of L(D1) \ L(D2) can be
computed in time polynomial in |D1|+ |D2|.

Proof. Let D be an EDTD for language L(D1) \L(D2).
Since L(D1) \ L(D2) = L(D1) ∩ (TΣ \ L(D2)), the type au-
tomaton of D is an intersection of type automata of D1 and
the complement of D2. Construction and determinization of
this intersection can be performed in polynomial time using
the standard product construction.

4. LOWER XSD-APPROXIMATIONS
For lower approximations the picture is not so nice. First

of all, there can be infinitely many maximal lower approxi-
mations for the union of two XSDs D1 and D2. Nevertheless,
we show that there is a unique maximal lower approxima-
tion when it includes either all of D1 or all of D2. That is,
there is a well-defined maximal part of D1 (D2) which can
be added to D2 (D1) to form a maximal lower approxima-
tion of D1 ∪D2. Also the complement can not be uniquely
approximated in general. We do not know whether for ev-
ery EDTD there always exists at least one maximal lower
approximation. We can answer this question positively for
the class of bounded depth schemas. Finally, we discuss the
complexity of deciding whether a given single-type EDTD
is a maxinal lower approximation of a given EDTD.

4.1 A Modified Subtree Exchange Property
We first provide a modified version of the subtree exchange

property for single-type EDTDs that will be helpful in this
section. Let N be a state-labeled NFA. For a node v in a
tree t, we call the set of types N(anc-strt(v)) the ancestor-
type of v in t w.r.t. N and we denote it by anc-typet

N (v).
When N is clear from the context, we sometimes also write
anc-typet(v).

Definition 4.1. Let N be an NFA. A set T is closed un-
der ancestor-type-guarded subtree exchange w.r.t. N if the

following holds. Whenever for two trees t1, t2 ∈ T with
nodes v1, v2, resp., anc-typet1

N (v1) = anc-typet2
N (v2) then

t[v1 ← subtreet2 (v2)] ∈ T . We say that a set T is closed un-
der ancestor-type-guarded subtree exchange w.r.t. D if it is
closed under ancestor-type-guarded subtree exchange w.r.t.
the type automaton of D.

Notice that anc-typet1
N (v1) = anc-typet2

N (v2) implies that
labt1 (v1) = labt2 (v2), because the automaton N is always a
state-labeled NFA.

Theorem 4.2. A regular tree language which is defined
by an EDTD D is definable by a single-type EDTD if and
only if it is closed under ancestor-type-guarded subtree ex-
change w.r.t. D.

Proof. If T is definable by a single-type EDTD, then
we can construct an ancestor-guarded DTD for T by de-
terminizing the type automaton N of D, as explained in
Section 3.1. Therefore, T is closed under ancestor-type-
guarded subtree exchange. If T is closed under ancestor-
type-guarded subtree exchange, then it is also closed under
ancestor-guarded subtree exchange and therefore definable
by a single-type EDTD.

4.2 Unions of XSDs

4.2.1 Infinitely many optimal approximations
The next theorem underlines that lower XSD-approxima-

tions do not behave as nicely as their upper counterparts.

Theorem 4.3. Let D1 and D2 be two single-type EDTDs.
In general, the maximal lower XSD-approximation for the
sum L(D1)∪L(D2) is not unique. The set of maximal lower
XSD-approximations can be infinite.

Proof. In the following, we use a
k(t) to abbreviate the

tree a(a · · · (a(t))) consisting of k a’s and followed by a sub-
tree t.

Take the following single-type EDTDs (which are even
DTDs) with a as the root:

D1 :
a→ a + b

b→ ε
D2 : a→ a + aa + ε

For every n ≥ 1 the following single-type EDTD Xn is a
maximal lower XSD-approximation of L(D1) ∪ L(D2):

τ i
a → τ i+1

a + τb + ε for 0 ≤ i < n− 1
τn−1
a → τn

a + τn
a τn

a + τb + ε
τn
a → τn

a + τn
a τn

a + ε
τb → ε

Here, µ(τ i
a ) = a for every i ∈ {0, . . . , n} and µ(τb) = b.

These languages are pairwise different, since a unary tree
tm = a

m
b is in L(Xn) if and only if n ≥ m.

Let t be an arbitrary tree from (L(D1)∪L(D2)) \L(Xn).
We prove that closure(L(Xn) ∪ {t}) 6⊆ L(D1) ∪ L(D2). If
t ∈ L(D1) \ L(Xn) then it is a tree tm with m > n. Then
for a tree a

n(a, a) ∈ L(Xn) we have that closure(t, an(a, a))
contains a tree a

n(am−n
b, a) 6∈ L(D1) ∪ L(D2) (just apply

ancestor-guarded subtree exchange on nodes 1n in Dom(t)
and Dom(an(a, a))).

If t ∈ L(D2)\L(Xn) then in the first n−1 levels there is a
node with two children, thus t = a

m(t′, t′′) for some m < n
and t′, t′′ ∈ L(D2). Then again closure(t, tn) contains a tree
a

m(an−m
b, t′′) 6∈ L(D1) ∪ L(D2) (apply ancestor-guarded

subtree exchange on nodes 1m in Dom(t) and Dom(tn)).



4.2.2 Uniquely extending D1 or D2

In this section, we show that one can compute a maximal
lower XSD-approximation of L(D1)∪L(D2) which includes
L(D1) and that such a maximal approximation containing
L(D1) is unique. That is, we are looking for the maximal
set Y ⊆ L(D2) such that L(D1) ∪ Y is a maximal lower
XSD-approximation of L(D1)∪ L(D2). This set Y needs to
come from the set of non-violating trees, as defined next:

Definition 4.4. Let D1 and D2 be single-type EDTDs.
The set of non-violating trees from L(D2) with respect to
D1 is defined as

nv(D2, D1) := {t ∈ L(D2) | ∀t1 ∈ L(D1)

closure(t1, t) ⊆ L(D1) ∪ L(D2)}.

That is, nv(D2, D1) contains all individual trees t for which
closure(D1 ∪ {t}) remains within the union of D1 and D2.
If we want to find a set Y ⊆ L(D2) such that L(D1)∪Y is a
maximal lower XSD-approximation of L(D1)∪ L(D2), then
clearly Y ⊆ nv(D2, D1), otherwise L(D1) ∪ Y 6⊆ L(D1) ∪
L(D2). We show that, in fact, if Y = nv(D2, D1), then
L(D1) ∪ Y is definable by a single-type EDTD. From the
above, it then follows that L(D1) ∪ Y is a maximal lower
XSD-approximationof L(D1) ∪ L(D2). Therefore, the re-
mainder of this section is devoted to proving that L(D1)∪Y
is definable by a single-type EDTD.

Let Di = (Σ, ∆i, di, Sdi
, µi) for i ∈ {1, 2}. Moreover let

Ai = (∆i ] qI , Σ, δi, qI ) be the type automaton for Di.
Let t ∈ L(D2) and t1 ∈ L(D1) be two trees. Clearly

closure(t1, t) ⊆ L(D), where D = (Σ, ∆, d, Sd, µ) is a single-
type EDTD such that L(D) = closure(L(D1)∪L(D2)). Thus
from Theorem 4.2 we have that closure(t1, t) is closed under
ancestor-type-guarded subtree exchange w.r.t. D. From the
construction in Theorem 3.7, the type set for D is ∆ =
(∆1 ∪ {⊥}) × (∆2 ∪ {⊥}).

Therefore a tree t ∈ L(D2) belongs to nv(D2, D1) if and
only if for every t1 ∈ L(D1) and all nodes v ∈ Dom(t),
v1 ∈ Dom(t1), such that anc-typet(v) = anc-typet1(v1), we
have that

(a) t[v ← subtreet1 (v1)] ∈ L(D1) ∪ L(D2), and

(b) t1[v1 ← subtreet(v)] ∈ L(D1) ∪ L(D2).

This is one characterization of all trees t belonging to
nv(D2, D1). However, we need another one which does not
explicitly mention t1.

Thereto, for i ∈ {1, 2} and τ = (τ1, τ2) ∈ ∆, we define the
following sets:

Si(τ ) := {subtreet(v) | t ∈ L(Di), anc-typet(v) = τ},

Ci(τ ) := {contextt(v) | t ∈ L(Di), anc-typet(v) = τ}.

We call a type τ ∈ ∆ an s-type if it satisfies the condition
S1(τ ) \ S2(τ ) 6= ∅. We call this type a c-type if it satisfies
the condition C1(τ ) \ C2(τ ) 6= ∅. Of course, a type can be
both an s-type and a c-type.

With these definitions we can state that a tree t ∈ L(D2)
belongs to nv(D2, D1) if and only if, for every node v ∈
Dom(t) and τ = anc-typet(v),

(a’) if τ is an s-type, then contextt(v) ∈ C1(τ ),

(b’) if τ is a c-type, then subtreet(v) ∈ S1(τ ).

We prove that (a) is satisfied if and only if (a’) is. For
the if part, let t1 ∈ L(D1) and v1 ∈ Dom(t1) such that
anc-typet1(v1) = τ . If t′1 = subtreet1(v1) ∈ S2(τ ), then
clearly t[v ← t′1] ∈ L(D2). On the other hand, if t′1 ∈
S1(τ ) \ S2(τ ), then τ is an s-type. Therefore applying (a’)
we get that contextt(v) ∈ C1(τ ) and t[v ← t′1] ∈ L(D1).

For the only if part, τ is an s-type and thus there exists a
tree t1 ∈ L(D1) and v1 ∈ Dom(t1) such that anc-typet1(v1) =
τ and t′1 = subtreet1(v1) ∈ S1(τ ) \ S2(τ ). Therefore apply-
ing (a) we get that t′′ = t[v ← t′1] ∈ L(D1) ∪ L(D2). From
the definition of t′1 it must be that t′′ ∈ L(D1), and thus

contextt(v) = contextt′′ (v) ∈ C1(τ ).
Similarly one can prove equivalence of (b) and (b’).

Now we define a single-type EDTD D′ = (Σ, ∆, d′, Sd′ ,
µ) such that L(D′) = nv(D2, D1). Intuitively, D′ will check
locally whether conditions (a’) and (b’) are satisfied. For
example, if τ = (τ1, τ2) is a c-type, then in order to satisfy
subtreet(v) ∈ S1(τ ) we have to check whether ch-strt(v) ∈
µ1(d1(τ1)). From Lemma 4.5 it will follow that together
these local checks test whether (a’) and (b’) hold.

For a type τ2 ∈ ∆2, we define

slab(τ2) := {a ∈ Σ | δ2(τ2, a) is an s-type}.

For every τ = (τ1, τ2) ∈ ∆, we define d′ such that

µ(d′(τ )) =

8

>

>

>

>

<

>

>

>

>

:

µ2(d2(τ2)) ∩ µ1(d1(τ1)) if τ is a c-type
`

µ2(d2(τ2)) ∩ (Σ \ slab(τ2))
∗
´

∪
`

µ2(d2(τ2)) ∩ µ1(d1(τ1))

∩ (Σ∗ · slab(τ2) · Σ
∗)

´

if τ is not a c-type

That is, when τ is a c-type, µ(d′(τ )) contains exactly the
intersection of µ1(d1(τ1)) and µ2(d2(τ2)). When τ is not a
c-type, it contains the strings in µ2(d2(τ2)) for which none of
the symbols lead to an s-type, and the strings in µ2(d2(τ2))∩
µ1(d1(τ1)), for which one of the elements leads to an s-type.

Moreover, in d′(τ ), the type associated to any alphabet
symbol a, i.e., the type τ ′ such that µ(τ ′) = a, is τ ′ =
`

δ1(τ1, a)), δ2(τ2, a))
´

.
To show that L(D′) = nv(D2, D1), we need the following

lemma.

Lemma 4.5. Let t ∈ L(D′), v, u ∈ Dom(t) and τv =
anc-typet(v), τu = anc-typet(u). Then,

(a) if τv is an s-type and u is the parent of v, then τu is an
s-type;

(b) if τv is an s-type and u is a sibling of v, then τu is a
c-type; and,

(c) if τv is a c-type and u is a child of v, then τu is a c-type.

We show that any tree t ∈ L(D′) satisfies (a’) and (b’)
and thus L(D′) ⊆ nv(D2, D1). Thereto, let t ∈ L(D′), v ∈
Dom(t) and τ = (τ1, τ2) = anc-typet(v). From the definition
of d′(τ ), if τ is a c-type or v has a child which type is an
s-type, then µ(d′(τ )) ⊆ µ1(d1(τ1)).

To show that (b’) holds, suppose that τ is a c-type. Then
applying Lemma 4.5(c) recursively we get that, for every de-
scendant u of v, with the type τu = (τu,1, τu,2) = anc-typet(u),
τu is a c-type. Hence, by construction of d′, µ(d′(τu)) ⊆
µ1(d1(τu,1)). It follows that subtreet(v) ∈ S1(τ ).

For (a’), assume that τ is an s-type. By Lemma 4.5(a)
and (b), for every u ∈ Dom(contextt(v)), the type τu =



anc-typet(u) is either an s-type or a c-type. More specifi-
cally, for all such nodes u not on the path from the root to
v, τu is a c-type. Thus, by construction of d′, µ(d′(τu)) ⊆
µ1(d1(τu,1)). For all nodes u on the path from the root
to v, τu is an s-type. As any such node thus has a child
which has an s-type, again by construction of d′, µ(d′(τu)) ⊆
µ1(d1(τu,1)). Hence, contextt(v) ∈ C1(τ ).

Therefore, t satisfies conditions (a’) and (b’) and thus
L(D′) ⊆ nv(D2, D1). On the other hand, it can be shown
that every tree which satisfies (a’) and (b’) belongs to L(D′)
and thus nv(D2, D1) ⊆ L(D′). Hence, L(D′) = nv(D2, D1).

Lemma 4.6. Let D1 and D2 be two single-type EDTDs.
Then, nv(D2, D1) is definable by a single-type EDTD. More-
over, it is computable in time polynomial in |D1|+ |D2|.

Proof. We can calculate the set of s-types and the set
of c-types in polynomial time. As also the content models
in D′ can be constructed in polynomial time, the single-
type EDTD D′ which defines nv(D2, D1) can be computed
in polynomial time.

Lemma 4.7. Let D1 and D2 be two single-type EDTDs.
The language L(D1) ∪ nv(D2, D1) is definable by a single-
type EDTD.

Proof. Let E = nv(D2, D1). From Lemma 4.6 E is reg-
ular, thus L(D1) ∪E is also regular.

We prove that L(D1)∪E is closed under ancestor-guarded
subtree exchange. Assuming otherwise, there exist trees
t1, t2 ∈ L(D1) ∪ E and tB ∈ closure(t1, t2) such that tB 6∈
L(D1)∪E. From Lemma 4.6, both L(D1) and E are closed
under ancestor-guarded subtree exchange. Thus we only
have to consider the case where t1 ∈ L(D1) and t2 ∈ E.

From the definition of E, tB ∈ L(D2) \E and there exist
trees tA ∈ L(D1) and t ∈ closure(tA, tB) such that t 6∈
L(D1) ∪ L(D2).

Therefore at least one of t(tA, tB(t1, t2)), t(tA, tB(t2, t1)),
t(tB(t1, t2), tA)) or t(tB(t2, t1), tA)) is a derivation tree of
t 6∈ L(D1) ∪ L(D2) with respect to L(D1) ∪ nv(D2, D1). It
can be proved that such a tree cannot exist.

Theorem 4.8. Let D1 and D2 be single-type EDTDs. The
language L(D1) ∪ nv(D2, D1) is a maximal lower XSD-ap-
proximation of L(D1)∪L(D2). It is a unique maximal lower
XSD-approximation which includes L(D1).

Proof. From Lemma 4.7, L(D1)∪ nv(D2, D1) is a lower
XSD-approximation of L(D1) ∪ L(D2). It is maximal and
unique from the definition of non-violating set. (Uniqueness
will also follows from Corollary 4.10.)

We note that L(D1) ∪ nv(D2, D1) can be computed in
polynomial time.

4.2.3 Relation with D1 and D2.
Previously, we have shown that when we fix D1 there is

a uniquely determined maximal regular subset Y ⊆ L(D2)
such that L(D1)∪Y is closed under ancestor-guarded subtree
exchange. It remains open whether for every regular subset
X ⊆ L(D1) there is a unique maximal regular subset Y ⊆
L(D2) such that X ∪ Y is closed under ancestor-guarded
subtree exchange. We show that a maximal lower XSD-ap-
proximation is uniquely defined by its intersection with D1

(and dually, it is uniquely defined by its intersection with
D2).

We will use the following lemma.

Lemma 4.9. Let X, Y1 and Y2 be tree languages. If X∪Y1

and X∪Y2 are closed under ancestor-guarded subtree exchan-
ge, then X ∪ closure(Y1 ∪ Y2) is also closed under ancestor-
guarded subtree exchange.

Corollary 4.10. Let A and B be two maximal lower
XSD-approximations. If A ∩ D1 = B ∩ D1 then A ∩ D2 =
B ∩D2.

Proof. Apply Lemma 4.9 to sets X = A ∩ D1, Y1 =
A ∩ D2 and Y2 = B ∩ D2. Then we get that A ∩ D1 ∪
closure(A∩D2∪B∩D2) is definable by a single-type EDTD
and since closure(A∩D2 ∪B∩D2) ⊆ D2, it is a lower XSD-
approximation. However it is a proper superset of A, unless
A ∩D2 = B ∩D2.

4.3 Complements of XSDs
Just as in the case of unions of XSDs, maximal lower XSD-

approximations are not unique for complements of XSDs.

Theorem 4.11. Let D be a DTD and let Dc be the EDTD
for D’s complement. In general, there does not exist a unique
maximal lower XSD-approximation of L(Dc), even over una-
ry alphabets. The set of maximal lower XSD-approximations
can be infinite.

4.4 EDTDs

4.4.1 Existence of Maximal Lower
XSD-Approximations

We say that a tree language T is height-bounded if there
is a k ∈ N such that every tree from T has height at most
k. We show that there exists a maximal lower XSD-approx-
imation for every height-bounded regular tree language.

We introduce some terminology for the proof below. Let
(X ,≤) be a partially ordered set (or, poset). A chain C is
a set of elements from X such that for all X, Y ∈ C, either
X ≤ Y or Y ≤ X.

A forest is an ordered sequence of trees (possibly empty).
For a tree t and a node v ∈ Dom(t) such that subtreet(v) =
a(t1, . . . , tn), we denote by subforestt(v) the forest t1, . . . ,
tn.

A monoid forest automaton [6] A = ((Q,+, q0), Σ, δ, F )
is a deterministic automaton where (Q,+, q0) is a finite
monoid3 (a set of states with an operation for composition
of states), δ : Σ × Q → Q is the transition function and
F ⊆ Q is a set of final states. The automaton assigns to
every forest t a value A(t) ∈ Q which is defined as follows:
(i) if t is empty, then A(t) = q0, (ii) if t = a(s) for some
forest s, then A(t) = δ(a,A(s)), and (iii) if t = t1, . . . , tn for
some trees t1, . . . , tn, then A(t) = A(t1) + . . . + A(tn). A
forest is accepted by A if A(t) ∈ F .

Theorem 4.12. Let T be a height-bounded regular tree
language. For every lower XSD-approximation X of T , there
is a maximal lower XSD-approximation M of T with X ⊆
M .

Proof. Let (X ,⊆) be a poset of all lower XSD-approxi-
mations of T which include X. Obviously, X ∈ X . Now let
us take a non-empty chain C from the poset and define XC as
the union of all tree languages from C. We show that XC is

3Recall that a monoid is a set equiped with an associative
composition operator and an identity element.



closed under ancestor-guarded subtree exchange. Indeed, for
any two trees t1, t2 ∈ XC there are two languages X1, X2 ∈ C
such that t1 ∈ X1 and t2 ∈ X2. Since C is a chain we have
either X1 ⊆ X2 or X2 ⊆ X1. W.l.o.g. we assume the latter,
thus t1, t2 ∈ X1, and since X1 is a lower XSD-approximation
we have closure(t1, t2) ⊆ X1 ⊆ XC.

Hence, XC ∈ X and thus XC is an upper bound of the
chain C. Therefore we can apply the Kuratowski-Zorn lemma
[8] to the poset, from which it follows that there is at least
one maximal element M in (X ,⊆).

Therefore, there is a maximal set M which satisfies X ⊆
M ⊆ T and which is closed under ancestor-guarded subtree
exchange. We will show that M is a regular tree language.

Let us generalize the notion of single-type EDTDs to non-
regular languages. In a generalized single-type EDTD we
allow d to map symbols to non-regular string languages.
Since M is closed under ancestor-guarded subtree exchan-
ge, we can define it by a generalized single-type EDTD
D = (Σ, ∆, d, Sd, µ). Let A be the type automaton for D.
Since M is height-bounded, we can take such D that for ev-
ery τ ∈ ∆ there is exactly one string w with A(w) = τ . Let
A = ((Q,+, q0), Σ, δA, F ) be a monoid forest automaton for
T .

Let us assume that M is not regular. The height-bounded
language M is not regular if and only if there is at least one
τ ∈ ∆ for which d(τ ) is not regular. Let us fix such a τ?.

For every a ∈ Σ, let τa be a type which appears in d(τ?)
and µ(τa) = a (τa is undefined if there is no such type).
Moreover, let

La = {subtreet(v) | t ∈M, v ∈ Dom(t), anc-typet(v) = τa},

Qa = {q ∈ Q | ∃t ∈ La,A(t) = q},

QF = {q ∈ Q | ∃t ∈M, v ∈ Dom(t), anc-typet(v) = τ?,

A(subforestt(v)) = q}.

Now we build a word automaton B = (2Q, Σ, δB, {q0},
2QF ) with transition function

δB(S, a) = {q1 + q2 | q1 ∈ S, q2 ∈ Qa}.

Finally, we introduce D′ = (Σ, ∆, d′, Sd, µ) with d′(τ ) =
d(τ ) for any τ 6= τ?, d′(τ?) contains only types from {τa |
a ∈ Σ} and µ(d′(τ?)) = L(B). It is clear that L(D′) is closed
under ancestor-guarded subtree exchange and M ⊂ L(D′).
We show that L(D′) ⊆ T .

Let t ∈ L(D′) and let v1, . . . , vk ∈ Dom(t) be nodes with
anc-typet(vi) = τ?. Let fi = subforestt(vi). Since A(fi) ∈
QF , we can find another forest f ′i such that

A(fi) = A(f ′i ) (1)

and the tree t′, obtained by replacing every fi with f ′i , be-
longs to M . Therefore, t′ ∈ T and from (1) t ∈ T .

Applying the above procedure until no type τ , with non-
regular d(τ ), can be found results in a regular set M ′ with
M ⊂ M ′ ⊆ T . This contradicts the maximality of M and
thus M is itself regular.

4.4.2 Testing Maximal Lower XSD-Approximations
Let S be a single-type EDTD that is a lower approxima-

tion of an EDTD D. It is a maximal lower approximation if

and only if

there is no t ∈ L(D)− L(S), with

closure(L(S) ∪ {t}) ⊆ L(D).

Let T be a regular tree language and N be an NFA. The
type-closure of T w.r.t. N , denoted by type-closureN (T ) is
the smallest language which contains T and is closed under
ancestor-type-guarded subtree exchange w.r.t. N . Due to
Theorem 4.2, S is a maximal lower approximation if and
only if

there is no t ∈ L(D)− L(S), with

type-closureN (L(S) ∪ {t}) ⊆ L(D).

In the above statement, N is the type automaton of an
EDTD for closure(L(S) ∪ {t}). One approach for an algo-
rithm to decide whether S is a maximal lower approximation
could therefore be to guess an N and t such that the above
property holds. However, we do not know a size bound on
both N or t.

Here, we can solve one aspect of this problem: once we
know N , the size of t is no longer problematic. However, the
size of N is dependent of t and therefore, can also be arbi-
trarily large. For this reason, we need to restrict to height-
bounded tree languages. If L(D) and L(S) are height-boun-
ded by k, then we can bound the number of states of a
deterministic type automaton for closure(L(S) ∪ {t}) with
k × Σ × |S| states. The reason is that t contains at most
k|Σ| different ancestor-strings w. Since closure(L(S)∪{t}) is
closed under ancestor-guarded subtree exchange, each such
ancestor-string w must arrive in the same state in the type
automaton.

More formally, let Nk be the minimal DFA for the lan-
guage ∪0≤`≤kΣ`. Notice that, for languages height-bounded
by k, closure under ancestor-guarded subtree exchange is
exactly the same as closure under type-guarded subtree ex-
change by Nk. Therefore, for height-bounded languages by
k, S is a maximal lower approximaion if and only if

there is no t ∈ L(D)− L(S), with

type-closureNk (L(S) ∪ {t}) ⊆ L(D).

Our plan is to construct a tree automaton4 for the language
{t ∈ L(D) − L(S) | type-closureNk (L(S) ∪ {t}) ⊆ L(D)}.
This tree automaton accepts the empty language if and only
if S is a maximal lower approximation. Constructing such a
tree automaton, however, is not trivial. The main technical
difficulty lies in the following Lemma:

Lemma 4.13. We can construct a tree automaton for {t ∈
L(D) − L(S) | type-closureNk ({t} ∪ L(S)) ⊆ L(D)} in time
double exponential in |D| + |S| + |Nk|.

Since emptiness testing is in ptime for tree automata, we
obtain the following Theorem:

Theorem 4.14. Deciding whether a single-type EDTD S
is a maximal lower XSD-approximation of an EDTD D is
in 2exptime, if both S and D define height-bounded tree
languages.

4A tree automaton is an automata-theoretic model corre-
sponding to EDTDs.



5. CONTENT MODELS
In the previous sections, we always represented content

models in schemas by DFAs. We next discuss what changes
when using regular expressions or NFAs.

For NFAs all remains the same, except for the following:
Lemma 3.5 becomes pspace-complete, since already inclu-
sion testing for NFAs is pspace-complete. The size of the
optimal upper approximation of the complement of an XSD
can become exponentially large (Theorem 3.10), since com-
plementing an NFA causes an exponential blow-up.

For regular expressions things are similar to NFAs. Again,
Lemma 3.5 becomes pspace-complete. Since the smallest
expression for the intersection of two regular expressions can
be exponential, and since complementing a regular expres-
sion can cause a double-exponential blow-up [11], we have an
(optimal) exponential upper bound for Theorem 3.7 and an
optimal double exponential upper bound for Theorem 3.10.

For deterministic regular expression the complexity of all
decision problems remains the same as there is an efficient
translation to DFAs. Unfortunately, we lose uniqueness. As
is shown in [4], in general, there exists no best approximation
for an arbitrary regular language by a deterministic regular
expression. However, heuristics are available to transfer a
DFA to a concise deterministic regular expressions which
is an upper approximation of the given DFA [4]. So the
present methods for computing upper approximations given
in Section 3 followed by a translation of DFAs to determin-
istic regular expressions using the methods of [4] provides
an algorithm for approximating real world XSDs.

Furthermore, the complexity of minimizing stEDTDs also
depends on the formalism for the content models. In par-
ticular, for NFAs or DREs, deciding minimality of an single
type EDTD is already pspace-complete.

6. CONCLUSION
We showed that the case of optimal upper approximations

behaves very well: there always exists a unique one and for
union and difference the latter is even tractable. In combi-
nation with the methods of [4], the present work provides us-
able algorithms for computing upper XSD-approximations.
Optimal lower approximations, in strong contrast, are much
less understood. The most important open problem is un-
doubtedly the question whether there is an optimal lower
approximation for every regular tree language.
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