
Schema Design for XML Repositories:
Complexity and Tractability ∗

Wim Martens
†

Technical University of
Dortmund

Matthias Niewerth
Technical University of

Dortmund

Thomas Schwentick
Technical University of

Dortmund

ABSTRACT
Abiteboul et al. initiated the systematic study of distributed
XML documents consisting of several logical parts, possibly
located on different machines. The physical distribution of
such documents immediately raises the following question:
how can a global schema for the distributed document be
broken up into local schemas for the different logical parts?
The desired set of local schemas should guarantee that, if
each logical part satisfies its local schema, then the dis-
tributed document satisfies the global schema.

Abiteboul et al. proposed three levels of desirability for lo-
cal schemas: local typing, maximal local typing, and perfect
local typing. Immediate algorithmic questions are: (i) given
a typing, determine whether it is local, maximal local, or
perfect, and (ii) given a document and a schema, establish
whether a (maximal) local or perfect typing exists. This pa-
per improves the open complexity results in their work and
initiates the study of (i) and (ii) for schema restrictions aris-
ing from the current standards: DTDs and XML Schemas
with deterministic content models. The most striking result
is that these restrictions yield tractable complexities for the
perfect typing problem.

Furthermore, an open problem in Formal Language The-
ory is settled: deciding language primality for deterministic
finite automata is pspace-complete.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design; H.2.3
[Database Management]: Languages—Data description
languages (DDL); H.2.4 [Database Management]: Sys-

∗We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under the FET-Open grant agreement FOX,
number FP7-ICT-233599
†Supported by a grant of the North-Rhine Westfalian
Academy of Sciences and Arts, and the Stiftung Mercator
Essen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0033-9/10/06 ...$10.00.

tems—Distributed Databases; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages

General Terms
Algorithms, Design, Theory

Keywords
XML, XML schemas, complexity, language primality

1. INTRODUCTION
Information has become more and more distributed since

the arrival of the Web. The distribution of XML data is
even essential in many areas such as e-commerce, collabora-
tive editing, or network directories [1]. When dealing with
such distributed XML data, it is desirable to have a system
that can grant a large amount of independence to individ-
ual peers, while at the same time also being able to deal
with the data as a whole. One way of achieving this could
be through XML repositories. An XML repository is a col-
lection of XML documents, together with a set of tools for
manipulating and validating these documents.

In this paper we focus on an important part of such XML
repositories, namely on the collection of XML documents
and on schema design for such a collection. We abstract col-
lections of XML documents as distributed XML documents.
Following Abiteboul et al. [1], a distributed XML document
consists of a root document T , which is an XML tree that
is stored locally at some site. Some of the leaves of T are
labeled with references to external resources, say f1, . . . , fn.
The extension ext(T) of T is then obtained by replacing
each node fi with the XML tree or XML forest provided by
the resource ri referenced by fi. In other words, ext(T) is
a large XML document that is distributed into several log-
ical parts. The root document T provides an interface to
this large XML document and has through its pointers fi

the knowledge of where to get access to the different parts.
These parts can be maintained by different peers and/or
provided by programs or web service calls. We therefore
sometimes also refer to the fi as function calls.

We provide a very simple example to illustrate these con-
cepts. Suppose that we want to run a web site from which
we can query auction data from various on-line auction plat-
forms in different countries. The idea is that users would be
able to search for keywords on this web site and that they can
investigate, e.g., for how much money items with a matching
description have been sold internationally. Such a web site
could, for example, combine data from the various national

globAuct

meta

. . .

f1 fk

fk+1

fn

. . .

..
.

root

auct

item

start end bid

bid

store-ad

item

start end

price

root

auct

item

start end bid

bid

store-ad

item

start end

price

root

priv-ad

item

start bid

bid

store-ad

item

start end

price

Figure 1: A distributed document. The root docu-
ment T is in the upper left block.

Ebay and Yahoo auction web sites, and from the plethora of
platforms with second-hand ads around the world. Figure 1
contains a vastly simplified possible distributed XML docu-
ment for such a scenario and Figure 2 contains its extension.
This document gathers three kinds of advertisements: (1)
auctions, which have a certain start and end time, and on
which people may bid, (2) store advertisements, which are
advertisements for items that stores offer on-line and can
be bought for a fixed price, and (3) private advertisements,
which are advertisements for, e.g., second-hand items that
people sell, without a predefined end-date, and on which
people may freely bid.

A global schema S for ext(T) could be given by the fol-
lowing Document Type Definition (DTD) D:

<!ELEMENT globAuct (meta,(auct|store-ad|priv-ad)+)>

<!ELEMENT auct (item,start,end,bid*)>

<!ELEMENT store-ad (item,start,end,price)>

<!ELEMENT priv-ad (item,start,bid*)>

<!ELEMENT meta (. . .)>

For each element in an XML document, such a DTD speci-
fies the allowed labels of its children. For example, the first
rule of the DTD states that the labels of the sequence of chil-
dren of each globAuct element must adhere to the regular
expression meta,(auct|store-ad|priv-ad)+. We use the
term content model of an element to refer to its associated
regular expression in the DTD.

We recall the problems defined in [1]. Given a global
schema S and a distributed XML document T , we want to
know whether we can design schemas for r1, . . . , rn such that
each ri has as much freedom as possible and is independent
of the other ri’s. We would like to provide each ri with an
XML schema Si such that, (1) if each ri validates its docu-
ment against Si, then ext(T) satisfies S (soundness) and (2)
we do not introduce more restrictions than this global type
(completeness). Such a tuple (S1, . . . , Sn) is called a typing.
A typing that is sound and complete is called a local typing.
When a local typing gives a maximum degree of freedom to
each individual peer, it is called a maximal local typing. A
typing is perfect if it is the unique maximal typing for all
sound typings.

It is easy to see that there is a sound typing for the DTD D
above and the distributed document of Figure 1: we provide
each ri with the DTD Dauct:

<!ELEMENT root (auct|store-ad|priv-ad)+>

<!ELEMENT auct (item,start,end,bid*)>

<!ELEMENT store-ad (item,start,end,price)>

<!ELEMENT priv-ad (item,start,bid*)>

This design, however, is overly restrictive. We only need one
resource with DTD Dauct to provide an element, for exam-
ple. We could have assigned (auct|store-ad|priv-ad)+

to one peer and (auct|store-ad|priv-ad)* to all others,
which would even be a maximal local typing. However, this
typing is, in a sense, unfair: we are restricting one peer,
whereas there are other possibilities (other maximal local
typings) in which this peer is not restricted. On the other
hand, if the content model for globAuct in D would have
been (meta,(auct|store-ad|priv-ad)*), then even a per-
fect typing would have been possible. We show in this paper,
given a distributed document and a schema S, how to com-
pute a perfect typing in polynomial time, if it exists.1

For an example as simple as the one illustrated here it is
easy to see how a design with the desirable properties can be
constructed. However, the various standards allow almost2

arbitrary regular expressions for defining content models and
therefore XML schemas and designs of distributed docu-
ments can become much more complex. The reason why
a global design is bad can therefore be much more subtle
than can be inferred from our simple example. We believe
that, in such real-life scenarios, the techniques presented in
this paper can be of a great help to a human designer.
From XML Documents to Strings. Abiteboul et al.
studied the typing problems for DTDs ([5], Section 2.8)
XML Schemas [11], and extended DTDs [17] as schema
languages. Given a typing S for a design (D, T), where
D is either a DTD, XML Schema, or extended DTD and
T is a distributed XML document, they study LOC(DTD),
ML(DTD), and PERF(DTD). These problems ask whether
S is a local, maximal local, or perfect typing for D and T ,
respectively. They also studied the problems ∃−LOC(DTD),
∃−ML(DTD), and ∃−PERF(DTD), where only the design is
given and the question is whether a local, maximal local, or
perfect typing exists.

It is known that several decision problems for DTDs and
XML Schemas can be reduced to corresponding problems on
strings. For example, in [16] it is shown that containment
and equivalence testing for DTDs and XML Schemas has
the same complexity as containment and equivalence test-
ing for the (classes of) regular expressions that these DTDs
and XML Schemas use. This result was extended by [1] in
the context of perfect and (maximal) local typings. In this
sense, it follows from [1, 16] that all the abovementioned
problems have the same complexity for DTDs as for the
regular expressions that these DTDs use. For this reason,
as long as we are interested in DTD and XML Schema, we
can safely focus our study to strings instead of trees. In
other words, we study designs (D, T) where D is a regu-
lar expression or finite automaton, and T is a distributed
string w0f1w1 · · · fnwn with function calls f1, . . . , fn and
w0, . . . , wn are words from a finite alphabet Σ.3 It should
be noted that the typing problems for Relax NG schemas
[8] or extended DTDs cannot be reduced to the string case
if exptime 6= pspace.
Our Contributions. By NFA, DFA, and DRE, we ab-

1Abiteboul et al. proved a tight pspace bound for the per-
fect typing problem if non-deterministic content models are
allowed. Since the World Wide Web Consortium requires
content models to be deterministic, we focus on determinis-
tic content models.
2I.e., deterministic.
3Distributed strings are formally defined in Section 2.

globAuct

meta

. . .

auct

item start end bid bid

store-ad

item start end price

auct

item start end bid bid

store-ad

item start end price

. . . priv-ad

item start bid bid

store-ad

item start end price

Figure 2: Extension ext(T) for the distributed document in Figure 1.

breviate non-deterministic finite automata, deterministic fi-
nite automata, and deterministic regular expressions, re-
spectively. The contributions in this paper are the following.

• We connect the schema design questions with language
equations in Formal Language Theory. Through this
connection we can derive that the questions whether
local or maximal local typings exist coincide when con-
tent models are given by NFAs or DFAs. Whenever a
(possibly non-regular) local typing exists, there also
exists a regular maximal local typing (Section 2.4).
However, this fails for DREs.

• We provide new structural insights into the perfect
typing problem, by giving a new construction of a per-
fect automaton for DFAs. This automaton admits to
infer ptime algorithms for all perfect typing problems
with deterministic content models (Section 3).

• We provide normal forms for local and maximal local
typings, that reduce the search space for typings and
significantly improve the upper bounds on the local
and maximal local typing problems. For example, we
improve the upper bound for the computationally most
difficult problem, ∃−LOC(NFA), from 2expspace to
expspace (Section 4).

• With respect to testing of properties of typings, we pin-
point all complexities; all problems are either in ptime
or pspace-complete. One would expect the complex-
ity of the typing problems to drop significantly when
going from NFAs to DFAs or DREs. Remarkably,
only the perfect typing problems become tractable and
the (maximal) local problems remain pspace-complete
(Section 5).

• In the existential setting of the problem, we show that
the specific case where the distributed string has two
function calls is essentially equivalent to the Primality
problem in Formal Languages: Given a deterministic
finite automaton A, determine whether there exist two
regular languages L1, L2 such that L(A) = L1 · L2,
where L1 6= {ε} 6= L2. The complexity of Primality
has been an open problem in Formal Language Theory
since the late 90’s (see, e.g., [19, 10, 2, 13, 18, 20, 23]).
Beyond sheer decidability no further upper or lower
complexity bounds were known [20].4 We prove that
Primality is pspace-complete and we settle the com-
plexity of ∃−LOC(DFA) for distributed strings with at
most two function calls (Section 6).

• Intuitively, one may think that the typing problems for
DFAs are often the same as for DREs. We prove that
these problems are different in almost all cases.

4Salomaa mentions the complexity of Primality as Problem
2.1 in his recent survey [20].

As we mentioned before, all our upper and lower bounds
for NFAs, DFAs, and DREs also hold for DTDs and XML
Schemas that use NFAs, DFAs, and DREs as formalism for
their content models, respectively.

We would like to stress the cross-fertilization between for-
mal languages and database theory in this work: we drew
inspiration from the work on language equations for our set-
ting of distributed XML, and distributed XML typing ques-
tions helped to find a solution to a question in Formal Lan-
guages.
Further related work. The investigation of language de-
compositions goes back to Conway [9], who was interested
in expressing a regular event E in the form f(F1, F2, . . .),
wherein f is a regular function and Fi are regular events.
Language equations form a broad framework in formal lan-
guage theory in which such kinds of questions are considered
(see [15] for a recent overview). The primality question for
regular languages [19, 20] is a special case of a language
equation, which has been studied in depth, both for finite
and infinite languages [19, 10, 2, 13, 18, 20, 23].

In the database theory context, there is a connection with
the work of Calvanese et al. [7]. However, their intention
is orthogonal to ours. Stated in our framework, they would
start from a global schema D and a typing S and ask for
a maximal (regular) language of distributed strings w for
which S is sound for (D, w).

2. DEFINITIONS AND NOTATION
Proviso. In this article, all languages are regular. Thus

“language” always means “regular language”.

2.1 Automata and regular expressions
By Σ we always denote a finite alphabet. A (nondetermin-

istic, finite) automaton (or NFA) A is a tuple (Q, Σ, δ, I, F),
where Q is a set of states, δ : Q×Σ → P(Q) is a transition
function, I is the set of initial states and F is the set of ac-
cepting states. An automaton is deterministic (or a DFA),
if I is a singleton and |δ(q, a)| ≤ 1, for all q ∈ Q,a ∈ Σ. By
δ∗ we denote the extension of δ to strings, i.e., δ∗(q, w) is
the set of states that can be reached from q by reading w.

For simplicity we allow in DFA that for some q, a, δ(q, a) =
∅. Thus, we do not need non-accepting sink states but rather
use undefined transitions to “stop” a run of an automaton.
As a consequence, in a minimal DFA, from all states an
accepting state is reachable.

An alternating (finite) automaton (or AFA) A is a tuple
(Q, Σ, δ, I, F), which is defined just as in an NFA but where
Q is partitioned into E (existential states) and U (universal
states). The existential states behave exactly as in an NFA.
That is, for an existential state q, if δ(q, a) = P , there ex-
ists an accepting run for the remainder of the input word,
starting from at least one state in P . The universal states q
require that, if δ(q, a) = P , there exists an accepting run for
the remainder of the input word, starting from every state
in P . For details we refer to, e.g., [24].

LOC ML PERF ∃−LOC ∃−ML ∃−PERF

NFA pspace-c pspace-h pspace-c pspace-h
in 2-expspace

pspace-h
in 2-expspace

pspace-c

Table 1: The complexity results from Abiteboul et al. [1].

LOC ML PERF ∃−2LOC ∃−2ML ∃−PERF

NFA pspace-c [1] PSPACE-c (5.2) pspace-c [1]
pspace-h [1]

in NEXPTIME (6.3)
pspace-c [1]

DFA pspace-c [14] PSPACE-c (5.5) in PTIME (3.5) PSPACE-c (6.9) in PTIME (3.5)

DRE PSPACE-c (5.8) PSPACE-c (5.9) in PTIME (3.7) PSPACE-h (6.17) PSPACE-h (6.19)
in EXPTIME

in PTIME (3.7)

Table 2: Summary of complexity results. Results of this paper are written in bold. The result for ML(NFA)
was already stated in [1], the current paper presents a corrected proof. All these results also hold for DTDs
and XML Schemas using NFAs, DFAs, and DREs as content models. The numbers between brackets indicate
the theorem numbers in which the results are proved. We also prove that ∃−LOC(NFA) and ∃−ML(NFA) are in
EXPSPACE in general (Theorem 6.2).

The regular expressions over Σ are defined as follows: ε
and every Σ-symbol is a regular expression; and whenever
r and s are regular expressions, then so are (rs), (r + s),
and (s)∗. For readability, we usually omit parentheses in
examples. The language defined by a regular expression r,
denoted by L(r), is defined as usual.

It is well-known that XML schema languages use deter-
ministic (sometimes also called one-unambiguous) regular
expressions. Formally, let r̄ stand for the regular expression
obtained from r by replacing the i-th occurrence of alpha-
bet symbol a in r by ai, for every i and a. For example, for
r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b

∗
2a2)

∗. A regular expres-
sion r is deterministic if there are no strings waiv and wajv

′

in L(r̄) such that i 6= j. We denote the class of determin-
istic regular expressions by DRE. The expression (a + b)∗a
is not deterministic as already the first symbol in the string
aaa could be matched by either the first or the second a in
the expression. The equivalent expression b∗a(b∗a)∗, on the
other hand, is deterministic. Brüggemann-Klein and Wood
showed that not every (nondeterministic) regular expression
is equivalent to a deterministic one [6]. Thus, semantically,
not every regular language can be defined with a determin-
istic regular expression. We call a regular language DRE-
definable if there exists a deterministic regular expression
defining it. The canonical example for a language that is
not DRE-definable is (a + b)∗a(a + b).

2.2 Typings
Let Σf be a set of function calls, typically written as f or

f1, f2, etc. We recall the following notions from Abiteboul
et al. [1].

Definition 2.1. A distributed string is a string w = w0f1

w1 . . . fnwn, where n ∈ N, wi ∈ Σ∗ and fi ∈ Σf , for each
i. We write w(f1 · · · fn) for w if we want to emphasize the
function calls. A design D is a pair (L, w) consisting of a
language L and a distributed string w. We often specify
designs as (A, w) or (R, w) for an automaton A or a regular
expression R.

Definition 2.2. A typing τ for (L, w) is a sequence (L1,
. . . , Ln) of languages over Σ. We write w(τ) for the language

{w0v1w1 · · · vnwn | vi ∈ Li, 1 ≤ i ≤ n}.

Given a design D = (L, w) and a typing τ we call τ

• a sound typing for D, if w(τ) ⊆ L,

• a complete typing for D, if w(τ) ⊇ L,

• a local typing for D, if w(τ) = L, i.e., if it is sound and
complete,

• a maximal typing for D, if it is sound and there exists
no sound typing τ ′ for D, such that τ (τ ′, where
inclusion is defined componentwise.

• a perfect typing for D, if it is local and if for each sound
typing τ ′ for D it holds τ ′ ⊆ τ .

2.3 Algorithmic problems
In this paper, we consider the following algorithmic prob-

lems. Given a design D = (L, w) and a typing τ ,

LOC: check whether τ is a local typing for D;

ML: check whether τ is maximal and local for D;

PERF: check whether τ is a perfect typing for D.

Given a design D = (L, w),

∃−LOC: check whether there exists a local typing for D;

∃−ML: check whether there exists a maximal local typing
for D;

∃−PERF: check whether there exists a perfect typing for D.

For a k ∈ N, we denote by ∃−kLOC (resp., ∃−kML) the
problem ∃−LOC (resp., ∃−ML) where w in the given design
(L, w) only contains k function calls.

The complexity of these problems might depend on the
formalism in which the language L is given and in which
the typing has to be specified. For simplicity, we only study
cases where these two formalisms coincide. More precisely,
we consider NFA (as in [1]), DFA, and DREs as specification
formalisms. We denote the resulting algorithmic problems
as in LOC(DFA), where L and the target typing are specified
by DFA. Since not all regular languages can be defined by
DREs, we need to make clear what we mean by ML(DRE).

In ML(DRE) we want to know wheter τ is local and there
exists no sound DRE-definable typing τ ′ such that τ (τ ′.5

Tables 1 and 2 summarize our and previous complexity
results for these problems.

2.4 Typings and Regular Languages
We recall some results on language equations that have di-

rect consequences for the typing problem. The next theorem
follows immediately from Corollary 13 in [3].

Theorem 2.3 ([3]). Let D = (L, w) be a design. If
D has a local (even: non-regular) typing then it also has a
regular, maximal local typing.

This theorem holds independently of the formalism in
which L is specified, as the considered problems are defined
with respect to the languages. It gives a good reason to re-
strict attention to regular typings as was suggested in [1] and
is also done in this paper. One particular consequence of this
theorem is that the problems ∃−LOC(NFA) and ∃−ML(NFA)
are identical and that we can therefore merge these entries in
Table 2. The same holds for ∃−LOC(DFA) and ∃−ML(DFA).
However, the existence of local typings does not guaran-
tee the existence of local typings specified by DREs (The-
orem 6.13) and the existence of local typings specified by
DREs does not guarantee the existence of maximal local
typings specified by DREs (Theorem 6.15).

3. PERFECT TYPINGS
One of the main results of [1] is that, if a perfect typ-

ing exists, there is only one candidate typing that needs to
be checked and that an NFA can be efficiently constructed
(the perfect automaton in [1]) from which this typing can
be directly inferred. If this typing is local then it is per-
fect. Therefore, PERF(NFA) can be solved by generating the
candidate typing, testing whether it is local, and verifying
whether it is equivalent to the typing in the input.

We recall the complexity results from Abiteboul et al. [1]:

Theorem 3.1 ([1]).
(a) PERF(NFA) is pspace-complete, and
(b) ∃−PERF(NFA) is pspace-complete.

The pspace-hardness for both problems comes from testing
whether the generated candidate typing is local. In other
words, these problems are pspace-hard because testing lan-
guage equivalence for NFAs is pspace-hard.

This motivated us to study the perfect typing problems
for DFAs and for deterministic regular expressions, which
are known to have a ptime language equivalence test.

3.1 Perfect Typings for DFAs
We first study the perfect typing problems for DFAs and

prove that PERF(DFA) and ∃−PERF(DFA) can be solved in
polynomial time. Our overall technique is reminiscent to
the one used for proving Theorem 3.1, but the details are
rather different. From a given design D = (A, w), where
A is a DFA, a candidate automaton (i.e., perfect automa-

ton) Ω̂(A, w) representing a typing τ can be computed in
polynomial time such that D has a perfect typing if and

5One could define this problem in two different manners:
either τ ′ can be regular, or needs to be DRE-definable. From
our proof it follows that these two problems coincide.

only if w(τ) = L(A). However, two remarks are essen-
tial here, in order to understand the new difficulties: (1)

the construction of Ω̂(A,w) is completely different from the
construction in [1] and (2) it is not straightforward to check
w(τ) = L(A), because w(τ) is in general non-deterministic
(this non-determinism arises from the choice of remaining in
a type τi or reading the string wi to advance to τi+1). Even
if τ consists only of DFAs, the equivalence test w(τ) = L
is pspace-complete in general.6 We therefore need to adopt
an approach in which we need more structural insight in the
problem, which is exactly our challenge.

Given a design D = (A, w), where A is a DFA (Q, Σ, δ, s, F)
and w is a distributed string w = w0f1 . . . fnwn, we con-
struct the candidate automaton Ω(D) as follows. We use

the extended alphabet Σ̂ = Σ] {σ0, . . . , σn} and the homo-

morphism h : Σ̂∗ → Σ∗, where h(a) = a for any a ∈ Σ and
h(σi) = wi for any i ∈ {1, . . . , n}.

By Â we denote the automaton derived from A by ap-
plying the inverse homorphism h−1 to A. More precisely,
Â = (Q, Σ̂, δ̂, s, F), where

δ̂ = δ ∪ {(qa, σi, qb)|qb ∈ δ∗(qa, wi)}.

Since Σ and {σ1, . . . , σn} are disjoint, Â is deterministic.
Furthermore it can be constructed in polynomial time.

The perfect automaton Ω̂ = Ω̂(A, w) is defined as the

minimal DFA for L(Â) ∩ L(σ0Σ
∗σ1Σ

∗ . . . Σ∗σn). We can

construct Ω̂ in polynomial time by performing the standard
product construction on Â and the (trivial) linear size de-
terministic automaton for σ0Σ

∗σ1Σ
∗ . . . Σ∗σn. Recall our

convention that minimal DFA do not have (rejecting) sink

states and therefore, for some q and σi, δ̂(q, σi) might be

empty. It should be noted that, as Ω̂ is minimal, Ω̂ only
depends on D, not on A.

Example 3.2. Figure 3 illustrates our construction with
two designs. The DFA A1 of the design D1 = (A1, f1f2)
is shown in Figure 3(a) (without the dashed transitions).

Â1 results from adding the dashed self-loops, as the strings
w0, w1 and w2 are empty. The perfect automaton Ω̂(D1)
is shown in Figure 3(b). Later, we will see that this design
does not have a perfect typing.

The lower part of Figure 3 gives a more complicated ex-
ample, where a perfect typing actually exists. The design
is D2 = (A2, f1bcf2), where A2 is the DFA of Figure 3(d),

without the dashed transitions. The DFA Â(D2) is the au-
tomaton in Figure 3(d) with the dashed transitions. The two
self-loops labeled with σ0 and σ2 at each state result again
from the empty strings w0 and w2. The perfect automaton
is shown in Figure 3(e). �

For each 1 ≤ i ≤ n, we define the local automaton Ωi

as follows. First, let Ω̂i be the automaton obtained from
Ω̂ by choosing (i) as initial states those states q with some
transition (r, σi−1, q), and (ii) as final states those states p
with some transition (p, σi, r

′). Then, Ωi is the automaton

obtained from Ω̂i by removing all transitions labeled with
some σj .

Notice that, since A is deterministic, the only nondeter-
minism of Ωi is the freedom to choose an initial state. We

6Already deciding whether L(A) = L(A1) · L(A2) for DFAs
A, A1, and A2 is pspace-complete in general, see [14] and
Theorem 5.7.

1start 2 3
a b

σ0, σ1, σ2

σ0, σ1, σ2

σ0, σ1, σ2

(a) DFA Â1 for the design D1 = ({ab}, f1f2).

1

start

2 3 4

5

6
a

b

a

c

bc

d

σ0, σ2 σ0, σ2 σ0, σ2

σ0, σ1, σ2

σ0, σ2

σ0, σ2

σ1

(d) DFA Â2 for the design D2 = ((ab)+c(bc)∗d, f1bcf2).

s

start

1a 2a 3a

1b 2b 3b f

σ0 a b

a b

σ1 σ1 σ1

σ2

(b) Perfect automaton Ω̂(D1).

1

sstart

2 3 4a 5a

4b5b 6 f

σ0

a
b

a
c

b

c

b

c
d σ2

σ1
σ1

(e) Perfect automaton Ω̂(D2).

1astart 2a 3a

1b

start

2b

start

3b

start

a b

a b

(c) Local candidate automata Ω1(D1) and Ω2(D1).

1start 2 3 4

5

a
b

a
c

bc
4

start

5 6

b

c
d

(f) Local candidate automata Ω1(D2) and Ω2(D2).

Figure 3: Two designs: (a)–(c) has no perfect typing, (d)–(f) has a perfect typing.

write ~Ω for (Ω1, . . . , Ωn) and τΩ for the typing (L(Ω1), . . . ,
L(Ωn)).

Figures 3(c) and 3(f) display the respective local automata
for the designs of Example 3.2.

We need the following technical lemma:

Lemma 3.3. Let w = w0f1 . . . fnwn be a distributed string,
A a DFA and τ = (L1, . . . , Ln) a sound typing for (A,w).

Let τΩ be the typing obtained from Ω̂(A, w) as described
above. Then τ ⊆ τΩ.

The following theorem is the technical core of this section.
It proves that to test whether a design has a perfect typing
it suffices to test whether all local candidate automata have
one initial state. Furthermore, the perfect typing is simply
the vector of local candidate automata.

Theorem 3.4. Let w = w0f1 . . . fnwn be a distributed
string and A a DFA, such that L(A) ⊆ w0Σ

∗w1 · · ·Σ
∗wn.

Let Ω̂, τΩ, and ~Ω = (Ω1, . . . , Ωn) be defined as above. Then
the following statements are equivalent.

(a) There is a perfect typing for (A,w).

(b) τΩ is a perfect typing for (A, w).

(c) τΩ is a sound typing for (A,w).

(d) For each i, Ωi has exactly one initial state.

Proof. We show the implications (a) ⇒ (d) ⇒ (c) ⇒ (b)
⇒ (a).
(a) ⇒ (d): Let τ = (L1, . . . , Ln) be a perfect typing for
(A, w). Towards a contradiction, assume that, for some

1 ≤ i ≤ n, p 6= q are initial states of Ωi. Since by defi-
nition Ω̂ is minimal, there exists a string u = uiσi · · · unσn

such that δ∗(p, u) ∈ F and δ∗(q, u) 6∈ F or vice versa. We
assume w.l.o.g. that δ∗(p, u) ∈ F — the other case is sym-

metric. Since by minimality of Ω̂ every state occurs in some
accepting run and L(Ω̂) ⊆ σ0Σ

∗σ1 · · ·σn−1Σ
∗σn, there exist

strings

• v = viσi · · · vnσn with δ∗(q, v) ∈ F ,

• u′ = σ0u1σ1 · · ·ui−1σi−1 with δ∗(s, u′) = p,

• v′ = σ0v1σ1 · · · vi−1σi−1 with δ∗(s, v′) = q.

Thus, u′u and v′v are both accepted by Ω̂ and therefore
({u1}, . . . , {un}) and ({v1}, . . . , {vn}) are sound typings for
(A, w). By perfectness of τ , both these typings are included
in τ , hence, for each i, {ui, vi} ⊆ Li. But this yields a

contradiction as u′v is not accepted by Ω̂, thus τ is not
sound. Thus, we can conclude that (d) holds.
(d) ⇒ (c): Let, for each i, qi be the unique7 initial state
of Ωi. Let, for each i, vi ∈ L(Ωi). We need to show that
w0v1w1 · · · vnwn ∈ L(A).

For each i, let si = δ̂∗(qi, vi). By construction of Ω̂i and

uniqueness of initial states, we have that δ̂∗(si−1, σi−1) = qi

for each i (where s0 is interpreted as the initial state of Ω̂).

Furthermore, qa = δ̂(sn, σn) is the unique accepting state of

Ω̂. Together,

s0
σ0−→ q1

v1−→∗s1
σ1−→ · · ·

σn−1

−−−→ qn
vn−−→∗sn

σn−−→ qa

7It should be noted that by construction qi is also the unique

initial state of Ω̂i.

is an accepting computation of Ω̂, hence for Â and therefore

s0
w0−−→∗q1

v1−→∗s1
w1−−→∗ · · ·

wn−1

−−−−→∗qn
vn−−→∗sn

wn−−→∗qa

is an accepting computation of A.
(c) ⇒ (b): Let v = w0v1w1 · · · vnwn ∈ L(A). It follows
that τ = ({v1}, . . . , {vn}) is a sound typing for (A,w). By
Lemma 3.3, τ ⊆ τΩ and thus v ∈ w(τΩ), therefore τΩ is com-
plete, hence local. Applying Lemma 3.3 again, immediately
yields that τΩ is perfect.
(b) ⇒ (a): Immediate.

Using Theorem 3.4, we can prove that the perfect typing
problems are tractable.

Theorem 3.5. (a) PERF(DFA) is in ptime and
(b) ∃−PERF(DFA) is in ptime.

3.2 Deterministic Regular Expressions
In real DTDs and XML Schema specifications content

models are described by deterministic regular expressions
([5, 12]). This raises the question how to solve the perfect
typing problem for DREs. We first show that the case of
deterministic regular expressions is quite different from the
case of finite automata. In particular, there are designs with
perfect typings that cannot be specified by DREs.

Theorem 3.6. There is a design D = (R, w) with a DRE
R for which the (unique) perfect typing is not expressable by
DREs.

Proof. We show that the perfect typing for the design
D2 of Example 3.2 cannot be specified by DREs. The global
schema of D2 is specified by the DRE R = (ab)+c(bc)∗d. As
we argued in Example 3.2, the DFAs Ω1 = Ω1(D2) and
Ω2 = Ω2(D2) describe a perfect typing τ = (L(Ω1), L(Ω2))
for D2, since they both have only one initial state. By using
techniques from [6] it can be shown that there can be no
DRE for L(Ω1).

Theorem 3.6 shows that DREs require some care. How-
ever, perfect typings are still feasible as stated in the next
result.

Theorem 3.7. (a) PERF(DRE) is in ptime and
(b) ∃−PERF(DRE) is in ptime.

4. NORMAL FORM TYPINGS
For a given design there can be an infinite number of lo-

cal typings. We show in this section that we can reduce
the search space considerably by only considering typings of
particular normal forms.

Let, in the following, A = (Q,Σ, δ, I, F) always denote
some NFA.

An A-transformation is a mapping Q → P(Q), i.e., a func-
tion that maps states of A to sets of states of A. For a string
w, we denote by T A

w the A-transformation induced by w, i.e.,
the function p 7→ δ∗(p,w). Given an A-transformation T we
write Ltrans(A, T) for the set of strings w with T A

w = T . We
say a typing (L1, . . . , Ln) is in A normal form (A-NF) if
each Li is a union of languages of the form Ltrans(A,T).

If A is a DFA we consider a stronger normal form: For two
sets X, Y of states of A let L∩(A,X, Y) denote the set of all
strings w, for which δ∗(p,w) ∈ Y , for every p ∈ X. A typing
(L1, . . . , Ln) is in strong A-normal form (strong A-NF), if

(1) each Li is of the form L∩(A, Xi, Yi), for some Xi, Yi ⊆
Q,

(2) X1 is a singleton, and

(3) δ∗(p, wn) ⊆ F , for every p ∈ Yn.

The idea behind the strong A-NF is, that each set X is
chosen as a subset of the initial states of the corresponding
local automaton as constructed in section 3. Each set Y is
then chosen as the set of states, such that a state of the next
X-set is reached by reading the next string wi.

Remark 4.1. The specialisation of the strong A-NF with
i = 2 and all wi = ε was already used by Salomaa et al. [19]
under the term decomposition sets.

Remark 4.2. It follows from the results of Section 3 that
a perfect typing for a design (A, w) with a DFA A is always
in strong A-NF.

Even though local or maximal local typings do not need to
be of this particular simple type (as we will see below), we
show next that A-NF typings and strongly A-NF typings
deserve their names.

Theorem 4.3. Let A be an NFA, and τ = (L1, . . . , Ln)
a local typing for the design D = (A,w(f1 · · · fn)).

(a) Then there exists an A-NF local typing τ ′ for D such
that τ ⊆ τ ′.

(b) If A is a DFA there exists a strong A-NF local typing τ ′

for D such that τ ⊆ τ ′.

Proof. (a): For each i = 1, . . . , n we let

L′
i =

[

w∈Li

Ltrans(A, T A
w),

i.e., the set of strings for which there is some w ∈ Li with the
same A-transition. Let τ ′ = (L′

1, . . . , L
′
n). As, in particular,

each string w ∈ Li is in L′
i, we immediately get τ ⊆ τ ′.

It remains to show that τ ′ is a sound typing for (A,w).
To this end, let, for each i, vi ∈ L′

i. For each i, there is some
ui ∈ Li with T A

ui
= T A

vi
. As τ is a sound typing, A has an

accepting run on w0u1w1 · · · unwn. As each vi has the same
A-transformation as the respective ui, w0v1w1 · · · vnwn is
accepted by A as well.

(b): Let s denote the initial state of A. For each i =
1, . . . , n, we let L′

i = L∩(A, Xi, Yi) where X1 = δ∗(s, w0),
Xi =

S

q∈Yi−1
δ∗(q, wi−1), for i ∈ {2, . . . , n}, and Yi =

S

q∈Xi

S

w∈Li
δ∗(q, w), for i ∈ {1, . . . , n}.

Let τ ′ = (L′
1, . . . , L

′
n). As, in particular, each string w ∈

Li is also in L′
i, we immediately get τ ⊆ τ ′.

Clearly, τ ′ fulfills conditions (1) and (2) of the strong nor-
mal form. It remains to show that it also fulfills condition
(3) and that it is a sound typing for (A, w). We use the
following claim, which we prove later.

Claim 4.4. For each i ∈ {1, . . . , n} the following condi-
tions hold.

(a) For each q ∈ Yi, there is a string v ∈ w0L1 · · ·wi−1Li

such that δ∗(s, v) = {q}.

(b) w0L
′
1w1 · · ·wi−1L

′
i ⊆ L(AYi).

Here, AYi denotes the automaton A with final state set Yi,
i.e., AYi := (Q, Σ, δ, I, Yi).

Towards (3) let p ∈ Yn. By (a) there is a string v ∈
w0L1w1 · · ·Ln such that δ∗(s, v) = {p}. As τ is sound,
vwn ∈ L(A) and thus δ∗(p, wn) ⊆ F .

It remains to show the soundness of τ ′. By (b) for every
string vwn ∈ w0L

′
1w1 · · ·wn−1L

′
nwn we have δ∗(s, v) ⊆ Yn

and thus, by (3) δ∗(s, vwn) ⊆ F , yielding soundness of
τ ′.

Remark 4.5. Clearly, if τ is a local (maximal local, per-
fect) typing then τ ′ is local (maximal local, perfect) as well.
Therefore, even if not every typing has an equivalent normal
form typing but only is contained in a sound normal form
typing, we consider the term “normal form” adequate.

We still need to proof Claim 4.4.

Proof. We let Y0 = {s} and prove (a) and (b) by si-
multaneous induction on i, for every i ∈ {0, . . . , n}. Clearly
(a) and (b) hold for i = 0 (as they only refer to the empty
string).

Now let i ≥ 1 and q ∈ Yi. By definition of Yi there are
p ∈ Xi and w ∈ Li such that δ∗(p,w) = {q}. By definition
of Xi, δ∗(r, wi−1) = {p}, for some r ∈ Yi−1. By induction,
there is a string v ∈ w0L1 · · ·wi−1Li−1 such that δ∗(s, v) =
{r}. Thus, δ∗(s, vwi−1w) = {q} and (a) follows.

Now let w0v1 · · ·wi−1vi be a string in w0L
′
1 · · ·wi−1L

′
i.

Let p be such that δ∗(s, w0v1 · · · vi−1) = {p}. By induction,
p ∈ Yi−1. By definition of L′

i there is a state q ∈ Yi such that
δ∗(p, wi−1vi) = {q}. Thus, δ∗(s, w0v1 · · ·wi−1vi) = {q} ⊆
Yi and (b) follows.

Theorem 4.3 shows that, if one is interested in the exis-
tence of a (local, maximal local, perfect) typing, it is always
sufficient to look for (strong) A-NF typings. Furthermore,
it shows that every maximal local typing is in normal form.

The next theorem shows why normal forms are interesting
from a complexity-theoretic point of view: we can define the
languages in normal form typings by means of “small” finite
automata.

Theorem 4.6. Let A be an NFA, D = (A,w(f1 · · · fn))
a design, and τ = (L1, . . . , Ln) a typing for D.

(a) If τ is in A-normal form then, for each i, 1 ≤ i ≤ n,
there is a DFA B of exponential size in |A| such that
L(B) = Li.

(b) If A is a DFA and τ is in strong A-normal form, then,
for each i, 1 ≤ i ≤ n, there is an AFA B of polynomial
size in |A| such that L(B) = Li.

Proof. (a) The DFA B simply keeps track of the trans-
formation T A

w induced by the input string.
Let A = (Q, Σ, δ, I, F) be an NFA with state set Q =

{q1, . . . , qm} and let L =
Sk

j=1
Ltrans(A, Tj) be an A-NF

language. The DFA B is defined as (P(Q)m, Σ, δB, IB, FB),
where

• the transition function δB is defined by

δB((Q1, . . . , Qm), a) = (δ(Q1, a), . . . , δ(Q|Q|, a)).

Here, as usual δA(Qi, a) =
S

p∈Qi
δA(p, a), for every i;

• the initial state set IB is ({q1}, . . . , {qm});

1start 2 3 4

5 6 7

a c d

c
db

c

b

c

Figure 4: Automaton A of Example 4.7

• FB consists of all states (Tj(q1), . . . , Tj(qm)), j ≤ k.

(b) Let A be a DFA and τ = (L1, . . . , Ln) a typing for
D in strong A-normal form. For each i, Li = L∩(A, X, Y)
for some X and Y . Let B be the AFA that first universally
branches to the states in X and then simulates determinis-
tically (on all branches) A on w. Its accepting states are the
states in Y .

We note that the bounds of Theorem 4.6 do not apply
to DFAs for the languages w(τ) as the concatenation of
languages re-introduces nondeterminism. However, we can
conclude a double-exponential size bound for DFAs for the
languages w(τ).

It is tempting to hope for stronger normal forms for typ-
ings. For example, if in Theorem 4.3(b) all languages in
τ ′ were of the form L∩(A,X, Y) with singleton X, then we
could use polynomial-size NFAs instead of polynomial-size
AFAs in Theorem 4.6(b). However, the following example
shows that this is not possible and that therefore, our normal
forms are, in a sense, optimal.

Example 4.7. Let A be a DFA for the language ac+d +
(bc)+d. and D = (A, f1cf2). A is depicted in Figure 4.
The only local (and thus also maximal local) typing for D is
τ = (ac∗ + b(cb)∗, d) = (L∩(A, {1}, {2, 3, 5, 7}), L∩(A, {3, 6},
{4})).

Notice that there is no single state s of A such that there
exists a local typing of the form (L∩(A, X1, Y1), L∩(A, {s}, Y2))
for D. �

5. VERIFICATION OF TYPINGS
In this section, we study the complexity of testing whether

a given typing is local or maximal local for a given design.

5.1 Non-deterministic Content Models
We first consider designs where the schema is specified by

an NFA and recall the known results. Abiteboul, Gottlob,
and Manna [1] proved the following:

Theorem 5.1 ([1]). LOC(NFA) is pspace-complete.

They furthermore stated the following result:

Theorem 5.2. ML(NFA) is pspace-complete.

However, the proof in [1] is not correct. It claims that, for
a design (L, w) a typing τ = (L1, . . . , Ln) is not maximal, if
there is an i, such that

w(L1, . . . , Li−1, Li, Li+1, . . . , Ln) ∩ L 6= ∅.
This is not true: if L = {a, aa} and w = f1f2, the typing
τ = (L1, L2) with L1 = {ε, a} and L2 = {a} is maximal,
even though the string aa is in w(L1, L2)∩L. Nevertheless,
as we prove here, the result itself is correct.

Proof. Let D = (A, w). We first show that a local typing
τ = (L1, . . . , Ln) is not maximal for D if and only if there
is an i, 1 ≤ i ≤ n and an A-transformation T such that

(1) (L1, . . . , Li−1, Ltrans(A,T), Li+1, . . . , Ln) is sound for D
and

(2) Ltrans(A, T)− Li 6= ∅.

The “if” statement holds by definition of “maximal”. For
the “only if” statement let us assume that τ (τ ′′, for some
local typing τ ′′. By Theorem 4.3, there is an A-NF typ-
ing τ ′ = (L′

1, . . . , L
′
n) such that τ ′′ ⊆ τ ′, thus τ (τ ′.

Therefore, there is some i such that Li (L′
i. By defini-

tion of A-NF typings there is an A-transformation T such
that Ltrans(A, T) ⊆ L′

i but Ltrans(A,T) 6⊆ Li.
Whether a given typing τ is maximal and local can thus

be tested as follows.

(a) Test whether τ is local.

(b) Guess i and T .

(c) Check (1) and (2) above.

To test (1) it is sufficient to construct an NFA A′ for

w(L1, . . . , Li−1, Ltrans(A, T), Li+1, . . . , Ln) ∩ L

and to verify that L(A′) = ∅. It is not hard to see, that
there is such an NFA of exponential size which can be rep-
resented succinctly in polynomial space and therefore its
non-emptiness can be tested in (nondeterministic thus also
deterministic) polynomial space.

Condition (2) can be easily tested in polynomial space.

5.2 Deterministic Content Models
The pspace-hardness of LOC(NFA) immediately follows

from the pspace-hardness of language equivalence for NFAs
[1]. In the light of section 3, one could hope for a significant
drop of complexity when moving to deterministic content
models. However, quite contrary to Section 3, this is neither
the case for DFA nor for DREs.

5.2.1 Deterministic Finite Automata
For proving the pspace-hardness of LOC(DFA), we recall

a closely related problem from Formal Language Theory:
the ConcatenationUniversality problem asks for given DFAs
A1, A2 whether L(A1) · L(A2) = Σ∗.

Theorem 5.3 (Jiang and Ravikumar [14]).
ConcatenationUniversality is pspace-complete.

Actually, this result is not explicitly stated but is implicit in
the proof of Theorem 4.1 in [14].

It is easy to see that ConcatenationUniversality for DFAs
A1 and A2 is just a special case of LOC(DFA): just take
D = (Σ∗, f1f2) and τ = (L(A1), L(A2)). Furthermore, since
the upper bound of Theorem 5.1 carries over to DFAs, we
immediately get the following corollary.

Corollary 5.4. LOC(DFA) is pspace-complete. Further-
more, it is already pspace-hard for the design (Σ∗, f1f2).

For testing maximal locality, the upper bound immediately
follows from Theorem 5.2. We defer the lower bound proof
to Lemma 6.8.

Theorem 5.5. ML(DFA) is pspace-complete.

5.2.2 Deterministic Regular Expressions
From Section 3 we know that typings expressed by DREs

require some special care. However, the following result car-
ries over easily from DFAs to DREs since deterministic reg-
ular expressions can be translated into DFAs in quadratic
time.

Lemma 5.6. LOC(DRE) is in pspace.

The corresponding lower bound and the respective results
for maximal typings require more work. In particular, we
need to revisit the pspace lower bound for locality test-
ing for DREs. We will follow a similar outline as in Sec-
tion 5.2.1 to prove that LOC(DRE) is pspace-hard. To this
end, we first define ConcatenationUniversality for DREs, i.e.,
the problem to decide, given two DREs R1 and R2, whether
L(R1) ·L(R2) = Σ∗, and prove that it is pspace-hard. How-
ever, we cannot simply adapt the proof of Theorem 5.3 by
Jiang and Ravikumar [14] since that proof does not use
DRE-definable languages.

Theorem 5.7. ConcatenationUniversality for DREs is
pspace-complete.

The upper bound is easily obtained by transforming R1

and R2 into NFAs and applying Theorem 5.1. The lower
bound can be proven by a reduction from the complement
of pspace-complete CorridorTiling [21].

Corollary 5.8. LOC(DRE) is pspace-complete. Further-
more, it is already pspace-hard for the design (Σ∗, f1f2).

For testing maximal locality, one option could be to trans-
late the given DREs into NFAs and to use the upper bound
algorithm from Theorem 5.2. It is not obvious that this
is correct: a typing defined by DREs could be found non-
maximal by the algorithm of Theorem 5.2 because there is
a larger typing that is not DRE-definable. However, if there
exists a larger typing that is not DRE-definable, then there
is also a larger typing that is DRE-definable. The reason is
that, for every DRE-definable language L and string w, the
language L ∪ {w} is also DRE-definable (Lemma 10 in [4]).
This shows that ML(DRE) is in pspace. We defer the lower
bound proof to Section 6 (Lemma 6.18), since it heavily
builds on a proof presented there.

Theorem 5.9. ML(DRE) is pspace-complete.

6. EXISTENCE OF TYPINGS
As usual, we first recall the complexity results of [1].

Theorem 6.1 ([1]). (a) ∃−LOC(NFA) is pspace-hard
and (b) ∃−LOC(NFA) is in 2-expspace.

6.1 Non-deterministic Content Models
For the general problem, Theorems 4.3 and 4.6 allow us to

improve the 2-expspace upper bounds of [1] to expspace:

Theorem 6.2. ∃−LOC(NFA) is in expspace.

Proof. According to Theorem 4.3, it suffices to test A-
normal form typings and according to Theorem 4.6, each
language Li in an A-NF typing (L1, . . . , Ln) can be repre-
sented by a DFA of exponential size in |A|. We can con-
clude that w0L1w1 · · ·Lnwn can be represented by an NFA
of exponential size. Since equivalence between such an NFA
and A can also be tested in exponential space, we can test
∃−LOC(NFA) in expspace by testing whether any A-NF
typing is local for L(A).

If the distributed string has only two function calls, we
can do better.

Theorem 6.3. ∃−2LOC(NFA) is in nexptime.

6.2 Deterministic Content Models
In a similar way as LOC(DFA) is related to the prob-

lem ConcatenationUniversality, ∃−LOC(DFA) is also related
to a classical problem from Formal Language Theory. This
problem is called the Primality problem. The complexity
of Primality has been considered an open problem in Formal
Language Theory since the late 90’s (see Problem 2.1 in [20],
see also [19, 10, 2, 13, 18, 23]). Primality is decidable but no
further lower or upper bounds are known [20]. We pinpoint
the precise complexity of Primality in Theorem 6.4 below: it
is pspace-complete.

That the complexity of Primality was open for a long time
indicates that it might be non-trivial to figure out the precise
complexity of ∃−LOC(DFA) and ∃−LOC(NFA), as they are
in a sense generalizations of Primality. As a step towards an
answer to these complexity questions we determine the pre-
cise complexity of ∃−LOC(DFA) for distributed strings with
at most two function calls, a case that already generalizes
Primality.

6.2.1 The Language Primality Problem
The Primality problem for formal languages is defined as

follows. A non-trivial decomposition of a language L is a
pair (L1, L2) of languages, L1 6= {ε} 6= L2 such that L =
L1 · L2. A language is called prime if it does not have a
non-trivial decomposition. Primality asks, given a DFA A,
whether L(A) is prime.

Theorem 6.4. Primality is pspace-complete.

Proof. We first prove that Primality is pspace-hard. We
use a polynomial time reduction from the complement of
ConcatenationUniversality. Given two DFAs A1 and A2, we
construct a DFA A, such that L(A) is prime, if and only if
L(A1) · L(A2) 6= Σ∗.

To this end, let A1 and A2 be two arbitrary DFAs. With-
out loss of generality, we can assume that L(A1) and L(A2)
are strict supersets of {ε}. Let Σ′ = {a′ | a ∈ Σ} be a dis-
joint copy of Σ. Let $ be a symbol not occurring in Σ or
Σ′. By A′

1 and A′
2 we denote the DFAs resulting from A1

and A2 by replacing each character a from Σ with the cor-
responding character a′ from Σ′. We denote the languages
of A1, A2, A′

1 and A′
2 by L1, L2, L′

1 and L′
2, respectively.

We let A be an automaton for

L=def Σ∗ ∪ L1$L′
2 ∪ L′

1$L2 ∪ L′
1$$L′

2.

Claim 6.5. Either there is no nontrivial decomposition
of L or the only nontrivial decomposition is (La, Lb) with
La = L1 ∪ L′

1$ and Lb = L2 ∪ $L′
2.

We now prove that L is not prime, if and only if L1 ·L2 = Σ∗.
If L is not prime, according to Claim 6.5, the only nontrivial
decomposition is (La, Lb). Since La∩Σ∗ = L1, Lb∩Σ∗ = L2

and L ∩ Σ∗ = Σ∗, we can conclude that L1 · L2 = Σ∗.
For the other direction we claim, that if L1L2 = Σ∗, then

(La, Lb) is a decomposition of L. Indeed, since each string
in L can be written as a concatenation of a string in La and
a string in Lb and conversely, we have that L = LaLb.

For the upper bound, we refer to Corollary 6.10.

6.2.2 Primality versus ∃−2LOC(DFA)

We clarify the relation between Primality and ∃−2LOC(DFA).
Intuitively, one might assume that Primality can be logspace
reduced to ∃−2LOC(DFA) by simply mapping the DFA A
(the input to Primality) to the design (A, f1f2). However,
a local typing for this design could yield the trivial decom-
positions (L1, L2) where L1 = {ε} and L2 = L(A) or vice
versa. Therefore, we reduce from StrongPrimality, the vari-
ant of Primality which asks, given a DFA A whether there
exists a non-trivial strong decomposition (L1, L2) of L(A).
i.e., where ε /∈ L1 and ε /∈ L2.

Theorem 6.6. StrongPrimality is pspace-complete.

The proof follows the lines of the proof of Theorem 6.4 .

Lemma 6.7. ∃−LOC(DFA) is pspace-hard, already for de-
signs of the form (R, f1af2).

Proof. We reduce from the complement of StrongPrimality.
Let A be a DFA for a language L. We can assume w.l.o.g.
that L does not contain strings of length at most one.

Let L# be the language {a1#a2# . . . #an | a1a2 . . . an ∈
L} and w the distributed string f1#f2, where # is a symbol
not occurring in Σ. It is straightforward to construct a DFA
for L# in logarithmic space. It can be shown that L is
strongly prime if and only if there does not exist a local
typing for (L#, w).

Inspired by the proof of Lemma 6.7 we can now show the
following result.

Lemma 6.8. ML(DFA) is pspace-hard.

6.2.3 Upper Bounds for ∃−LOC(DFA)

Theorem 6.9. ∃−2LOC(DFA) is pspace-complete.

Proof. The lower bound is immediate from Lemma 6.7.
For the upper bound, let D = (A, w0f1w1f2w2) be a de-

sign, where A is a DFA. Thanks to Theorem 4.3 it is suf-
ficient to consider typings τ = (L1, L2) in strong normal
form, i.e., where Li = L∩(A, Xi, Yi), for i ∈ {1, 2}. Thus,
the algorithm guesses such a typing and verifies that it is a
local typing for D. As npspace = pspace, it only remains
to show that the latter can be done in polynomial space.

To this end, let B be the following alternating automaton

(1) It checks that its input is of the form w0u,

(2) it simulates A on u′ and, whenever it enters a state
from Y1 it non-deterministically decides to continue the
simulation or to proceed with (3),

(3) it tests that the rest of the string is of the form w1u
′,

and

(4) it verifies that u′ ∈ L∩(A,X2, Y2) · w2 by universally
branching to all states p ∈ Xi and testing that u′ =
u′′w2 with δ∗(p, u′′) ⊆ Y2.

The equivalence of the AFA B with A can be tested in
polynomial space (cf. [22]).

Corollary 6.10. Primality and StrongPrimality are in
pspace.

Proof. Both problems can be solved by slightly adapted
versions of the algorithm in Theorem 6.9. For Primality, one
only needs to check that L1 6= {ε} 6= L2. It is easy to see
that if there is a non-trivial factorization at all, it can be
chosen in strong normal form.

For StrongPrimality one checks whether (L1 \{ε}, L2 \{ε})
is a local typing. Here, the strong normal form might add
ε to (one or both) factors, therefore all strong normal form
typings have to be considered. We show that this approach
is correct. Suppose that (L′

1, L
′
2) is a decomposition of L

such that ε /∈ L′
1 and ε /∈ L′

2, and suppose that L1 and L2

are the respective languages of the strong normal form. By
construction, we have that L′

1 ⊆ L1 and L′
2 ⊆ L2 and by

Theorem 4.3 we have that L1L2 = L. However, since already
L′

1L
′
2 = L we also have that (L1 \ {ε})(L2 \ {ε}) = L.

The exact complexity of the general ∃−LOC(DFA) prob-
lem remains open. Theorem 6.2 immediately yields the fol-
lowing upper bound.

Theorem 6.11. ∃−LOC(DFA) is in expspace.

At this point, there is no matching lower bound. However,
a problem which appears to be very close to ∃−LOC(DFA)
is indeed expspace-complete.

Theorem 6.12. Given DFAs A and B and a typing τ =
(L1, L2, L3) in strong A-normal form, it is expspace-complete
to decide, whether τ is complete for (B, f1f2f3).

Proof. The upper bound is obvious. The lower bound is
by a reduction from ExponentialCorridorTiling, the exponen-
tial width corridor tiling problem.

6.2.4 Deterministic Regular Expressions
Theorem 3.6 showed that there are designs with a perfect

yet not DRE-expressible typing. We show next that it there
even designs that have local typings, but none of the local
typings is definable by deterministic regular expressions.

Theorem 6.13. There are designs D = (R, w), where R
is a DRE, such that there exists a local typing for D, but
there is no DRE-definable local typing for D.

Proof. Let w = f1abf2 and R = a(aa)∗b(ab)∗c + babc.
Notice that R is a deterministic regular expression. The
minimal DFA A for L(R) is shown in Figure 5(a).

We claim that D only has the local typing (R1), L(R2))
with R1 = (aa)∗(ab)∗ + b and R2 = c. Indeed, since L(R)
contains the string babc and w = f1abf2, we have, for every
local typing τ = (L1, L2), that c ∈ L2. Furthermore, L2

cannot contain any other string than c: suppose, towards
a contradiction, that L2 contains u 6= c. But then babu ∈
w(τ ′) \ L(R) which contradicts that τ ′ is a local typing.
Hence, L2 must be {c}.

As L2 = {c} and τ is local, we immediately get L1 =
{v | v · abc ∈ L(R)} and thus L1 = L((aa)∗(ab)∗ + b). The
minimal DFA A1 for L1 is shown in Figure 5(b). It can be
shown that L(R1) is not definable by a DRE.

Since the typing τ in the proof of Theorem 6.13 is in strong
A-normal form we immediately get the following corollary.

Corollary 6.14. Not every A-NF typing, where A is the
minimal DFA for the language L(R) of a DRE, is DRE-
definable.

0start

1

82

5 6 7

3

4

a

b

a
a

a
b

b c

a b

c

(a) Minimal DFA A for L(R).

0start 1

25

3

4

a
b a

a
a

b

b

(b) Minimal DFA A1 for L(R1).

Figure 5: Minimal DFAs for the regular expressions
R and R1 in the proof of Theorem 6.13.

Due to Corollary 6.14, the upper bound for ∃−LOC(DFA)
cannot be transferred to ∃−LOC(DRE), as it depends on
A-NF typings. It could be possible, that there is a DRE-
definable local typing τ for a design D = (R, w), where R is
a DRE, but the induced A-NF typing is not DRE-definable.

We also show that, unlike in the DFA case, ∃−LOC(DRE)
is different from ∃−ML(DRE). Especially Theorem 2.3 does
not hold, if the term regular is replaced by DRE defineable
regular.

Theorem 6.15. There is a design D = (R,w) where R
is a DRE such that D has a local DRE-definable typing, but
no maximal local DRE-definable typing.

Proof. In the proof of Theorem 3.6, we already showed,
that the perfect typing τ = (L(Ω1), L(Ω2)) for the design
D2 from Example 3.2 is not expressible by DREs. As τ
is a perfect typing for D2, there can be no other (possibly
DRE-definable) maximal local typing for D2. However, the
DRE-definable typing τ2 = (a(ba)∗, (bc)∗d) is a local typing
for D2.

On the other hand, a maximal DRE-definable typing τ =
(L1, L2) cannot exist as otherwise L(Ω1) \L1 or L(Ω2) \ L2

would contain a string w and DRE-definable languages are
closed under adding a single string (again: Lemma 10 in
[4]).

Theorem 6.16. Primality and StrongPrimality are pspace-
complete even if the language is given as a DRE.

Lemma 6.17. ∃−LOC(DRE) and ∃−ML(DRE) are pspace-
hard, already for designs of the form (L, f1af2a).

Similar as before, the lower bound proof of Lemma 6.17
gives us the inspiration for also proving that ML(DRE) is
pspace-hard.

Lemma 6.18. ML(DRE) is pspace-hard.

Similarly as for DFAs, we can prove a more efficient upper
bound for ∃−ML(DRE) if the distributed string has only two
function calls.

Theorem 6.19. ∃−ML(DRE) is in expspace and
∃−2ML(DRE) is pspace-hard and in exptime.

Proof. The lower bound is immediate from Lemma 6.17.
For the upper bound we use the following algorithm, which

can be implemented to use only exponential space in the
general case and exponential time in the case with only 2
function calls.

(1) Compute a DFA A for the given DRE R.

(2) Compute the set T of all local typings in strong A-NF
for (A, w).

(3) Compute the set Tmax of all maximal typings from T .

(4) Check if there is a DRE-definable typing in Tmax

7. FURTHER WORK
The array for further research directions is wide. From

a theoretical point of view, the most interesting question is
settling the complexities of ∃−LOC(DFA) and ∃−LOC(NFA).
Solving these questions could also bring new insights in open
problems in formal language theory concerning language pri-
mality, since factorizing in more than two languages is also of
interest there. From a more applied point of view, the most
interesting questions undoubtedly concern the deterministic
content models (DFAs and DREs). To mention one exam-
ple: if (maximal) local or perfect typings exist w.r.t. DFAs
or DREs, how large will they be? From our normal forms
for DFAs, we can only infer exponential upper bounds. Fur-
thermore, since DREs can be exponentially larger than their
DFA-representation in general [6, 4], this question becomes
even more intriguing for DREs. Furthermore, since not ev-
ery regular language is DRE-definable, can we be happy
with approximations? Finally, it may also be interesting to
investigate the typing questions for subclasses of regular ex-
pressions that are found commonly in XML schemas on the
Web.

8. REFERENCES
[1] S. Abiteboul, G. Gottlob, and M. Manna. Distributed

XML design. In ACM PODS, pages 247–258, 2009.

[2] S.V. Avgustinovich and A. Frid. A unique
decomposition theorem for factorial languages. Int. J.
of Algebra and Comput., 15:149–160, 2005.

[3] Sebastian Bala. Regular language matching and other
decidable cases of the satisfiability problem for
constraints between regular open terms. In STACS,
pages 596–607, 2004.

[4] G. J. Bex, W. Gelade, W. Martens, and F. Neven.
Simplifying XML Schema: effortless handling of
nondeterministic regular expressions. In ACM
SIGMOD, pages 731–744, 2009.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language XML
1.0 (fifth edition). Technical report, World Wide Web
Consortium (W3C), November 2008. W3C
Recommendation,
http://www.w3.org/TR/2008/REC-xml-20081126/.

[6] A. Brüggemann-Klein and D. Wood.
One-unambiguous regular languages. Inf. and
Comput., 142(2):182–206, 1998.

[7] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y.
Vardi. Rewriting of regular expressions and regular
path queries. J. Comp. Syst. Sc., 64(3):443–465, 2002.

[8] J. Clark and M. Murata. Relax NG specification.
http://www.relaxng.org/spec-20011203.html,
December 2001.

[9] J.H. Conway. Regular Algebra and Finite Machines.
Chapman and Hall, 1971.

[10] J. Czyzowicz, W. Fraczak, A. Pelc, and W. Rytter.
Linear-time prime decompositions of regular prefix
codes. Int. J. Found. Comp. Sc., 14:1019–1031, 2003.

[11] D. Fallside and P. Walmsley. XML Schema Part 0:
Primer (second edition). Technical report, World Wide
Web Consortium, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/.

[12] S. Gao, C. M. Sperberg-McQueen, H.S. Thompson,
N. Mendelsohn, D. Beech, and M. Maloney. W3C
XML Schema Definition Language (XSD) 1.1 part 1:
Structures. Technical report, World Wide Web
Consortium, April 2009. W3C Recommendation,
http://www.w3.org/TR/2009/CR-xmlschema11-1-
20090430/.

[13] Y.-S. Han, K. Salomaa, and D. Wood. Prime
decompositions of regular languages. In DLT, pages
145–155, 2006.

[14] T. Jiang and B. Ravikumar. Minimal NFA problems
are hard. Siam J. Comp., 22(6):1117–1141, 1993.

[15] M. Kunc. What do we know about language
equations? In DLT, pages 23–27, 2007.

[16] W. Martens, F. Neven, and T. Schwentick.
Complexity of decision problems for XML schemas
and chain regular expressions. Siam J. Comp.,
39(4):1486–1530, 2009.

[17] Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. In ACM PODS, pages 35–46,
2000.

[18] A. Salomaa, K. Salomaa, and S. Yu. Length codes,
products of languages and primality. In LATA, pages
476–486, 2008.

[19] A. Salomaa and S. Yu. On the decomposition of finite
languages. In DLT, pages 22–31, 1999.

[20] K. Salomaa. Language decompositions, primality, and
trajectory-based operations. In CIAA, pages 17–22,
2008.

[21] P. van Emde Boas. The convenience of tilings. In
A. Sorbi, editor, Complexity, Logic and Recursion
Theory, volume 187 of Lecture Notes in Pure and
Applied Mathematics, pages 331–363. Marcel Dekker
Inc., 1997.

[22] M. Y. Vardi. An automata-theoretic approach to
linear temporal logic. In BANFF, pages 238–266, 1995.

[23] W. Wieczorek. An algorithm for the decomposition of
finite languages. Logic J. of the IGPL, 2009. Appeared
on-line August 8, 2009.

[24] S. Yu. Regular languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages,
volume 1, chapter 2. Springer, 1997.

