
Incremental XPath Evaluation

HENRIK BJÖRKLUND

Ume̊a University, Department of Computing Science

and

WOUTER GELADE

Hasselt University and Transnational University of Limburg, School for Information

Technology, Belgium

and

WIM MARTENS

Technical University of Dortmund, Department of Computer Science

Incremental view maintenance for XPath queries asks to maintain a materialized XPath view over
an XML database. It assumes an underlying XML database D and a query Q. One is given a

sequence of updates U to D and the problem is to compute the result of Q(U(D)), i.e., the result

of evaluating query Q on the database D after having applied the updates U . This paper initiates
a systematic study of the boolean version of this problem. In the boolean version, one only wants

to know wheter Q(U(D)) is empty or not.

In order to quickly answer this question, we are allowed to maintain an auxiliary data structure,
and the complexity of the maintenance algorithms is measured in (i) the size of the auxiliary data

structure, (ii) the worst-case time per update needed to compute Q(U(D)) and (iii) the worst-
case time per update needed to bring the auxiliary data structure up to date. We allow three

kinds of updates: node insertion, node deletion, and node relabeling. Our main results are that

downward XPath queries can be incrementally maintained in time O(depth(D) · poly(|Q|)) per
update and conjunctive forward XPath queries in time O(depth(D) · log(width(D)) · poly(|Q|))
per update, where |Q| is the size of the query, and depth(D) and width(D) are the nesting depth

and maximum number of siblings in the database D, respectively. The auxiliary data structures
for maintenance are linear in |D| and polynomial in |Q| in all these cases.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications;
F.2.0 [Analysis of Algorithms and Problem Complexity]: General; F.4.3 [Mathemati-

cal Logic and Formal Languages]: Mathematical Logic; F.4.3 [Mathematical Logic and

Formal Languages]: Formal Languages

General Terms: Algorithms, Design, Languages, Standardization, Theory

Additional Key Words and Phrases: XML, XPath, view maintenance

The present paper is the full version of [Björklund et al. 2009], which was presented at the 12th

International Conference on Database Theory (ICDT) in St. Petersburg, Russia, 2009.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY, Pages 1–0??.

2 · Incremental XPath Evaluation

1. INTRODUCTION

The XPath language, proposed by the World Wide Web Consortium (W3C), is es-
sentially a query language for selecting nodes in an XML document. Node-selection
is one of the most basic operations on XML documents and therefore XPath lies
at the core of most of today’s data processing languages for XML. For example, it
forms an essential component of languages such as XQuery, XSLT, XML Schema
(which uses XPath for defining keys), etc.

The most fundamental algorithmic question concerning XPath is query evalua-
tion. That is, given an XPath query Q and an XML document D, return all nodes
that are selected by Q in D. The query evaluation problem for various fragments of
XPath has been researched quite intensely over the last decade (see [Benedikt and
Koch 2008] for an overview). In this paper, we are interested in the incremental
XPath evaluation problem. We first explain the general idea behind incremen-
tal XPath evaluation and discuss the variant that we study later. In incremental
XPath evaluation one is given an XPath query Q and XML data D. Furthermore,
we assume that the answer for Q on D is already known. However, when D is
updated to D′, we want to be able to infer the updated answer for Q on D′ as
quickly as possible. The idea is, of course, to maintain extra information such that
the updated answer to Q on D′ can be computed without having to re-evaluate Q
from scratch.

We provide two motivating scenarios for incremental XPath evaluation in general:

(A). Trigger conditions. A database system has a trigger condition in which
the precondition is stated by means of an XPath query. Here, the system may be
interested in knowing very quickly after an update whether the event of the trigger
needs to be carried out or not.

(B). View maintenance. A database system has a certain view definition, formu-
lated as an XPath query, and we simply want to maintain its results after updates.

Notice that a scenario similar to (B) can also be relevant when exchanging data on
the Web. When a community exchanges data, it is often the case that a certain user
Y is interested in the result of a fixed query on the data of another user X. To make
the example more concrete, it may be useful to think of X as a huge bioinformatics
database and of Y as a research group that is only interested in a particular set of
sequences. We also assume that X knows Y ’s view definition and wants to keep
Y up-to-date (i.e., Y has a query subscription). The data of X may change often,
while the interests of Y remain the same. Of course, it could be beneficial for both
parties if Y ’s view definition does not have to be completely recomputed and the
entire result sent over the Internet every time X’s data changes. In such a setting,
Y may herself have a representation of the current result of her query in order to
do local research and analysis. So, after an update of X’s data, it would be relevant
for X to be able to quickly determine the changes that Y has to make to her old
result, rather than sending her the complete new result, which may be much larger
than the update. More concretely, say that Dold (resp. Dnew) is the database of
X before (resp. after) an update and Vold and Vnew are the results of Y ’s view on
Dold and Dnew, respectively. Since Y has Vold locally, which needs to be updated,
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 3

Table I. Overview of our results. The second column indicates the XPath fragment under con-

dideration and the third column reports the obtained upper bounds for incremental evaluation.

The time complexities are measured in terms of the XML document D and query Q and are
worst-case times per update. AuxSize is the size of the auxiliary datastructure that has to be

maintained. The last column refers to the theorems in which the results are proved. All results

are exclusively on Boolean maintenance, except for row (3).

Fragment Complexity Theorem

(1) NavXPath Time: O(log2(|D|)) · 2O(|Q|) Theorem 3.2

AuxSize: O(|D|) · 2O(|Q|)

(2) NavXPath Time: O(depth(D) · log(width(D))) · 2O(|Q|) Theorem 3.2

AuxSize: O(|D|) · 2O(|Q|)

(3) ↓,⇓,∧,∨,¬, [·], ∗ Time: O(depth(D) · |Q|) Theorem 4.1
AuxSize: O(|D| · |Q|)

(4) →,⇒,∧, [·], ∗ Time: O(log(|D|) · |Q|6) Theorem 5.1

AuxSize: O(|D| · |Q|3)

(5) ↓,⇓,→,⇒,∧, [·], ∗ Time O(depth(D) · log(width(D)) · |Q|7) Theorem 6.1
AuxSize: O(|D| · |Q|3)

it may be much more beneficial for X to send a list of update(. . .) / delete(. . .)
instructions to Y that update Vold to Vnew, rather than sending over the possibly
huge Vnew to Y .

1.1 Two Versions of the Problem

Incrementally evaluating queries on a relational database is an intensively researched
topic in database theory. In the literature, it is also known as incremental view
maintenance (see, e.g., [Shmueli and Itai 1984; Gupta et al. 1993]).

From our two motivating scenarios above, we can immediately infer two versions
of the incremental XPath evaluation problem that we believe to be important in
practice. We will refer to the first as the Boolean maintenance version, and to the
second as the (materialized) view maintenance version. In brief, in the Boolean
maintenance version, which corresponds to scenario (A), we are simply interested
in whether an XPath expression is satisfied or not after performing an update on
the database. In the view maintenance version, which corresponds to scenario (B),
the output of the XPath query is maintained and, after an update of the database,
we want to update this set of outputs.

In this paper we focus almost exclusively on the Boolean maintenance version
of the problem. View maintenance is clearly more general, but it turns out that
the Boolean maintenance version is algorithmically already quite challenging. We
believe that the Boolean maintenance version is interesting in its own right and
that it already contains an important core of the view maintenance version, in the
sense that the difficulties of the Boolean maintenance version need to be understood
before view maintenance can be properly tackled.

1.2 Our Contributions

We allow the algorithms for incremental XPath evaluation to maintain an auxiliary
data structure to help re-evaluation. The cost of the algorithms in this article are
then measured in terms of (a) the time needed to recompute the result of XPath
query, (b) the time needed to update the auxiliary data structure, and (c) the size

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

4 · Incremental XPath Evaluation

of the auxiliary data structure.1 The time measures are worst-case bounds for a
single update to the XML document, and the updates we consider are of the form:
relabel node x, delete the subtree rooted at x, or insert a node x in position y. As
our model of computation, we assume a RAM-model that can store, e.g., counter
values of size O(|D|+ |Q|) in constant space (i.e., one register).

Our main results are summarized in Table I. Here, |D| and |Q| are the sizes of
the XML document and the XPath query, respectively. We consider XPath queries
without operations on data values. In the terminology of [Benedikt and Koch 2008],
we consider fragments of Navigational XPath (NavXPath).2 In particular, our study
focuses on features in XPath 1.0 rather than XPath 2.0. The results in the table
concern Boolean incremental evaluation. The time complexities hold for recomput-
ing the result of the XPath query and updating the auxiliary data structure, and
hold for all the updates we consider. Some of the time complexities contain a fac-
tor depth(D) or width(D) which denote the depth of the tree representation of D
and the maximum number of siblings in D, respectively. We believe the depth(D)
factor in row (3) to be very relevant for practical purposes, since the depth of D
is extremely small in practice, especially when compared to the full size of D. The
other rows denote the fragments of NavXPath that only allow the listed operators
and axes. Here, ↓, ⇓, →, ⇒ denote the axes child, descendant, nextsibling,3 and
following-sibling, respectively. Predicate is denoted by [·], wildcard by ∗, and the
Boolean operators by ∧, ∨, and ¬, respectively.

In case (3) in the table, we can also do view maintenance for the query in a
restricted form. Essentially, we can maintain the materialized view consisting of
the set of the nodes where the root of the query matches D. The intuitive reason
why this restricted form of materialized view maintenance can be handled is that
all positions where the truth value of the root of the query changes lie on the path
from the change in D to its root.

Finally, we want to bring the incremental XPath evaluation problem to the at-
tention of the database community. To the best of our knowledge, this is the first
paper that provides (sub-linear) worst-case upper bounds on incremental XPath
evaluation.

1.3 Related work

The (non-incremental) XPath evaluation problem has been studied quite exten-
sively in the literature [Bojańczyk and Parys 2008; Gottlob et al. 2005; Gottlob
et al. 2005; Götz et al. 2009; Parys 2009]. We refer to [Benedikt and Koch 2008]
for a detailed overview. There is a large amount of work on indexing on XML doc-
uments (e.g, [O’Neil et al. 2004]), but indexing schemes are usually aimed towards
answering a large class of XPath queries and require time at least linear in the
document for complicated queries.

There are already several papers dealing with incremental XPath evaluation [Mat-
sumura and Tajima 2005; Onizuka et al. 2005; Sawires et al. 2006; Sawires et al.

1For a more formal treatment, see Section 2.2.
2The XPath fragment we consider is formally defined in Section 2.1.
3Next-sibling is strictly speaking not a primitive axis in XPath, but can be expressed using

following-sibling::∗[position() = 1].

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 5

2005], but none of these papers give any worst-case complexity bounds. The pa-
pers [Matsumura and Tajima 2005; Sawires et al. 2005] only consider leaf deletion
and insertion, and [Onizuka et al. 2005] considers deletion and insertion of entire
subtrees.

An early paper on pattern matching in trees is by Hoffmann and O’Donnell [Hoff-
mann and O’Donnell 1982]. They studied pattern matching in trees and also treat
incremental maintenance, but their setting is rather different from ours. Hoffmann
and O’Donnel’s work is motivated by problems related to program interpreters,
code optimization in compilers, and automated theorem proving. In particular,
this means that they only consider queries with the child-relation, which should
be injectively mapped onto ranked trees. Our queries are more general, do not
have injective semantics, and apply to unranked trees. The results on incremental
maintenance in [Hoffmann and O’Donnell 1982] is essentially a by-product of their
preprocessing of the patterns, which is similar to the Knuth-Morris-Pratt string
matching algorithm. Their complexity results are not comparable to ours, since
they spend more time on preprocessing and have a higher complexity with respect
to the tree size but a lower complexity with respect to the query size.

The incremental validation of XML schemas [Balmin et al. 2004; Barbosa et al.
2004] is closely related to our problems. In incremental schema evaluation, one is
asked to maintain satisfaction of an XML document by an XML schema, where
the document can be updated. Balmin et al. describe algorithms for incremental
validation of DTDs, XML Schemas and tree automata [Balmin et al. 2004]. We use
their incremental maintenance result for tree automata to infer some upper bounds
in this paper.

Incremental view maintenance for Active XML has been studied by [Abiteboul
et al. 2007; 2009]. Abiteboul et al. investigate the complexity of deciding whether
there exists a possible update sequence to an active XML document that satisfies
a query and note that incremental maintenance is possible by directly using known
techniques for Datalog. They also provide an implementation of the maintenance
algorithm.

Incremental XPath evaluation can be seen as a generalization of the XPath evalu-
ation problem on XML streams (see, e.g., [Bar-Yossef et al. 2007; Grohe et al. 2007;
Schweikardt 2007]). In streaming XPath evaluation, one reads the XML document
as a sequence of SAX-events, i.e., the sequence of opening and closing tags in the
ordering in which they occur in the XML file. When viewing an XML document as
a tree, this ordering corresponds to the depth-first left-to-right ordering of the tree.
Streaming XPath evaluation can then be seen as incremental XPath evaluation in
which the only update operation is that nodes can be added at the last position in
the depth-first left-to-right ordering.

Our paper investigates upper time complexity bounds for incremental XPath
evaluation. We do not know any non-trivial lower bound on the time complexity
of this problem. However, since incremental XPath evaluation generalizes XPath
evaluation on streams, any time lower bound on XPath evaluation on streams for
reading a single tag would also be a time lower bound per update for incremental
XPath evaluation. A related problem is the inherent dynamic complexity of formal
languages, which was investigated in, e.g., [Gelade et al. 2009].

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

6 · Incremental XPath Evaluation

Incremental view maintenance is a deeply investigated topic in relational and
object-relational databases. However, the focus of this work was different than
ours. Rather than focusing on dedicated algorithms for updating a view in sub-
linear time, this research has mostly investigated questions such as is it possible to
maintain views expressed in language L1 by an algorithm expressible as a query in
language L2 [Dong and Su 2000]. The goal is of course to obtain a language L2

which can be evaluated very quickly and which is well supported by the database
system. In this sense, Dong and Topor investigate incremental evaluation of non-
recursive datalog queries over relational data [Dong et al. 1995]. Griffin and Libkin
studied maintaining relational views with duplicates [Griffin and Libkin 1995]. In-
cremental maintenance of nested relational views is investigated in, e.g., [Libkin
and Wong 1997; Liu et al. 1999]. Gupta et al. developed a method for maintaining
nonrecursive materialized views defined in SQL or Datalog [Gupta et al. 1993]. The
algorithm is based on keeping track of the number of possible derivations of tuples.
More recently, Dong et al. investigated properties of query languages that imply
unmaintainability of recursive relational views [Dong et al. 2003]. Unmaintain-
ability refers to being unable to formulate the updates in relational calculus. The
algebraic perspective of relational incremental view maintenance has been studied
by Koch [Koch 2010].

Maintaining transitive closure of graphs using SQL has been investigated by Dong
et al. [Dong et al. 1999]. Pang et al. continued this work and provide algorithms
expressible in FO(+,<) for maintaining transitive closure and all-pairs shortest-
distance on weighted graphs [Pang et al. 2005].

2. PRELIMINARIES

By Σ we always denote an infinite set of labels. Our abstraction of an XML docu-
ment is a rooted, ordered, finite, labeled, unranked tree, which is directed from the
root downwards. That is, we consider trees with a finite number of nodes and in
which nodes can have arbitrarily many children. We view an XML document D as a
relational structure over a finite number of unary labeling relations a(·), where each
a ∈ Σ, and binary relations child(·, ·) and next-sibling(·, ·). Here, a(u) expresses
that u is a node with label a, and child(u, v) (respectively, next-sibling(u, v)) ex-
presses that v is a child (respectively, next sibling) of u. We also use the notations
descendant(u, v) and following-sibling(u, v) for the respective transitive closures of
the above relations. The label of a node u in D must be unique and is denoted by
labD(u). We write Nodes(D) and Edges(D) for the sets of nodes and edges of a tree
(document) D. As usual, Edges(D) is the set of pairs (u, v) such that child(u, v)
holds in D. The root of D is denoted by root(D). We define the size of D, denoted
by |D|, to be the number of nodes of D.

Notice that we have an infinite set of labels from which our (finite) trees can
choose. This reflects how trees occur in an XML-context: an XML tree is a finite
structure, but there is no restriction on how it should be labeled (if no schema is
provided).

2.1 XPath Patterns

We assume that the reader is familiar with XPath [Clark and DeRose 1999]. As
an abstraction of XPath, we will usually use XPath Patterns, which we formally
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 7

<store>

<dvd>

<title> "Lilja Forever" </title>

<price> 17 </price>

</dvd>

<dvd>

<title> "District 9" </title>

<price> 20 </price>

</dvd>

<dvd>

<title> "Gothika" </title>

<price> 15 </price>

<discount> 4 </discount>

</dvd>

<dvd>

<title> "Pulp Fiction" </title>

<price> 11 </price>

<discount> 6 </discount>

</dvd>

</store>

store

dvd

title

Lilja Forever

price

17

dvd

title

District 9

price

20

dvd

title

Gothika

price

15

discount

4

dvd

title

Pulp Fiction

price

11

discount

6

Fig. 1. An example of an XML document and its tree representation.

define in this section. They can be seen as an extension of tree pattern queries
(see, e.g., [Miklau and Suciu 2004; Götz et al. 2009]) with the full expressive power
of navigational XPath [Benedikt and Koch 2008]. Essentially, XPath Patterns are
parse trees of XPath 1.0 queries. They are a convenient technical tool for our
algorithms since they allow us to reason about nodes and edges in the pattern.
Following XPath, our XPath Patterns will make use of axes. The axes in this
article are fairly standard: self, child (↓), descendant (⇓), descendant-or-self (↓∗),
parent (↑), ancestor (⇑), ancestor-or-self (↑∗), next-sibling (→), following-sibling
(⇒), previous-sibling (←), and preceding-sibling (⇐). We note that the remaining
XPath axes (i.e., following and preceding) can be expressed by these axes using
only a linear blow-up.

XPath Patterns are parse trees of XPath 1.0 queries. We formally define them
as follows.

Definition 2.1. An XPath Pattern is a rooted, unranked, unordered, finite,
labeled tree in which the nodes and edges bear types. The type of a node u,
denoted by type(u) can either be label or syntax. When the type of a node is label
then the label must be in Σ] {∗}. When the type of a node is syntax, the label
must be one of ∧,∨,¬. The type of an edge e, denoted by type(e), can be syntax,
or any XPath axis.

Figure 2(a) contains an illustration of an XPath pattern. We only use two types of
axes in Figure 2(a): the child axis (depicted by single arrows) and the descendant
axis (depicted by double arrows).

Remark 2.2. Throughout the paper, we will use the letterD to denote the XML
document, and Q to denote the XPath Pattern. We will refer to nodes of Q as query
nodes and to nodes of D as document nodes. When the type of u ∈ Nodes(Q) is
label (resp. syntax), we refer to u as a label node (resp. syntax node). Similarly for
edges, we also use the terminology X-edge for an edge e with type(e) = X, e.g.,

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

8 · Incremental XPath Evaluation

child-edge, self-edge,. . . For a set X of axes and boolean operators, we denote by
XPath(X) the set of XPath Patterns using only the axes and operators from X.

We assume that XPath Patterns are well-formed, that is, (i) all incoming edges
to syntax nodes must be syntax edges; (ii) no other edges are syntax edges; and
(iii) a syntax node labeled ¬ has only one child.

We define the semantics of XPath Patterns inductively on the structure of the
pattern. Given a document D, a document node u ∈ Nodes(D) and an XPath
Pattern Q, we will, for each query node i ∈ Nodes(Q) and each edge e ∈ Edges(Q),
define the two notions D |=u Q[i] and D |=u Q[e]. Loosely speaking these notions
express that the subpattern (i.e., subtree) of Q that is rooted at node i (edge e,
resp.) is satisfied in D at node u. We say that a query node i ∈ Nodes(Q) matches
a document node u ∈ Nodes(D) if i is a label node and either labQ(i) = ∗ or
labQ(i) = labD(u).

We say that D |=u Q[i] when one of the following conditions holds:

—query node i matches document node u and, for all edges e = (i, j), it holds that
D |=u Q[e];

—labQ(i) = ∧ and, for all edges e = (i, j), it holds that D |=u Q[e];
—labQ(i) = ∨ and there exists an edge e = (i, j) such that D |=u Q[e]; or
—labQ(i) = ¬ and, for the unique edge e = (i, j), we have that D |=u Q[e] does

not hold.

Moreover, for each edge e = (i, j) in Q, we say that D |=u Q[e] when one of the
following holds:

—e is a syntax edge or type(e) = self, and D |=u Q[j]; or
—type(e) =↓ (resp., ⇓, ↓∗, ↑, ⇑, ↑∗, →, ⇒, ←, ⇐) and there exists a child v of
u (resp., descendant, descendant-or-self, parent, ancestor, ancestor-or-self, next
sibling, following sibling, previous sibling, preceding sibling v of u) such that
D |=v Q[j].

Finally we say that the document D models the XPath Pattern Q (D |= Q) iff
D |=root(D) Q[root(Q)]. We also abbreviate D |=u Q[root(Q)] with D |=u Q. If
D |= Q holds, we also sometimes write that D satisfies Q.

Remark 2.3. In the above, we define D |= Q to mean that there is a matching of
the query pattern that matches the root of the pattern to the root of the document.
In some situations, however, matchings that map the root of the pattern to other
nodes of the document may be of interest. This can be achieved by modifying the
query pattern slightly. If we add a label-node with label ∗, make it the new root
of the query pattern, and add a single descendant-edge from the new node to the
previous root of the pattern, we obtain a query pattern Q′ such that D |= Q′ if and
only if D |=u Q for some document node u other than root(D).

Figure 2(a) illustrates an example of an XPath Pattern that is satisfied in the
same set of trees as the XPath query /a[.//b and ./e and(not(./c))]/ ∗ //d. Fig-
ure 2(b) shows a document tree satisfying the XPath Pattern from Figure 2(a).

Remark 2.4. Navigational XPath [Benedikt and Koch 2008] also allows the use
of the (binary) union operator, but with respect to the questions in this paper, this
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 9

a

∗

d

∧

b e ¬

c

(a) XPath Pattern for the query

/a[.//b and ./e and (not(./c))]/ ∗ //d.

a

a e

b d

(b) A document modeling the XPath

Pattern of Figure 2(a).

Fig. 2. An XPath Pattern and a document.

union operator is equivalent to the disjunction in XPath patterns. We chose not to
add union explicitly as, in our setting, this restricted union operator can simply be
simulated by the ∨ operator without blow-up.

2.2 The Incremental Evaluation Problem

Our formal treatment of the incremental evaluation problem for XPath Patterns is
similar to the one of Balmin et al. for incremental validation of XML schemas [Balmin
et al. 2004].

We first formally define the Boolean incremental XPath evaluation problem. That
is, given an XPath Pattern Q, an XML document D, the knowledge whether D |=
Q or not, and an update to D yielding another XML document D′, we wish to
efficiently check if D′ |= Q. In particular, the cost should be less than evaluating
Q on D′ from scratch. The individual updates are the following:

(a) replace the current label of a specified node by another label,
(b) insert a new leaf node as the next sibling of a specified node,
(c) insert a new leaf node as the first child of a specified node, and
(d) delete a specified node; if the node is an internal one, the subtree of D rooted

at the node is also deleted.

It should be noted that in other work it is sometimes also allowed to insert entire
subtrees into the document, instead of single nodes. However, as the above updates
allow to insert nodes at any position in the document tree, this can be accomodated
in our framework by inserting the nodes of the subtree one by one.

We allow some cost-free one-time pre-processing, such as computing an automa-
ton representation of a pattern. We will also initialize and then maintain an aux-
iliary structure aux(Q,D) to help in the evaluation. The cost of the incremental
evaluation algorithm is given w.r.t.:

(a) the time needed to test whether D′ |= Q using D and aux(Q,D), as a function
of |D| and |Q|,

(b) the time needed to compute aux(D′) from D and aux(Q,D), as a function of
|D| and |Q|,

(c) the size of the auxiliary structure aux(Q,D) as a function of |D| and |Q|.
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

10 · Incremental XPath Evaluation

As mentioned in the Introduction, the time complexities in Table I always hold for
both (a) and (b).

3. FULL NAVIGATIONAL XPATH

We start with an approach to Boolean incremental evaluation for full XPath Pat-
terns. It builds heavily on well-known techniques for translating XPath into finite-
state tree automata (see, e.g., [Schwentick 2004; ten Cate and Lutz 2009]).

The robust notion of regular string and ranked tree languages can easily be gen-
eralized to unranked tree languages. The latter class is usually defined in terms
of non-deterministic unranked tree automata and posseses similar closure proper-
ties. The class of tree languages accepted by unranked tree automata is called the
unranked regular tree languages. We refer the unfamiliar reader to [Neven 2002]
for a gentle introduction. We formally introduce non-deterministic tree automata
(Definition A.4) and prove the following Lemma in Appendix A. For an automaton
A let L(A) denote the set of trees accepted by A.

Theorem 3.1. Let Q be an XPath Pattern. A non-deterministic unranked tree
automaton A with L(A) = {D | D |= Q} can be constructed in time 2O(|Q|).

We noticed that Theorem 3.1 was independently discovered by Libkin and Sir-
angelo (Theorem 2 in [Libkin and Sirangelo 2008]).4 It was already known that
standard constructions allowed to construct A in time 2O(poly(|Q|)). The emphasis
of Theorem 3.1 is that 2O(|Q|) suffices.

Balmin et al. [Balmin et al. 2004] have shown that given an unranked tree au-
tomaton A one can incrementally decide membership of an XML document D in
L(A) in time5 eitherO(log2(|D|)·poly(|A|) orO(depth(D)·log(width(D))·poly(A)),
with respect to the same update operations we consider. The size of the auxiliary
data structure is O(|D|) ·poly(|A|). The basic building block of the technique used
in [Balmin et al. 2004] is sketched in Section 5.1. This immediately implies the
following.

Theorem 3.2. Boolean incremental evaluation for an XPath Pattern Q and an
XML document D can be performed in

(1) time O(log2(|D|) · 2O(|Q|)) per update; or
(2) time O(depth(D) · log(width(D)) · 2O(|Q|)) per update;

both with an auxiliary data structure of size |D| · 2O(|Q|).

4. DOWNWARD XPATH

As seen in the previous section, an automata-theoretic approach combined with the
results from [Balmin et al. 2004] yields a maintenance algorithm that is polylog-
arithmic in the document and exponential in the query size, with auxiliary data
which is linear in the document and exponential in the query. This may work as

4The paper [Libkin and Sirangelo 2008] appeared when we prepared the camera-ready version of

[Björklund et al. 2009].
5Actually, they state a complexity bound of O(depth(D) · log(|D|) ·poly(|A|)), but a slightly more

detailed analysis shows that the complexity is also O(depth(D) · log(width(D)) · poly(|A|)).

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 11

long as the query is very small, but for larger queries, the complexity becomes
prohibitive.

4.1 Boolean Incremental Evaluation

In this section, we present a first maintenance algorithm that is also polynomial
in the query. In particular, we provide an algorithm for incrementally maintaining
a downward XPath pattern, i.e., an XPath(↓,⇓,∧,∨,¬)-pattern. We show the
following result:

Theorem 4.1. Boolean incremental evaluation for an XPath(↓,⇓,∧,∨,¬) Pat-
tern Q and XML document D can be performed in time O(depth(D) · |Q|) per
update. The size of the auxiliary data structure is O(|D| · |Q|).

The algorithm works as follows. For each node u in D, with children u1, . . . , uk, we
store a record Ru consisting of

—the set of query nodes Match(u) := {q ∈ Nodes(Q) | D |=u Q[q]},
—for every query node q, the number of children of u in which Q[q] is satisfied, i.e.,

the cardinality numChildq(u) of the set {ui | q ∈ Match(ui)},
—the set of query nodes that are satisfied in some descendant of u, i.e., the set

MatchDesc(u) := {q ∈ Nodes(Q) | ∃u′ ∈ Nodes(D) such that descendant(u, u′)∧
D |=u′

Q[q]}, and
—for every query node q, the number of children of u that have a descendant satis-

fying Q[q], i.e, the cardinality numDescq(u) of the set {ui | q ∈ MatchDesc(ui)}.

Hence, D satisfies Q if and only if root(Q) is in Match(root(D)). So, once the
auxiliary data structure is computed, testing whether D |= Q is trivial. The size
of each record Ru is O(|Q|), so the size of the entire auxiliary data structure is
O(|D| · |Q|).

It now suffices to show that we can incrementally update the auxiliary data
structure in time O(depth(D) · |Q|). Notice that, for each of the updates of a node
u in D (label change, node insertion, and node deletion), only the data records Rv
for nodes v on the path from u to the root of D change. We recompute these data
records in a bottom-up fashion.

Suppose that we performed an update at some node in D and let u be the
next node on the path to the root for which the record must be updated, let
v be its parent node, and u1, . . . , uk its children. When visiting u we assume
that the updated values numChildqnew(u) and numDescqnew(u), and Matchnew(ui)
and MatchDescnew(ui), for all q ∈ Nodes(Q) and i ∈ {1, . . . , k} are known, and
we compute Matchnew(u), MatchDescnew(u), numChildqnew(v), and numDescqnew(v).
If u is a leaf, we have numChildqnew(u) = numDescqnew(u) = 0 for all q. The
recomputation works as follows:

(1) Matchnew(u): We compute the set Matchnew(u) by inspecting Q in a bottom-up
fashion.
In Q, we have syntax and label nodes, and for the latter we distinguish child
and descendant nodes depending on whether the incoming edge is a child or
descendant edge. We will call a node q of Q satisfied (w.r.t. node u in D)
if (a) q is a syntax node and q ∈ Matchnew(u), (b) q is a child node and

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

12 · Incremental XPath Evaluation

numChildqnew(u) > 0, or (c) q is a descendant node and numChildqnew(u) > 0
or numDescqnew(u) > 0.
Now, let q be a query node with children q1, . . . , q`. Then, q ∈ Matchnew(u)
if (a) q is a label node, the label of q matches the label of u, and all children
q1, . . . , q` are satisfied w.r.t. u; (b) q is a syntax node labeled “∧” and all
q1, . . . , q` are satisfied w.r.t. u; (c) q is a syntax node labeled “∨” and at least
one of q1, . . . , q` is satisfied w.r.t. u; or (d) q is a syntax node labeled “¬” and
its (unique) child is not satisfied w.r.t. u.
From these conditions, we can easily compute Matchnew(u) in time O(|Q|) in
one bottom-up pass over Q.

(2) numChildqnew(v): For every q ∈ Nodes(Q),

numChildqnew(v) =

numChildq(v) + 1 if q ∈ Matchnew(u) and q /∈ Match(u)
numChildq(v)− 1 if q /∈ Matchnew(u) and q ∈ Match(u)
numChildq(v) otherwise.

(3) MatchDescnew(u):

MatchDescnew(u) = {q | numChildqnew(u) > 0} ∪ {q | numDescqnew(u) > 0}

(4) numDescqnew(v): For every q ∈ Nodes(Q),

numDescqnew(v) =

numDescq(v) + 1 if q ∈ MatchDescnew(u)
and q /∈ MatchDesc(u)

numDescq(v)− 1 if q /∈ MatchDescnew(u)
and q ∈ MatchDesc(u)

numDescq(v) otherwise.

This algorithm requires time O(depth(D) · |Q|). Indeed, we only have to update
depth(D) records, each of which can be done in time O(|Q|). This proves Theo-
rem 4.1.

4.2 Beyond Boolean Incremental Evaluation

For an XPath(↓,⇓,∧,∨,¬)-pattern Q, the membership of nodes in the set V :=
{u ∈ Nodes(D) | D |=u Q} only changes for nodes on the path from the update to
D’s root. If we are interested in maintaining the materialized view V , the algoritm
for Theorem 4.1 can also output the changes to V , i.e., output a set of nodes to be
inserted, resp., removed from V , in time O(depth(D) · |Q|).

5. XPATH(→,⇒,∧) ON STRINGS

In the previous section, we presented an algorithm to efficiently maintain downward
navigational queries. Our goal in the remainder of the article will be to partially
extend this fragment by adding the next-sibling and following-sibling axes. This
will, however, prove to be non-trivial and will come at the cost of removing negation
and disjunction in the queries.

In this section, we present an algorithm for incrementally evaluating XPath(→,
⇒,∧) on sequences of siblings or, in other words, strings. This algorithm will then
be used in Section 6 to extend the algorithm of the previous section to also handle
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 13

the next- and following-sibling axes. More specifically, this section is devoted to
proving the following result.

Theorem 5.1. Boolean incremental evaluation for an XPath(→,⇒,∧) Pattern
Q and a string D can be performed in time O(log(|D|) · poly(|Q|)) per update with
an auxiliary data structure of size O(|D| · |Q|3).

5.1 Evaluating an NFA on Strings

First, we explain the intuition behind incrementally evaluating a non-deterministic
finite automaton (NFA) on strings, and the challenges that arise when trying to
adapt this algorithm for incrementally evaluating XPath(→,⇒,∧) on strings. The
following technique was first described by Patnaik and Immerman [Patnaik and
Immerman 1997] and worked out in more detail by Balmin et al. [Balmin et al.
2004].

A non-deterministic finite automaton (NFA) is a tupleN = (States(N),Alph(N),
Rules(N), init(N),Final(N)), where States(N) denotes its set of states, Alph(N) its
alphabet, init(N) its set of initial states, and Final(N) its set of final or accepting
states. The transition rules Rules(N) are of the form q1

a→ q2, indicating that
reading an a ∈ Alph(N) in state q1 can bring the automaton in state q2. Acceptance
is defined in the standard manner. We denote by L(N) the set of strings accepted
by N .

Assume that we have a string w = a1 · · · an ∈ Σ∗ for which we incrementally
want to maintain whether w ∈ L(N). We first describe the auxiliary data structure
we will maintain to do this efficiently. For each i, j, 1 ≤ i < j ≤ n, let Tij be the
transition relation {(p, q) | p, q ∈ States(N), p

ai···aj→ q}, where p
ai···aj→ q denotes

that N can reach state q when it starts in state p and reads ai · · · aj . Note that
Tij = Tik ◦ T(k+1)j , i < k < j, where ◦ denotes composition of binary relations.

For simplicity, assume first that n is a power of 2, say n = 2k. The main idea is to
keep as auxiliary information just the Tij for intervals [i, j] obtained by recursively
splitting [1, n] into halves, until i = j. More precisely, consider the transition
relation tree Tn whose nodes are sets Tij , defined inductively as follows:

—the root is T1n;
—each node Tij for which j − i > 0 has children Tik and T(k+1)j where k =
i− 1 + j−i+1

2 ; and
—the Tii are the leaves, for all 1 ≤ i ≤ n.

Note that Tn has n+ (n/2) + · · ·+ 2 + 1 = 2n− 1 nodes and has depth log n. Thus,
the size of the auxiliary structure is O(n · |States(N)|2).

First, notice that given Tn it is easy to decide whether w ∈ L(N). Indeed,
w ∈ L(N) if and only if (q, f) ∈ T1n for some q ∈ init(N) and f ∈ Final(N).
Therefore, we only have to show that this auxiliary data structure can be updated
efficiently.

For simplicity, consider the case when one update occurs, changing the label of the
symbol at position k of w to b. That is, the new string is w = a1 · · · ak−1bak+1 · · · an.
Note that the relations Tij ∈ Tn that are affected by the updates are those lying on
the path from the leaf Tkk to the root of Tn. Denote the set of these relations by I

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

14 · Incremental XPath Evaluation

∗ ...
...

...

b1

bn

∗

∗

· · ·

· · ·

∗

∗

b1

bn

∗

∗

Fig. 3. Query illustrating the challenges when translating XPath(→,⇒,∧) into an NFA of poly-

nomial size. Single and double arrows denote →-axes and ⇒-axes, respectively. For ease of

presentation, the query trees are oriented horizontally instead of vertically.

and notice that it contains at most log n relations. The tree Tn can now be updated
by recomputing the Tij ’s in I bottom-up as follows: First, the leaf relation Tkk is set
according to Rules(N) and b. Then each Tij ∈ I with children T ′ and T ′′, of which
one has been recomputed, is replaced by T ′ ◦T ′′. Thus, at most log n relations have
been recomputed, each in time O(|States(N)|2 · log |States(N)|), yielding a total
time of O(|States(N)|2 · log |States(N)| · log n).

The above approach can easily be adapted to strings whose length is not a power
of 2. Further, the auxiliary data structure has size O(n · |States(N)|2). Finally,
handling updates in which elements are inserted or deleted is also done in [Balmin
et al. 2004], but then some precautions have to be taken in order to make sure that
the tree Tn remains properly balanced.

There is a close connection between the tree Tn defined here and the tree obtained
by the Simon decomposition theorem [Simon 1990]. The Simon decomposition tree
is of linear size in n and, in addition, the depth of this tree is constant in n and
exponential in N . Such a tree would allow to determine whether ai · · · aj ∈ L(N)
and for substrings ai · · · aj of w even in constant time w.r.t. n, rather than logarith-
mic time in n. However, when performing updates to w, the Simon decomposition
tree sometimes needs to be completely recomputed and therefore does not lead to
worst-case logaritmic time complexity in n w.r.t. incremental maintenance.

5.2 Challenges for XPath(→,⇒,∧)

Our approach for incremental XPath(→,⇒,∧) evaluation is based on the incremen-
tal algorithm for NFAs explained in Section 5.1. However, adapting the approach
for NFAs poses the following serious challenges:

(1) It is not possible to translate an XPath(→,⇒,∧) query (or its complement) into
an NFA of polynomial size. For instance, consider the XPath(→,⇒,∧) query
illustrated in Figure 3, where → ∗ → · · · → ∗ denotes an n-fold concatenation
of → ∗. Although this query is of size polynomial in n, any NFA defining this
language, or its complement, must be of size exponential in n, as can be shown
using standard techniques [Glaister and Shallit 1996].
The reason is that XPath(→,⇒,∧) queries possess a form of alternation. That
is, when reading a string from left to right while testing whether it matches
an XPath(→,⇒,∧) query, one needs both existential and universal quantifica-
tion. Universal quantification is needed for handling the ∧-operations and the
branching in the query (“all the following subqueries must match”), and exis-
tential quantification is needed for handling the → and ⇒-axes (“there exists
a position in the future such that the following subquery matches”). Translat-

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 15

ing an XPath(→,⇒,∧) query into a polynomial size alternating automaton is
possible, but this poses challenge (2).

(2) It is not clear how to extend the maintenance algorithm from Section 5.1 to
alternating automata. The problem is that maintaining binary transition rela-
tions Tij is not enough to ensure correctness. One would need to maintain all
pairs of sets of states instead, which makes the data structure exponential in
the size of the query.

In other words, we will describe how to extend the approach of Section 5.1 to a
limited form of alternating automata. The reason why we are still able to adapt
this approach to XPath(→,⇒,∧) queries is because the queries do not use the full
power of alternating automata.

5.3 From NFAs to XPath(→,⇒,∧)

Since we are only concerned with matching queries on strings for the moment,
we can simplify our queries in a pre-processing step. If a query node u has two
children v1 and v2, and both (u, v1) and (u, v2) have type →, then any matching of
the pattern on a string must match v1 and v2 to the same string position, namely
to the one directly to the right of the position where u is matched. This means
that we might as well merge v1 and v2 into a single query node v, if v1 and v2 have
compatible labels. If they have conflicting labels, we simply conclude that there is
no string onto which the pattern can be matched.

Also, since we consider only XPath Patterns Q without negation or disjunction,
D |=u Q if and only if there exists a homomorphic mapping φ : Nodes(Q) →
Nodes(D) (we say Q can be matched onto D) such that φ(root(Q)) = u, for every
node u ∈ Nodes(Q), either labQ(u) = ∗ or labQ(u) = labD(φ(u)), and, for all edges
e = (i, j) ∈ Q, we have

—type(i) = syntax implies φ(i) = φ(j),
—type(e) =→ (resp.,⇒) implies that φ(j) is a next sibling (resp., following sibling)

of φ(i).

In the remainder of this section, we refer to φ as a matching of Q (on D).
This means that we don’t have to differentiate between syntax nodes and label

nodes. We simply regard every node as a label node that also, implicitly, acts as
an and-node. These considerations make the following assumption possible:

Proviso 5.2. In the rest of this section, no query node has two outgoing edges
with type →, all query nodes are of type label, and all edges have type → or ⇒.
Every query node is treated as an implicit and-node.

The incremental algorithm for an NFA remembers in each relation Tij , the pairs
(p, q) such that, reading the string from position i to position j can bring the au-
tomaton from state p to state q. We will remember something similar for XPath(→,
⇒,∧), which we first illustrate by means of an example. Intuitively, instead of au-
tomaton states, we will now store edges in Q. For an edge e = (x, y) we refer to x
as the source and y as the target of e.

Example 5.3. Consider the query Q in Figure 4(a) and the string D = cacac.
Intuitively, D should be seen as a substring of a much larger string, for which we

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

16 · Incremental XPath Evaluation

∗ c a c a c a c b ∗

a c a c ∗

1 2 3 4

6 75

(a) The query Q of Example 5.3.

∗ c a c a c a

a c a

1 2 3 4

65

(b) The query Q′ of Example 5.3.

Fig. 4. Queries for Example 5.3. Single and double arrows denote→-axes and⇒-axes, respectively.

want to compute the information for Tij . Intuitively, we will remember all pairs
(e1, e2) ∈ Edges(Q)× Edges(Q) such that the part of the query from the target of
e1 to the source of e2 can be matched inside D, much like in the NFA case. We
talk about edges here because when combining a matching of a part of a query on a
part of the string with another matching for a consecutive part of the string, what
really interests us is which query edges lead from one string part to the next.

ForD = cacac, we remember the pairs (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (5, 7).
The intuition is that, if we read D from left to right and we start matching in, e.g.,
edge6 1, then pair (1, 4) tells us that we can match until edge 4 at the end of D, ig-
noring all paths in Q that branch away from the path from 1 to 4. So we essentially
treat each path in Q as an NFA, where the edges are its states. The difference from
the NFA approach is that single pairs do not tell us the whole story. For instance,
the pair (1, 4) does not tell us what happens with the path that branches away, the
one from edge 5 to edge 7. Thus we have to combine pairs in order to get matchings
that span more than one path in Q. For example, (1, 4) and (1, 6) can be combined
to form a partial matching of Q in the following way. Let Q′ be obtained from Q
by cutting off everything left of 1 and everything right of 4 and 6 (see Figure 4(b)).
We can now match Q′ into D such that the target of 1 is matched precisely onto
the leftmost symbol and the sources of 4 and 6 onto the rightmost symbol, so the
matching could continue to the right of D. Notice that we do not care (yet) about
the target labels of 4 and 6.

Note, however, that we cannot combine pairs arbitrarily: (1, 3) and (1, 7) cannot
be combined into a correct partial matching. Naively combining them would lead
to incorrect partial matchings. Any matching for (1, 3) would have to match the
source node of 3 to the last position of the string D = cacac. This is because 3 has
type →, and we want to be able to continue the matching of Q to the right of D.
This, in turn, means that the source of edges 2 and 5 must be matched against the
middle position of D. But if we do this, there are only two positions left for the
four query nodes between edges 5 and 7 to match against. Thus (1, 3) and (1, 7)
cannot be combined.

To solve this problem, we have to be careful about which information to store.
A naive generalization of the NFA approach would store pairs (p, P) such that p is

6For the sake of the argument, the reader can assume that the source node of edge 1 is already

matched one position before the first position of D.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 17

∗ ∗ ..
.

.

..
.
..

∗

∗

∗

∗

∗

∗

e

e11 e21

e1n e2n

Fig. 5. For any tuple (i1, i2, . . . , in) ∈ {1, 2}n, the pair (e, {ei1
1 , e

i2
2 , . . . , e

in
n }) is a good partial

matching for the above query pattern on any string of length at least 3. There are 2n such pairs,

which makes naively storing them all infeasible.

a start edge and P is a set of edges such that all the pairs {(p, p′) | p′ ∈ P} can
be combined into a correct partial matching. In the example, (1, {4, 6})) would be
one such pair. Unfortunately, as illustrated by Figure 5, storing such pairs would
again lead to storing an exponential amount of information in the query Q.

Therefore, we have to adopt a smarter approach, which we describe next.

5.4 Towards the Incremental Algorithm

The rough outline of the algorithm for incrementally evaluating an XPath(→,⇒,
∧) pattern can now be described. It is similar to the algorithm for NFAs described
in Section 5.1, with the three crucial differences that

—the relations Tij store different information;
—the algorithm for joining two relations Tik and T(k+1)j into Tij is completely

different; and
—the test for acceptance that needs to be performed at T1n is different.

Here, we describe what information will be stored in Tij . Section 5.6 treats the
problem of joining two relations relations Tik and T(k+1)j .

First, we need to introduce some new notation and terminology. The relations
Tij store information about the query Q and its subqueries. We introduce the
next proviso to enable a uniform formal treatment of Q and its subqueries (see
Remark 5.6).

Proviso 5.4. From now on, we assume that our query Q has a single outgoing
edge > := (root(Q), u) from the root, which we will refer to as the root edge. The
type of the root edge can be ⇒ or →. Likewise, for every parent p of a leaf node v,
we assume that p has a single outgoing leaf edge ⊥v = (p, v), with type(⊥v) = ⇒.

If one is interested in matching a query P against a string D, then a new root r and
new leaves labeled ∗ should be added to P , thereby obtaining P ′ with root edge
(r, root(P)) and leaf edges conforming to Proviso 5.4; see Figure 6. For technical
reasons (i.e., the uniform treatment of Q and its subqueries), our algorithm will
only start matching at node root(P) (see Remark 5.8). If the root edge of P ′ has
type →, then we will match root(P) at the first position of D. Otherwise, root(P)
can be matched at an arbitrary position of D. Our treatment for the leaf edges is
similar. The reason why leaf edges are typed ⇒ is because we don’t require all the
leaves of P to be matched at the last position of D.

Proviso 5.5. We extend some standard terminology of relations between nodes
in trees to edges. We say that edge e1 = (x1, y1) is a descendant edge of e2 = (x2, y2)

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

18 · Incremental XPath Evaluation

c a c a c

a c a

(a) A query P without root or leaf
edges.

∗ c a c a c ∗

a c a ∗
(b) In order to satisfy Proviso 5.4, we add a dummy
root and two dummy leaves to P , together with

root and leaf edges.

Fig. 6. Example of how nodes and edges can be added to a query in order to satisfy Proviso 5.4.

if y1 is a descendant of y2.

A path in a pattern Q is a sequence ρ = (x1, y1) · · · (xk, yk) of edges of Q such
that yi = xi+1 for all i ∈ {1, . . . , k − 1}. If x1 is the root and yk is a leaf, we say
that ρ is a maximal path. A cut of a pattern Q is a subset C of Edges(Q) such that
every maximal path in Q has exactly one edge in C.

Let C be a cut and e = (x, y) be an edge of Q such that e is not a descendant of
any edge in C. The induced subquery of Q w.r.t. e and C, denoted subQ(Q, e, C),
is the pattern obtained from Q by considering the subtree of Q rooted at e, and
removing everything below C. More formally, subQ(Q, e, C) is the query Q′ where

—Nodes(Q′) is {x, y}]{z ∈ Nodes(Q) | descendant(y, z) holds in Q and @(u, v) ∈ C
such that descendant(v, z) holds in Q};

—the edges in Q′ are the same as in Q, i.e., Edges(Q′) = {(x, y) | (x, y) ∈ Edges(Q)
and x, y ∈ Nodes(Q′)};

—the root edge of Q′ is > = (x, y); and
—all edges and nodes in Q′ inherit their types from Q.

To simplify notation further on, we use subQ(Q, e,⊥) to denote subQ(Q, e, C) where
C is the cut consisting of all leaf edges of Q. Hence, subQ(Q,>,⊥) = Q.

Notice that induced subqueries always have a unique edge leaving their root.
Similar to Proviso 5.4, we will also refer to this edge as the root edge of the subquery.
Therefore, we have the following property for all queries and subqueries:

Remark 5.6. In this section, all queries and induced subqueries of Q have a
unique root edge.

We now define the notion of a partial matching of a subquery into a string D.
Our terminology will be slightly more refined — we use full and top matchings.
Intuitively, a full matching φ of a query Q will map all the nodes of Q into D,
except for its root node and its leaves. A top matching of Q will be a partial
matching that only matches some upper part of Q into D, also excluding the root
node.

Definition 5.7 (Top matching, full matching). Let P be an induced sub-
query of Q and let e = (x, y) be the root edge of P . Let C be a cut of P and
CLow = {c1, . . . , cn} = {v | ∃u.(u, v) ∈ C}. Let inner(P,C) be all nodes of P that
are descendants of x and have a descendant in CLow.

Then φ : inner(P,C)→ Nodes(D) is a top matching of P if the following hold:

—φ is a matching from inner(P,C) to D;
—if e has type “→”, then φ(y) is the first position in D; and
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 19

∗ a a b d d ∗

d d d ∗

a c d ∗
e c2

c3

c1

Fig. 7. Example of some of the concepts from Definition 5.7. Call the query depicted above P .

Then e is the root edge of P and the set C = {c1, c2, c3} represents a possible cut of P . Consider

the subset C′ = {c1, c2} of C. The set inner(P,C′) contains all nodes between e and C′, i.e., the
five nodes labeled a, b, or c. A top matching of P on a string D with respect to C′ is a mapping

from inner(P,C′) to the nodes of D such that the following conditions are satisfied. (1) Since the

root edge e has type →, the target node of e must be mapped to the first position of D. (2) Since
edge c1 has type →, it’s source node (the unique node with the label c) has to be matched to the

last position of D. The source node of c2 does not have to be matched to the last position of D

since c2 has type ⇒.

—for each j = 1, . . . , n, if there is a u such that (u, cj) ∈ C is a “→”-edge, then
φ(u) is the last position in D.

We say that C is a witness for φ and, for any C ′ ⊆ C, we also say that φ is a top
matching w.r.t. C ′. A top matching φ is also a full matching of P on D, if CLow is
the set of leaves of P .

Figure 7 illustrates some of the concepts from the above definition.

Remark 5.8. Note that the notions of full and top matching do not require the
root nor leaf nodes to be matched. This is consistent with our discussion following
Proviso 5.4. It follows that, for every query P , D |= P if and only there is a full
matching from the extended version P ′ of P (with a root edge of type →) to D.

5.5 The Incremental Algorithm

Recall that, in the incremental evaluation algorithm, Tij denotes the auxiliary data
record for the string ai · · · aj . Example 5.3 shows that a naive generalization of the
algorithm for NFAs that would store all pairs (e, C) in Tij , such that there is a
full matching of subQ(Q, e, C) on ai · · · aj would need to store exponentially many
cuts C for an edge e in the worst case. Intuitively, our improvement to this naive
approach is to store a ternary relation over edges in each Tij . This relation is a
combination of the binary relation shown in Example 5.3, which contains pairs of
edges (etop, ebot) such that there exists a top matching of subQ(Q, etop,⊥) w.r.t.
{ebot}, and a co-matchability constraint, which allows us to infer which such pairs
can be combined to form a consistent matching. More precisely, we store triples
(etop, ebot, e) such that there is a top matching w.r.t. {ebot, e} for subQ(Q, etop,⊥)
on D. We formalize this in terms of matching triples, for which we first introduce
some notation.

Definition 5.9. An edge e = (x, y) in Q is direct if either

—e is a →-edge; or
—e is a ⇒-edge and all other edges (x, z) in Q are also ⇒-edges.

All other edges in Q are called bridge edges. A path in Q that consists only of direct
edges is a direct path. Let e1e2 · · · ek be a path in Q. Then the bridge distance of

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

20 · Incremental XPath Evaluation

ek from e1, denoted ‖e1, ek‖ is the number of bridge edges in {e2, . . . , ek} (i.e., we
count ek, but not e1). If ‖e1, ek‖ = 0, we also say that ek is a direct descendant of
e1. The set of all bridge edges on the path from e1 to ek, again not including e1,
will be denoted Bridges(e1, ek).

Notice that each bridge edge is a ⇒-edge and that ‖e1, e2‖ is only defined if e2 is a
descendant of e1 in Q.

Consider the example query depicted in Figure 10. The double arrows denote
edges of type ⇒ and the lines denote (sequences of) edges of type →. Call the
topmost edge etop. The edges e1, e2, e3, e4 are bridge edges, because they have type
⇒ and there are also edges of type → leaving their source nodes. The edge of
type ⇒ on the path from etop to c is, however, not a bridge edge, since all edges
leaving its source node have type ⇒. The bridge distance from etop to another
edge is the number of bridge edges on the path between them. Thus ‖etop, c‖ = 0,
‖etop, c1‖ = 1, ‖etop, c2‖ = 2 and so on. Notice that, e.g., edges c3 and d have the
same bridge distance from etop, in this case 3.

Definition 5.10 (Matching triple). Let etop, ebot, e be query edges of Q
such that e is a descendant and ebot a direct descendant of etop. Then (etop, ebot, e)
is a matching triple for D if there is a top matching w.r.t. {ebot, e} for subQ(Q, etop,⊥)
on D. We denote the set of matching triples of D by Triples(D).

For incrementally maintaining an XPath(→,⇒,∧) query, we can now maintain
a tree Tn for the string D = a1 · · · an as in Section 5.1, but containing matching
triples instead of pairs of states. This tree can be computed as follows:

(A) For each position i in D, Tii is the set of all matching triples for ai and can be
computed directly.

(B) Each Tij in the data structure can be computed from Tik and T(k+1)j , where
k = i − 1 + j−i+1

2 , by adding, for each pair of edges etop, ebot in Q such that
ebot is a direct descendant of etop, the triples (etop, ebot, e) that are computed
by Join(Q,Tik,T(k+1)j ,etop,ebot). This Join-procedure is the main technical
difficulty in this article and is explained in Section 5.6. For the time being, it
is only important to know that it runs in time polynomial in |Q| and that it
computes the matching triples for Tij correctly.

At the root T1,n of the data structure we have that D |= Q if and only if there
exists a direct descendant ebot of etop such that, for all leaf edges e of Q, we have
(etop, ebot, e) ∈ T1,n, where etop is the unique root edge of Q (This is formally stated
in Lemma 5.11 below). Clearly, this can be tested in polynomial time. The size of
the auxiliary data structure Tn is O(n · |Q|3) = O(|D| · |Q|3).

Lemma 5.11. Let Leaf(Q) be the set of leaf edges Q. Let etop be the root edge of
Q, and ebot ∈ Leaf(Q) be a direct descendant of etop. Then, there is a full matching
of Q on D, if and only if for all e ∈ Leaf(Q), (etop, ebot, e) ∈ Triples(D).

When a position of D is updated, the incremental update mechanism is exactly
the same as in Section 5.1, with the only difference that the updates in Tn follow
the rules (A) and (B) above for recomputing the Tij ’s on the path from a leaf to
the root. Such an update takes poly(Q) time for (A), and O(log(D) ·poly(Q)) time
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 21

for the iteration in (B). Finally, testing if the root condition is fulfilled again takes
time polynomial in Q.

Node insertions and node deletions complicate matters slightly, as we can no
longer rely on a fixed division of D into intervals to build Tn. The solution is to use
balanced search trees, that can easily be re-balanced after an insertion or deletion
adds or removes an interval. One option is to use 2-3-trees (a variant of B-trees).
This approach is taken by Balmin et al. and can be used in exactly the same way
in our setting. We refer to. [Balmin et al. 2004] for the details.

Hence, in order to prove the main theorem of this section (Theorem 5.1), it
remains to prove Lemma 5.11 and the correctness and the feasibility of the joins in
(B) in time poly(Q). The next section presents this join procedure, and Lemma 5.14
in Section 5.7 proves it to be correct and running in time poly(Q). The proof of
Lemma 5.11 is given at the end of Section 5.7

5.6 Joining the Data for Two Substrings

In this section we will present the join algorithm. Before we can state the algorithm,
we first have to give some additional definitions.

Definition 5.12 (Bridge width). Let r be the root edge ofQ. For an induced
subquery P of Q, the bridge width of P , denoted ‖P‖bw, is the maximal bridge
distance in P , i.e., ‖P‖bw = max {‖e1, e2‖ | e1, e2 ∈ Edges(P)}. The subquery of P
with bridge width i, denoted bwi(P), is the query obtained from P by removing all
edges e such that ‖root(P), e‖ > i, and removing all nodes thus disconnected from
root(P).

We also write ‖e‖bw instead of ‖r, e‖, when r = root(P).
By D1 ·D2 we denote the concatenation of strings D1 and D2. If D = D1 ·D2

and φ a top matching for Q on D, we write Border(D1, D2, φ) for the set of edges
e = (x, y) of Q such that φ(x) ∈ D1 and either φ(y) ∈ D2 or φ(y) is undefined.
Finally, for C ⊆ Edges(Q), let Low(C) be the set obtained from C by removing all
edges which have a descendant in C.

The core problem for the join algorithm is the following: Given strings D1 and
D2, the sets of matching triples Triples(D1) and Triples(D2), the query Q, and
edges etop and ebot from Q such that ebot is a direct descendant of etop, compute
all triples (etop, ebot, e) that belong to Triples(D1 ·D2). We can then compute the
set of all possible matching triples by iterating over all choices of etop and ebot. An
algorithm for the core problem is given as Algorithm 1. To get a feel for what the
algorithm must do, we consider an example.

Example 5.13. Consider the query pattern Q in Figure 8. Each double line
denotes a ⇒-edge, and a single line denotes a sequence of →-edges. Notice that we
depicted Q sideways, so all edges are directed from left to right. We now assume
that we already have the matching triples Triples(D1) and Triples(D2) for strings
D1 and D2 and we want to compute Triples(D), where D = D1 · D2. For our
example, the matching triples for D1 and D2 are the ones given in Figure 8(b).

Strictly speaking, Triples(D1) and Triples(D2) would contain many more match-
ing triples, such as (etop, etop, etop), but we limit ourselves to an interesting subset.
We cross out a few triples because we want to explicitly assume that they are not

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

22 · Incremental XPath Evaluation

∗
cetop ebot

e c1 c2 e1

c3 c4 e3 e4

(a) Abstract query.

Triples(D1) (etop, c, c) (etop, c, c1) (etop, c, c2) (etop, c, c3) (etop, c, c4)
(e, c1, c3) (e, c2, c3) (e, c2, c4) ����(e, c1, c4) . . .

Triples(D2) (c, ebot, ebot) (c1, e1, e1) �����
(c2, e1, e1) (c3, e3, e3) (c4, e4, e4) . . .

(b) Matching triples for D1 and D2.

Fig. 8. Abstract query and matching triples for Example 5.13.

matching triples. (Notice that it is possible that (e, c1, c3) is a matching triple,
while (e, c1, c4) is not since the latter could violate the lowest ⇒-edge in Figure 8.)
We depict the triples in Triples(D2) with dotted lines in Figure 8.

The algorithm takes the two sets of matching triples as input, together with the
edges etop and ebot. It will infer every edge e such that (etop, ebot, e) is a matching
triple. The algorithm iterates over edges with increasing bridge distance from etop.
In the figure, the edges on the path from etop to ebot have bridge distance zero, the
e-edge, together with the edges on the middle line have bridge distance one, and
all other edges have bridge distance two.

Initially, on lines 3–8 of the algorithm, we join (etop, c, c) with (c, ebot, ebot) into
(etop, ebot, ebot), which is our first triple in Triples(D). (Notice that the value of
c here is the same as in line 5 of the algorithm.) During the computation we
iteratively construct a set C of edges (x, y) in Q that contains edges for which we
matched the source x in D1 and the target y in D2, and which forms a cut through
Q. Intuitively, C should be a “greedy cut”, i.e., we remember the edges that are as
close to the leaves of Q as possible. (In the algorithm, we use the term “lowermost”
to say that an edge should be as close to the leaves as possible.) Therefore, on
line 5, we set C = {c} which forms a cut through the part of Q only containing the
edges at distance zero.

We then proceed to the loop that begins on line 12. In the first iteration, when
j = 0, we should consider all edges e with distance zero from etop. However, in
our example, all such edges lie on the path from etop to ebot. We can never have
a matching triple (etop, ebot, e) where e 6= ebot lies on the same path as ebot, since
only one of them can be matched at the end of D. Thus we already covered this
case by adding (etop, ebot, ebot) to Triples(D).

Therefore, we proceed to the second iteration of the while loop in which all edges
at distance one are considered. Here, the if-statement on lines 19–22 applies, and
we can combine

(etop, c, c1) ∈ Triples(D1) with (c1, e1, e1) ∈ Triples(D2) into (etop, ebot, e1).

By doing so, we add c1 to C ′ (in which we temporarily store candidate edges for the
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 23

Algorithm 1 Join algorithm. The algorithm takes a query Q, two sets of matching
triples Triples(D1) and Triples(D2) and two edges etop, ebot as input. It is assumed
that ebot is a direct descendant of etop. The algorithm computes all matching triples
(etop, ebot, e) of D = D1 ·D2, where e is a descendant of etop.

Join(Query Q, Triples(D1), Triples(D2), Edge etop, Edge ebot)
2: P ← subQ(Q, etop,⊥)

if ∃c : (etop, c, c) ∈ Triples(D1) ∧ (c, ebot, ebot) ∈ Triples(D2) then
4: c← the lowermost such edge

C ← {c}
6: T0(D)← {(etop, ebot, ebot)}

else
8: return ∅

end if
10: j ← 0

T1(D)← · · · ← T‖P‖bw(D)← ∅
12: while j ≤ ‖P‖bw do

C ′ ← ∅
14: for all e ∈ Edges(P) s.t. ‖etop, e‖ = j do

if (c, ebot, e) ∈ Triples(D2) then
16: Tj(D)← Tj(D) ∪ {(etop, ebot, e)}

else if ∃e′ ∈ C \ {c} ∃e′′ : (e′, e′′, e) ∈ Triples(D2) then
18: Tj(D)← Tj(D) ∪ {(etop, ebot, e)}

else if ∃e′ : (etop, c, e′) ∈ Triples(D1) ∧ (e′, e, e) ∈ Triples(D2)
20: ∧∀ek ∈ Bridges(etop, e′) ∪ {etop} with ‖etop, ek‖ = k < j,

∀ck ∈ C with ‖etop, ck‖ = k < j:
22: ck descendant of ek ⇒ (ek, ck, e′) ∈ Triples(D1) then

e′ ← the lowermost such edge
24: C ′ ← C ′ ∪ {e′}

Tj(D)← Tj(D) ∪ {(etop, ebot, e)}
26: end if

end for
28: C ← C ∪ Low(C ′)

j ← j + 1
30: end while

return ∪‖P‖bw
j=0 Tj(D)

greedy cut C) on line 24. As at the end of the while loop, we still have C ′ = {c1},
we obtain C = {c, c1} after the second iteration. Notice that {c, c1} indeed forms a
cut of bw1(Q), the part of Q only containing the edges with bridge width at most
one.

The third iteration of the while loop is the first one that becomes interesting, since
we have to consider a combination of three paths in the query, while our triples
only store information about pairs of paths. First, we discuss how naive joins
may go wrong. One may be tempted to conclude from (etop, c, c4) ∈ Triples(D1),
(c, ebot, ebot) ∈ Triples(D2), and (c4, e4, e4) ∈ Triples(D2) that (etop, ebot, e4) is a
matching triple for D. However, it is not! The reasons are that (i) we could match

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

24 · Incremental XPath Evaluation

up to c2 in D1 (since (etop, c, c2) ∈ Triples(D1)), but we could not continue this
matching in D2 (since (c2, e1, e1) 6∈ Triples(D2)) and (ii) (e, c1, c4) /∈ Triples(D1).
In other words, we cannot achieve a matching that is consistent with the lowest
possible cut C = {c, c1} that we have computed thus far. This is the point where
we need to make use of C to make the correct combinations, and decide which
matching can be combined and which cannot. Therefore, by applying lines 19–22
we combine, among others,

(etop, c, c3) and (e, c1, c3) from Triples(D1) with (c3, e3, e3) from Triples(D2)
into (etop, ebot, e3).

After iteration three, we will, for this query, have computed all the matching triples
and a cut C = {c, c1, c3}. Should the query be larger, C would be used to witness
further matchings. This concludes Example 5.13.

We now present some more general ideas behind Algorithm 1. We already ex-
plained in Example 5.13 that the algorithm investigates triples (etop, ebot, e) in order
of increasing bridge distance between etop and e, and that C is a greedy cut con-
taining edges (x, y) for which x is matched in D1 and y in D2. We assume that the
algorithm has computed all the triples with ‖etop, e‖ < j and that C contains the
edges closest to the leaves of Q with bridge distance smaller than j such that there
is a top matching of P = subQ(Q, etop,⊥) with respect to C on D1. Now, consider
what the algorithm does for an edge e with ‖etop, e‖ = j. This edge is submitted to
three tests: the if-statements on lines 15, 17, and 19–22. The situations the tests
look for are depicted in Figure 9. Each double line denotes a ⇒-edge, and a single
line denotes a sequence of →-edges. All edges are directed from left to right.

The first test, on line 15, looks for the situation depicted in Figure 9(a), i.e., when
the path from etop to e branches of from the path from etop to ebot after the edge c.
If this is the case, the algorithm only has to check whether (c, ebot, e) ∈ Triples(D2).

The second test, on line 17, looks for the situation in Figure 9(b). Here, there is
an edge e′, different from c, that lies on the path from etop to e and already belongs
to C (which implies ‖etop, e′‖ < j). The algorithm now only needs to test whether,
for some e′′, the triple (e′, e′′, e) belongs to Triples(D2).

The third test, on lines 19–22, is the most complicated. It looks for the situation
in Figure 9(c). Here, no edge on the path from etop to e yet belongs to C. This
means that the algorithm has to verify that the edge e′ that is on the path from
etop to e and goes from D1 into D2 in the intended matching, is also consistent
with the cut C constructed thus far.

By applying Algorithm 1 for all possible edges ebot and etop we obtain the fol-
lowing.

Lemma 5.14. Given the query Q and the sets Triples(D1) and Triples(D2) of
matching triples for Q on strings D1 and D2, the set Triples(D) of matching triples
for Q on D = D1 ·D2 can be computed in time polynomial in |Q|.

Proof. We first analyze the running time of Algorithm 1. Its first part (lines
3-9) takes time linear in |Q|. (We can assume constant time lookup in the sets
Triples(D1) and Triples(D2), which can be implemented, e.g., as tree-dimensional
matrices.) In the second part (lines 10-30) all edges that are descendants of etop,
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 25

∗
cetop ebot

e

(a) Algorithm 1, Line 15.

∗
cetop ebot

e′ e′′

e

(b) Algorithm 1, Line17.

∗
cetop ebot

ck

e′

ek

e

(c) Algorithm 1, Lines 19–22.

Fig. 9. Illustrations of the situations identified by the if-statements in the for-loop of Algorithm 1.

in order of increasing bridge distance, are considered. The for-loop that starts
on line 14 makes one iteration per such edge. Within the loop, three cases are
distinguished by the if-statements on lines 15, 17 and 19–22. The most complicated
of these is the third, lines 19–22, which looks at cubically many triples, and thus
runs in cubic time. All in all, Algorithm 1 runs in time O(|Q|4).

To compute all matching triples in Triples(D) we have to call the join algorithm
for all pairs (etop, ebot), i.e., a quadratic number of times, so the total running time
is O(|Q|6).

The auxiliary data structure needed for incremental evaluation over a string
D has a number of tree nodes that is linear in |D|. Each tree node contains a
set of matching triples, and thus needs space O(|Q|3). In total, the size of the
auxiliary data structure is O(|D| · |Q|3). Together with Lemma 5.14, this gives us
Theorem 5.1.

5.7 Correctness of the Join Algorithm

This section is devoted to proving the correctness of the join algorithm (Lemma 5.25).
We start by proving a number of lemmas concerning matchings and related matters.

For our approach, some top matchings of Q will be “better” than others. Intu-
itively, a top matching ψ is better than φ if either ψ can match a larger subquery of
Q or if ψ can match some nodes of Q more to the left in the string D. We formalize
this by defining the following partial order on top matchings. Here, “larger” ac-
cording to the ordering should correspond to the intuition of a better top matching.

Proviso 5.15. We will make use of the standard orderings < of positions in
strings, i.e., if D = a1 · · · an with positions {1, . . . , n}, we write x < y for positions
x and y if x occurs to the left of y. Similarly for ≤, >,≥.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

26 · Incremental XPath Evaluation

Definition 5.16. Let Ψ be the set of all top matchings of Q on D. Then � is
the order on Ψ defined by φ � ψ if, for every x ∈ Nodes(Q), either φ(x) ≥ ψ(x),
or φ(x) is undefined. If φ � ψ and φ 6= ψ we write φ ≺ ψ.

Since we are investigating matchings on strings, two top matchings can be com-
bined to form another top matching as follows. By Dom(φ) we denote the domain
of a matching φ.

Definition 5.17 (Merge). Let Q be a pattern, and D a string. Let Pφ and
Pψ be subqueries of Q and φ and ψ top matchings of Pφ and Pψ on D, respectively.
Then,

merge(φ, ψ)(x) :=
{
φ(x) : x ∈ Dom(φ) \Dom(ψ) or φ(x) ≤ ψ(x)
ψ(x) : otherwise.

When φ and ψ are top matchings of the same pattern, the new matching merge(φ, ψ)
is at least as good as φ and ψ. We formalize this in the following lemma. Notice
that the correctness of the lemma crucially depends on the fact that D is a string.

Lemma 5.18. Let φ and ψ be top matchings for Q on D. Then, merge(φ, ψ)
is also a top matching for Q on D. Furthermore, φ � merge(φ, ψ) and ψ �
merge(φ, ψ).

Proof. We first prove that merge(φ, ψ) is a top matching on D by showing that
all edge conditions in the domain of merge(φ, ψ) are satisfied. Let Cφ and Cψ be
the witness cuts for φ and ψ, respectively. We prove that the cut C, obtained by
taking the lowest edge of Cφ ∪ Cψ on each maximal path ρ of Q, is a witness for
merge(φ, ψ).

Let P = subQ(Q,>, C). Let e = (x, y) be an edge of P . If e is a→-edge, then, by
definition of merge(φ, ψ), and since D is a string, either (i) merge(φ, ψ)(x) = ψ(x)
and merge(φ, ψ)(y) = ψ(y), (ii) merge(φ, ψ)(x) = φ(x) and merge(φ, ψ)(y) = φ(y),
or (iii) e is a leaf edge of P and merge(φ, ψ)(x) is the last position of D. Thus the
edge condition required by e is satisfied.

Assume, on the other hand, that e is a ⇒-edge. If e is a leaf edge of P
then any value for merge(φ, ψ)(x) satisfies e. Otherwise, assume w.l.o.g. that
merge(φ, ψ)(y) = φ(y) (the other case is analogous). Towards a contradiction,
assume that e is violated by merge(φ, ψ), i.e., merge(φ, ψ)(x) ≥ merge(φ, ψ)(y).
Since φ is a top matching we have that φ(x) < φ(y) = merge(φ, ψ)(y). There-
fore, merge(φ, ψ)(x) = ψ(x) and merge(φ, ψ)(x) 6= φ(x). But this would mean
that merge(φ, ψ)(x) = ψ(x) and ψ(x) > φ(x), which contradicts the definition of
merge(φ, ψ)(x). Therefore we can conclude that merge(φ, ψ)(x) is a top matching
for Q on D.

Finally, notice that it immediately follows from the definitions that φ � merge(φ, ψ)
and ψ � merge(φ, ψ).

It now follows that the set of all top matchings has a lattice structure.

Lemma 5.19. Let Ψ be the set of all top matchings of Q on D. Then (Ψ,�) is
a lattice.

Proof. Consider two top matchings φ, ψ ∈ Ψ. If φ � ψ, then φ is the greatest
lower bound for (φ, ψ) and ψ is the least upper bound. Assume that neither ψ � φ,
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 27

nor φ � ψ. Now consider the matching merge(φ, ψ)7 from Definition 5.17. By
Lemma 5.18, merge(φ, ψ) is a top matching for Q on D and φ � merge(φ, ψ) and
ψ � merge(φ, ψ) hold. We show that merge(φ, ψ) is the least upper bound for
(φ, ψ).

To this end, let χ be a top matching such that φ � χ, ψ � χ. Then, for any
x ∈ Dom(χ), either merge(φ, ψ)(x) is undefined or merge(φ, ψ)(x) ≥ χ(x). Thus,
merge(φ, ψ) � χ and we can conclude that merge(φ, ψ) is indeed the least upper
bound for φ and ψ.

The proof that every pair in Ψ has a unique greatest lower bound is symmetri-
cal.

We say that a top matching is maximal for Q on D if it is maximal w.r.t. �. Notice
that Lemma 5.19 allows us to talk about the maximal top matching for Q on D.

Corollary 5.20. Let S ⊆ Edges(Q), and ΨS be the set of all top matchings
w.r.t. S for Q on D. Then (ΨS ,�) is a lattice.

Proof. If S is not a subset of some cut of Q, (ΨS ,�) is empty, in which case
we are done. Assume now that S is a subset of some cut of Q. Given two top
matchings φ and ψ in ΨS , it is enough to notice that the top matching merge(φ, ψ)
defined in the proof of Lemma 5.19 belongs to ΨS . The corollary then follows from
that proof.

We define a top matching to be maximal w.r.t. a set S ⊆ Edges(Q) if it is the
maximal top matching w.r.t. �, such that S is a subset of its witness cut. Again,
we can now talk about the maximal top matching w.r.t. S of Q on D.

We now prove two more detailed lemmas which will allow us to combine match-
ings or infer the existence of particular matchings. Here, for a pattern Q, a top
matching φ for Q and a subquery P of Q, we write φ|P for φ restricted to P , i.e.,
φ|P (x) = φ(x) if x ∈ Nodes(P) and φ|P (x) is undefined otherwise.

Lemma 5.21. Let D = D1 · D2. Let φ be a top matching for Q on D, and let
Border(D1, D2, φ) = C. For e ∈ C, let ψ be a top matching for subQ(Q, e,⊥) on
D2. Then, merge(φ, ψ) is a top matching for Q on D.

Proof. Let P denote subQ(Q, e,⊥). First, observe that, for every node u not
occurring in P , merge(φ, ψ)(u) = φ(u), and therefore every edge not occurring in
P is satisfied. Furthermore, it follows from Lemma 5.18 that merge(φ, ψ)|P is a
top matching for P on D2. Hence all edges in P , except for e, are also satisfied by
merge(φ, ψ).

So, it only remains to show that also e is satisfied by merge(φ, ψ). If ψ is a top
matching on D2 w.r.t. e, we have nothing to prove for e. Otherwise, there are
two cases. If e = (x, y) is a ⇒-edge, then merge(φ, ψ)(x) = φ(x) ∈ Nodes(D1)
and merge(φ, ψ)(y) ∈ Nodes(D2), which satisfies e. If e = (x, y) is a →-edge,
merge(φ, ψ)(x) = φ(x) must map to the last position of D1 (by the fact that φ is
a valid top matching) and merge(φ, ψ)(y) must map to the first position of D2 (as
both φ and ψ are valid top matchings), and hence e is satisfied.

7In lattice theory, the common term would be join(φ, ψ), but we use merge(φ, ψ) here to prevent

confusion with the terminology of the join algorithm we present later in this section.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

28 · Incremental XPath Evaluation

Lemma 5.22. Let C, S ⊆ Edges(Q) such that C is a cut of Q containing only
⇒-edges and no edge in S is a descendant of an edge in C. Let P = subQ(Q,>, C).
Then there exists a top matching w.r.t. S of Q on D if and only if there exists a
top matching w.r.t. S of P on D. In particular,

(1) if φ is a top matching w.r.t. S of P on D, then φ is also a top matching w.r.t.
S of Q on D, and

(2) if φ is the maximal top matching w.r.t. S of Q on D, then φ|P is the maximal
top matching w.r.t. S of P on D.

Proof. Notice that the complete lemma follows from (1) and (2). Claim (1)
follows immediately from the fact that C only contains ⇒-edges.

It remains to prove Claim (2). Notice that, since no edge in S is a descendant
of an edge in C, φ|P is still a top matching w.r.t. S. Furthermore, since φ is a top
matching of Q on D, and P is a subquery of Q, φ|P is a valid top matching of P on
D. It therefore only remains to show that φ|P is the maximal top matching w.r.t.
S of P on D.

Towards a contradiction, assume that there is a top matching ψ w.r.t. S of P on
D such that φ|P ≺ ψ. Then, define the top matching φ′ as follows

φ′(x) =
{
ψ(x) if ψ(x) is defined
φ(x) otherwise

We show that φ′ is a top matching w.r.t. S of Q on D such that φ ≺ φ′. Since φ
was the maximal such top matching this would give the desired contradiction. To
this end, we first argue that, since φ and ψ are top matchings w.r.t. S, φ′ is also a
top matching w.r.t. S. Since φ and ψ are both valid top matchings, the only edges
that are potentially not satisfied by φ′ are edges (x, y) such that ψ(x) is defined,
but ψ(y) is not. By definition of P , all such edges belong to C.

Therefore, it only remains to show that for every e = (x, y) ∈ C, e is satisfied by
φ′. As e ∈ C, e is a ⇒-edge. Also, e can only be unsatisfied by φ′ if both φ′(x)
and φ′(y) are defined. Assume this is the case. Since y is not a node in P , this
means that φ(y), and thus also φ(x), is defined. Further, φ′(x) = ψ(x) ≥ φ(x), as
φ|P ≺ ψ, and φ′(y) = φ(y). Hence, e is satisfied, and thus φ′ is a top matching
w.r.t. S of Q on D. Finally, by definition of φ′ and as φ|P ≺ ψ, φ ≺ φ′ which yields
the desired contradiction.

In order to prove the correctness theorem, we have to state one more lemma. The
following lemma, however, is fairly technical and tailored to one specific situation
in the correctness proof — it contains the core of the correctness of the test in lines
19–22. We start with defining the concept of bound edges.

Definition 5.23 (Bound edges). Let C ⊆ Edges(Q) be a (partial) cut and
e, e′ ∈ Edges(Q) such that e′ is a descendant of e. Then, we denote by Bound(e, e′, C)
the set of all triples (e1, e2, c1) such that

(1) e1 and e2 are both bridge edges which lie on the path from e to e′,
(2) ‖e1‖bw + 1 = ‖e2‖bw,
(3) c1 ∈ C is a direct descendant of e1, and
(4) all edges on the path from x2, the source node of e2, to c1 are →-edges.
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 29

∗

cc0

e1

c1

e2

c2

e3

c3

e4

e′
d

Fig. 10. Illustration of a possible situation with the preconditions of Lemma 5.24. We have that
c, c0, . . . , c3 are in C.

In case (4), we say that e2 is bound w.r.t. c1. We illustrate the definition of bound
edges in Figure 10. In the figure, e3 is bound w.r.t. c2 and e4 is bound w.r.t. c3.
However, e2 is not bound w.r.t. c1 because there is a ⇒-edge on the path rom the
source node of e2 to c1.

Before stating the lemma, we have to set the scene. Let P be a query and etop
be the root edge of P . Let D be a string and C ⊆ Edges(P) a cut of bwi−1(P), for
some i. Let φ be the maximal matching w.r.t. C of bwi−1(P) on D. Let c ∈ C with
‖c‖bw = 0 and e′ ∈ Edges(P) with ‖e′‖bw = i. Let e1 = (x1, y1), . . . , ei = (xi, yi)
denote the bridge edges on the path from etop to e′ such that ‖ek‖bw = k, for
1 ≤ k ≤ i. Let c0 ∈ C be a direct descendant of etop and for each k, with 1 ≤ k < i,
we choose an arbitrary but fixed ck ∈ C such that

—ek+1 is bound w.r.t. ck, if such a ck exists, and
—ck is a direct descendant of ek otherwise.

Notice that ck is always a direct descendant of ek. Figure 10 has an illustration of
how these preconditions could look like for a query of width four.

Lemma 5.24. With the above notation, assume that the following top matchings
exist:

—a top matching ω w.r.t. {c0, e′} of P and,
—for each (ej , ej+1, cj) ∈ Bound(etop, e′, C) a top matching ωj w.r.t. {e′, cj} for

subQ(P, ej ,⊥).

Then, there exists a top matching φ′ w.r.t. C ∪ {e′} for bwi(P).
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

30 · Incremental XPath Evaluation

Proof. We prove the lemma by constructing the desired matching φ′. Let Pe′
be the query obtained from bwi(P) by deleting all edges f which have ‖etop, f‖ = i,
and do not belong to the path from etop to e′. Due to Lemma 5.22, there exists a
top matching w.r.t. C ∪ {e′} of bwi(P) if and only if there exists a top matching
w.r.t. C ∪ {e′} on Pe′ . Hence, we can restrict attention to Pe′ .

Recall from the discussion preceding the lemma statement that φ is the maximal
matching of w.r.t. C of bwi−1(P) on D. Now, first assume that, for every j with
1 ≤ j ≤ i, ω(xj) ≥ φ(xj). Then, let φ′ be defined for all x ∈ Nodes(Pe′) as follows:
φ′(x) = φ(x) if φ(x) is defined, and φ′(x) = ω(x), on the path from yi to e′. Then,
φ′ is a top matching w.r.t. C ∪ {e′} of Pe′ and we are done.

The remaining case is therefore that there exists a node xj such that ω(xj) <
φ(xj). We first argue that ω(x1) ≥ φ(x1) must hold. Towards a contradiction,
assume that ω(x1) < φ(x1). Then, the top matching ψ obtained from ω and φ by
taking

—ω on all nodes y on the path from etop to c0 for which ω(y) < φ(y), and
—φ everywhere else,

is a top matching w.r.t. C of bwi−1(P). Notice that x1 lies on the path from etop
to c0. Therefore, since ψ(x1) < φ(x1), we would have that ψ 6� φ which contradicts
the maximality of φ. Hence, ω(x1) ≥ φ(x1).

So, we have now shown that ω(x1) ≥ φ(x1) and that there exists a k > 1 such that
ω(xk) < φ(xk). It follows that there must be a 1 < j ≤ i such that ω(xj) < φ(xj)
and ω(xj−1) ≥ φ(xj−1). We now show that ej is bound w.r.t. cj−1. Towards a
contradiction, suppose that ej is not bound. By definition of cj−1, this means
that there is a ⇒-edge on the path from xj to cj−1. Let edesc = (xdesc, ydesc) be
the closest such edge to xj . We will now construct a top matching χ w.r.t. C
of bwi−1(P) such that χ 6� φ, hence contradicting the maximality of φ. For any
x ∈ Nodes(bwi−1(P)), let χ(x) = ω(x) for all nodes on the path from yj−1 to xdesc
and χ(x) = φ(x), otherwise. We show that χ is a top matching of bwi−1(P). To
this end, notice that all edges except ej , ej−1, and edesc are satisfied by χ because
φ and ω are valid top matchings. Now,

—ej is satisfied because χ(xj) = ω(xj) < φ(xj) < φ(yj) = χ(yj);
—ej−1 is satisfied because χ(xj−1) = φ(xj−1) ≤ ω(xj−1) < ω(yj−1) = χ(yj−1);

and
—edesc is satisfied because χ(xdesc) = ω(xdesc) < φ(xdesc) < φ(ydesc) = χ(ydesc),

where ω(xdesc) < φ(xdesc) follows from the facts that ω(xj) < φ(xj) and the path
from xj to xdesc only consists of →-edges.

Furthermore, by definition of χ, χ is a top matching w.r.t. C (it only differs from φ
on the path from ej−1 to edesc). Since χ(xj) = ω(xj) < φ(xj), it holds that χ 6� φ.
Hence, we have our contradiction and we can conclude that ej is a bound edge.

We have now shown that at least one edge in {e2, . . . , ei} must be a bound edge.
Let j be the biggest number such that ej+1 is a bound edge. By the statement of
the lemma there then exists a top matching ωj w.r.t. {e′, cj} for subQ(P, ej ,⊥).

We now show that for all k with j < k ≤ i, we have ωj(xk) ≥ φ(xk). Towards a
contradiction, assume that ωj(xk) < φ(xk) for some j < k ≤ i. As ej+1 is a bound
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 31

edge, and ωj and φ both are top matchings w.r.t. {cj}, we know that ωj(xj+1) =
φ(xj+1). As before, there then has to be a ` > j + 1 such that ωj(x`) < φ(x`) but
ωj(x`−1) ≥ φ(x`−1). Using the same argument as above, one can conclude that the
bridge e` is bound. However, as ` > j + 1 this contradicts the fact that we have
chosen the largest j such that ej+1 is bound.

Using the fact that for all k with j < k ≤ i, we have ωj(xk) ≥ φ(xk), and
in particular that ωj(xi) ≥ φ(xi), we can now define φ′, the top matching w.r.t.
C ∪{e′} on bwi(P) as follows. For any x ∈ Edges(bwi(P)), let φ′(x) = φ(x) if φ(x)
is defined, and φ′(x) = ωj(x), if x is on the path from yi to e′. We first argue that φ′

is a top matching of Pe′ . To this end, notice that all edges except for ei are satisfied
by φ′ due to the fact that φ and ωj are valid top matchings. For ei, we know that
it is a ⇒-edge because ei is a bridge and, furthermore, φ′(xi) = φ(xi) ≤ ωj(xi) <
ωj(yi) = φ′(yi). Hence, ei is also satisfied. Finally, since φ is a top matching w.r.t.
C, and ωj is a top matching w.r.t. {e′} we obtain by definition that φ′ is a top
matching w.r.t. C ∪ {e′}. Hence, φ′ is a top matching w.r.t. C ∪ {e′} of Pe′ . This
concludes the proof of Lemma 5.24.

We are now finally ready to prove the correctness of Algorithm 1.

Lemma 5.25 Join Correctness. Let D = D1 ·D2 and e1, e2 ∈ Edges(Q). Let
Q, Triples(D1), Triples(D2), etop, and ebot be given as input to Algorithm 1. The
algorithm includes (etop, ebot, e) in its output if and only if there is a top matching
w.r.t. {ebot, e} of subQ(Q, etop,⊥) on D.

Proof. Notice that Algorithm 1 is correct when there does not exist a top
matching w.r.t. {ebot} of subQ(Q, etop,⊥) on D. The program then does not find
an appropriate value for c in line 3 and returns in line 8.

For the remainder of the proof, assume that there exists a top matching w.r.t.
{ebot} and let P = subQ(Q, etop,⊥). Let Qetop,ebot be the subquery of Q consisting
only of the edges and nodes on the direct path from etop to ebot. We will prove
the correctness of the algorithm by induction on the number of iterations of the
while-loop, but in order to state the invariants in a uniform manner, we have to do
a slight abuse of notation. We will define the edges in Qetop,ebot , i.e., all edges on
the path from etop to ebot to have bridge width −1. Hence, bw−1(P) := Qetop,ebot

and ‖etop, e‖ := −1 for all edges in Qetop,ebot . We also use T−1 to refer to the
contents of T0 before the first iteration of the while-loop. Under this notation, we
will inductively prove the following statement:

Every time the algorithm reaches the while statement on line 12, the following
invariants hold. Here, j and c are the variables used in the algorithm. (Recall that
c on lines 4 and 22 of the algorithm refer to the same edge in Q.)

(I1) If j ≥ 0, then for all e such that ‖etop, e‖ < j,

(etop, ebot, e) ∈ Triples(D) if and only if (etop, ebot, e) ∈ T−1(D)∪· · ·∪Tj−1(D).

(I2) If j ≥ 0, then there is a top matching w.r.t. {ebot} of bwj−1(P) on D. The
maximal such matching φj−1 has Border(D1, D2, φj−1) = C, with c ∈ C.

In other words, when j = 0, then (I1) states that (etop, ebot, ebot) ∈ Triples(D)
if and only if (etop, ebot, ebot) ∈ T−1(D) and (I2) states that if c ∈ C, then there

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

32 · Incremental XPath Evaluation

is a top matching w.r.t. {ebot} of Qetop,ebot on D and the maximal such matching
φetop,ebot has Border(D1, D2, φetop,ebot) = {c} = C. Notice that the lemma follows
from these invariants.

We prove the invariants by induction on j. The base case is j = 0.
We first prove invariant (I1). Suppose (etop, ebot, ebot) ∈ T−1(D) (i.e., T0(D)

on line 6 in the algorithm). Then, there is a c such that (etop, c, c) ∈ Triples(D1)
and (c, ebot, ebot) ∈ Triples(D2) such that c is as close to the leaves as possible
(i.e., a “lowermost” c). By definition of matching triples, this means that there
is a top matching w.r.t. {c} of Qetop,ebot on D1 and a top matching w.r.t. {ebot}
of subQ(Qetop,ebot , c,⊥) on D2. By combining these top matchings, we get a top
matching φ w.r.t. {ebot} of Qetop,ebot on D. Since every edge leaving the path
from etop to ebot in Q is a ⇒-edge, φ is by Lemma 5.22 also a top matching
w.r.t. {ebot} of P on D, and hence (etop, ebot, ebot) ∈ Triples(D). Conversely,
suppose that (etop, ebot, ebot) ∈ Triples(D). By definition of matching triples
and Lemma 5.22, there then is a top matching w.r.t. {ebot} for Qetop,ebot on D.
Let φetop,ebot be the maximal such top matching and let c be the unique edge in
Border(D1, D2, Qetop,ebot). It follows that there is a top matching w.r.t. {c} of
Qetop,ebot on D1 and a top matching w.r.t. {ebot} for subQ(Qetop,ebot , c,⊥) on D2.
This, in turn, means by definition of matching triples that (etop, c, c) ∈ Triples(D1)
and (c, ebot, ebot) ∈ Triples(D2). Thus, the condition on line 3 is satisfied, and
(etop, ebot, ebot) is included in the set T−1(D) (i.e., T0(D) on line 6 in the algo-
rithm). This concludes the proof of invariant (I1) for j = 0.

For invariant (I2), we can immediately conclude from c ∈ C that there is a
top matching w.r.t. {ebot} of Qetop,ebot on D. Indeed, the top matching φ we
constructed above when proving (I1) is such a matching with Border(D1, D2, φ) =
{c}. Hence, there also exists a maximal top matching w.r.t. {ebot} of Qetop,ebot on D
due to Corollary 5.20. Denote this maximal top matching by φetop,ebot . For proving
(I2), it now suffices to show that φetop,ebot has Border(D1, D2, φetop,ebot) = {c}.
Assuming this is not the case, there are two possibilities. First, if the single edge in
Border(D1, D2, φetop,ebot) is lower than c, we immediately get a contradiction as c
is chosen to be the lowermost edge satisfying the condition in line 3 of Algorithm 1.
Otherwise, if the single edge in Border(D1, D2, φetop,ebot) is higher than c, then
φ 6� φetop,ebot . This contradicts the maximality of φetop,ebot , and concludes the
proof of invariant (I2) for j = 0 and the induction base case.

For the remainder of the proof, we fix a j > 0 and assume that (I1) and (I2) hold
up to j−1. Let φj−2 denote the maximal top matching w.r.t. {ebot} of bwj−2(P) on
D. By the induction hypothesis for (I2) φj−2 exists and Border(D1, D2, φj−2) = C.

For the induction on (I1), it suffices to consider triples (etop, ebot, e) with ‖etop, e‖ =
j − 1. For e ∈ Edges(P) with ‖etop, e‖ = j − 1, let Pe be the query obtained from
bwj−1(P) by deleting all edges f which either are (1) descendants of ebot or (2)
have ‖etop, f‖ = j − 1, and do not belong to the path from etop to e or to the
path from etop to ebot. Notice that, according to Lemma 5.22, there exists a top
matching w.r.t. {ebot, e} of Pe on D if and only if there exists a top matching w.r.t.
{ebot, e} of P on D (all edges leaving Pe are ⇒-edges). Therefore, we will work
with Pe instead of P in the following.

Assume (etop, ebot, e) is included in Tj−1(D). Then, there are three possibilities.
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 33

c

ebote′′

e′ C

etop
Peφe

D1

D

D2

φj−2

ψ

e

(a) Case 2.

c

ebot

C

D2

etop

e

e′

D1

ψ

φe

Pe

D

φ′max

φj−2

(b) Case 3.

Fig. 11. Two cases in the proof of Lemma 5.25.

Cases 2 and 3 are graphically represented in Figure 11.
Case 1: The first case (line 15) is that (c, ebot, e) ∈ Triples(D2). Then, there is a
top matching ψ w.r.t. {ebot, e} for subQ(Pe, c,⊥) on D2. Let φe be merge(ψ, φj−2)
(see Definition 5.17). We show that φe is a top matching w.r.t. {ebot, e} for Pe on
D, from which it then follows that (etop, ebot, e) belongs to Triples(D). Since c ∈ C,
it follows immediately from Lemma 5.21 that φe is a top matching for Pe on D.
Further, as ψ is a top matching w.r.t. {ebot, e}, φj−2 is a top matching w.r.t. {ebot},
and e is not matched by φj−2 (since ‖e‖bw = j − 1), it follows from Definition 5.17
that φe is a top matching w.r.t. {ebot, e}.
Case 2: The second case (line 17) is similar to the first. Now, there is an e′ ∈ C,
such that e′ 6= c, and an e′′ such that (e′, e′′, e) ∈ Triples(D2). Then, there is a
top matching ψ w.r.t. {e} for subQ(Pe, e′,⊥) on D2. Let φe be merge(ψ, φj−2).
We show that φe is a top matching w.r.t. {ebot, e} for Pe on D, from which it
then follows that (etop, ebot, e) belongs to Triples(D). It follows immediately from
Lemma 5.21 that φe is a top matching for Pe on D.

To see that φe is a top matching w.r.t. {ebot, e} notice that (1) ψ is a top matching
w.r.t. {e} and e is not matched by φj−2 as ‖e‖bw = j − 1 and (2) φj−2 is a top
matching w.r.t. {ebot} and ebot is not matched by ψ. Indeed, as c 6= e′, ebot is not
a descendant of e′ and hence ebot does not occur in subQ(Pe, e′,⊥) for which ψ is a
top matching. From Definition 5.17 it now follows that φe is a top matching w.r.t.
{ebot, e}.
Case 3: If the third case (lines 19–22) applies, it holds that the first two cases did
not apply and there is an e′ s.t. (etop, c, e′) ∈ Triples(D1) and (e′, e, e) ∈ Triples(D2).
Since the first case did not apply, we know that e′ does not belong to C. Since
(e′, e, e) ∈ Triples(D2) there is a top matching w.r.t. {e} for subQ(Pe, e′,⊥) on D2.
Let ψ be the maximal such matching. By induction we know that the maximal top
matching φj−2 of bwj−2(P) w.r.t. {ebot} exists and that Border(D1, D2, φj−2) = C,
with c ∈ C (c is the unique edge in C on the path from etop to ebot).

For ek = etop, on lines 19–22, there must be some c0 ∈ C which is a direct descen-
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

34 · Incremental XPath Evaluation

dant of etop, such that (etop, c0, e′) ∈ Triples(D1). Hence, there is a top matching
ω w.r.t. {c0, e′} of Pe on D1. Further, when ek ∈ Bridges(etop, e′), it follows from
lines 19–22 that, for all bound triples (ek, ek+1, ck) in Bound(etop, e′, C), there is a
triple (ek, ck, e′) in Triples(D1). According to Lemma 5.24, this means that there
is a top matching φ′ for Pe on D1 w.r.t. C ∪ {e′}. Let φ′max be the maximal such
matching.

Now, we can combine φ′max, φj−2, and ψ to construct a top matching φe w.r.t.
{ebot, e} for Pe on D. For every x ∈ Nodes(Pe), let φe(x) := φ′max(x) if φ′max(x)
is defined, φe(x) := ψ(x), if x is on the path from e′ to e, and φe(x) := φj−2(x),
otherwise. Notice that φe(x) = φj−2(x) for all x which are target nodes of edges
in C, or descendants thereof. Now, notice that since ψ is a top matching w.r.t.
{e} and φj−2 is a top matching w.r.t. {ebot}, φe is a top matching w.r.t. {ebot, e}.
Furthermore, it follows from the facts that φ′max is a top matching w.r.t. C∪{e′} on
D1, ψ is a top matching for subQ(Pe, e′,⊥) on D2 and Border(D1, D2, φj−2) = C,
that φe is a top matching of Pe on D. Hence, φe is the desired top matching w.r.t.
{ebot, e} for Pe on D. This concludes the proof of Case 3.

For future reference, we prove the following claim.

Claim 5.26. The maximal matching φ′e of Pe w.r.t. {ebot, e} has Border(D1, D2,
φ′e) = C ∪ {e′}.

Proof of Claim 5.26. Let C ′e = Border(D1, D2, φ
′
e). Notice first that, by

Lemma 5.22, it holds that φ′e, restricted to bwj−2(P), equals φj−2. Hence, C ⊆
Border(D1, D2, φ

′
e). Furthermore, since Pe consists of bwj−2(P) extended with a

single path of edges to e, C ′e can contain at most one additional edge in addition to
C. Assuming first that C ′e does not contain e′, nor a descendant of e′, it follows that
φe 6� φ′e, which contradicts the maximality of φ′e. Now, suppose that C ′e contains a
descendant emax of e′. Then, setting e′ = emax on line 22 will satisfy all conditions
in this test. Indeed, φ′e witnesses the existence of all matching triples in the test.
But then we again obtain a contradiction, since e′ was chosen to be the lowermost
edge satisfying this test in line 23. We can therefore conclude that e′ ∈ C ′e and thus
C ′e = C ∪ {e′}. This concludes the proof of Claim 5.26. 2

Together, the above three cases prove that, for edges e with ‖etop, e‖ = j − 1, if
(etop, ebot, e) ∈ Tj−1(D), then (etop, ebot, e) ∈ Triples(D).

It now remains to show the converse, i.e., that for edges e with ‖etop, e‖ = j − 1,
(etop, ebot, e) ∈ Triples(D) implies (etop, ebot, e) ∈ Tj−1(D). Therefore, assume that
(etop, ebot, e) ∈ Triples(D) and hence there exists a top matching w.r.t. {ebot, e} of
Pe on D. Denote the maximal such matching by ψe. Let e′ be the unique edge on
the path from etop to e which is included in Border(D1, D2, ψe). We distinguish
three possibilities.

First, suppose e′ = c. Then, the restriction of ψe to subQ(Pe, c,⊥) is a top
matching w.r.t. {e, ebot} of subQ(Pe, c,⊥) on D2, which means that (c, ebot, e) ∈
Triples(D2). Thus the condition on line 15 is satisfied, and (etop, ebot, e) is included
in Tj−1(D).

Second, suppose e′ 6= c, but e′ ∈ Edges(bwj−2(Pe)). We first show that then
e′ ∈ C. To this end, notice that, by construction of Pe, e is a leaf edge of Pe.
Therefore, ψe is also the maximal top matching w.r.t. {ebot} for Pe on D. From
Lemma 5.22 it then follows that ψe, restricted to bwj−2(Pe), is the maximal top
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 35

matching w.r.t. {ebot} for bwj−2(P) on D, i.e. φj−2. Hence, Border(D1, D2, ψe) ∩
Edges(bwj−2(Pe)) = Border(D1, D2, φj−2) = C, and as e′ ∈ Border(D1, D2, ψe)
and e′ ∈ Edges(bwj−2(Pe)) it thus follows that e′ ∈ C. Furthermore, the restriction
of ψe to subQ(Pe, e′,⊥) is a top matching of subQ(Pe, e′,⊥) w.r.t. {e} on D2, which
means that (e′, e′′, e) ∈ Triples(D2), for some e′′ which is a direct descendant of e′.
Thus the condition on line 17 is satisfied, and (etop, ebot, e) is included in Tj−1(D).

Third, suppose that e′ /∈ Edges(bwj−2(P)), and hence ‖e′‖bw = j − 1. Notice
that C ⊆ Edges(bwj−2(P)), as the new edges in the inner for loop are added
into a new set C ′. Hence, e′ /∈ C. As e′ ∈ Border(D1, D2, ψe), it holds that
ψe, restricted to subQ(Pe, e′,⊥), is a top matching w.r.t. {e} for subQ(Pe, e′,⊥)
on D2. As ‖e′‖bw = ‖e‖bw = j − 1, e is a direct descendant of e′, and hence
(e′, e, e) ∈ Triples(D2).

Furthermore, as noted above, C = Border(D1, D2, φj−2) ⊆ Border(D1, D2, ψe).
Therefore, ψe, restricted to subQ(Pe,>,Border(D1, D2, ψe)) is a top matching w.r.t.
C∪{e′} of Pe on D1. Denote the latter top matching by φ′. From φ′ it immediately
follows that (etop, c′, e′) ∈ Triples(D1), for any c′ ∈ C. Furthermore, for any
ek ∈ Bridges(etop, e′) with ‖etop, ek‖ = k < j − 1, and any ck ∈ C such that
‖etop, ck‖ = k < j − 1 and ck is a descendant of ek, notice that the restriction of φ′

to subQ(Pe, ek,⊥) is a top matching w.r.t. {ck, e′} of subQ(Pe, ek,⊥) on D1, and
hence (ek, ck, e′) ∈ Triples(D1). In conclusion, all conditions on line 22 are satisfied,
and (etop, ebot, e) is included in Tj−1(D). This concludes the induction on (I1).

We now prove that condition (I2) also holds for j > 0. As noted before, we know
by induction that φj−2, the maximal top matching w.r.t. {ebot} of bwj−2(P) on D,
exists and Border(D1, D2, φj−2) = C. We must now show that φj−1, the maximal
top matching w.r.t. {ebot} of bwj−1(P) onD, exists and has Border(D1, D2, φj−1) =
C∪Low(C ′). Indeed, on line 28, the new value of C is set to C∪Low(C ′). It imme-
diately follows from the existence of φj−2 and Lemma 5.22 that φj−1 exists. The
rest of the proof is devoted to proving that Border(D1, D2, φj−1) = C ∪ Low(C ′).
We start by giving an alternative definition of φj−1.

To this end, let S = {e | ‖e‖bw = j− 1∧ (etop, ebot, e) ∈ Triples(D))}. That is, S
contains the edges which are included in Tj−1(D) by the algorithm. For any e ∈ S,
let φ′e be the maximal top matching w.r.t. {ebot} of Pe on D. Observe that for any
e ∈ S, by Lemma 5.22 and the maximality of φ′e, it holds that φ′e, restricted to
bwj−2(P), is φj−2, i.e. the maximal top matching w.r.t. {ebot} for bwj−2(P) on D.
Notice also that as e is a leaf edge of Pe and (etop, ebot, e) ∈ Triples(D), φ′e is also
the maximal top matching w.r.t. {ebot, e} of Pe on D.

Let φ′ be the matching obtained by merging φj−2 with all φ′e matchings for e ∈ S.
We show that φ′ equals the maximal matching φj−1. To this end, we first show
that φ′ is a top matching w.r.t. {ebot} of bwj−1(P) on D. From Lemma 5.22 it
follows that φj−2 as well as φ′e, for all e ∈ S, are top matchings w.r.t. {ebot} for
bwj−1(P) on D. From Corollary 5.20 it then follows that φ′, the least upper bound
of all these top matchings, is also a top matching w.r.t. {ebot} of bwj−1(P) on D.
Second, we show that Dom(φ′) = Dom(φj−1). To this end, first notice that, since
φj−1 is maximal and φ′ is also a top matching w.r.t. {ebot} of bwj−1(P) on D,
Dom(φ′) ⊆ Dom(φj−1). Conversely, suppose that Dom(φj−1) 6⊆ Dom(φ′). Let x
be a lowermost node in Dom(φj−1) \Dom(φ′), and let e be an edge in P of which

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

36 · Incremental XPath Evaluation

x is the source. Then, φj−1 is a top matching w.r.t. {ebot, e} of P on D, and hence
(etop, ebot, e) ∈ Triples(D). It then follows that e ∈ S, and hence, by definition of
φ′, x ∈ Dom(φ′). Contradiction. Hence, Dom(φ′) = Dom(φj−1). We conclude by
showing that φ′(x) = φj−1(x) for all x ∈ Dom(φj−1). To this end, first observe
that φj−1(x) ≤ φ′(x) holds for any x ∈ Dom(φj−1) as φj−1 is maximal. Towards
a contradiction, suppose that there is a y ∈ Dom(φj−1) such that φj−1(y) < φ′(y).
Let c be the edge of which y is the target. As by Lemma 5.22 both φj−1 and
φ′ restricted to bwj−2(P) equal φj−2, ‖c‖bw = j − 1 must hold. Now, let e be a
lowermost edge which is a descendant of c and whose source node x ∈ Dom(φj−1).
Then, e ∈ S, but φj−1, restricted to Pe, is a greater matching than φ′e. This
contradicts the maximality of φ′e. We can therefore conclude that φ′ equals φj−1.

We are now ready to show that Border(D1, D2, φj−1) equals C∪Low(C ′). Notice
first that by Lemma 5.22 it holds that φj−1, restricted to bwj−2(P), equals φj−2.
It follows that Border(D1, D2, φj−1)∩Edges(bwj−2(P)) = Border(D1, D2, φj−2) =
C. It hence suffices to show that Border(D1, D2, φj−1) ∩ (Edges(bwj−1(P)) \
Edges(bwj−2(P))) = Low(C ′). To this end, we use the fact that φj−1 equals φ′.

We investigate which edges of Border(D1, D2, φ
′) have bridge width j − 1. For

every e ∈ S, let Border(e) denote the unique edge in Pe which is both on the path
from etop to e, and in Border(D1, D2, φ

′
e). Then, let S′ = {Border(e) | e ∈ S ∧

‖Border(e)‖bw = j−1}. By definition of φ′, Border(D1, D2, φ
′)∩(Edges(bwj−1(P))\

Edges(bwj−2(P))) = Low(S′). It hences suffices to show that Low(S′) = Low(C ′)
to conclude the proof. To this end, note that C ′ is formed by adding, for every e ∈ S
such that ‖Border(e)‖bw = j − 1, an edge e′ to C ′ on line 23 (the if-test on line 19,
corresponding to case 3 in the argument above). By Claim 5.26, e′ = Border(e).
Hence, C ′ = S′, and thus Low(C ′) = Low(S′).

We conclude the section by proving Lemma 5.11.
Lemma 5.11. Let Leaf(Q) be the set of leaf edges Q. Let etop be the root edge of

Q, and ebot ∈ Leaf(Q) be a direct descendant of etop. Then, there is a full matching
of Q on D, if and only if for all e ∈ Leaf(Q), (etop, ebot, e) ∈ Triples(D).

Proof. First, suppose there exists a full matching φ for Q on D. Then for any
e ∈ Leaf(Q), as ebot ∈ Leaf(Q), φ is a top matching w.r.t. {ebot, e} for Q on D, and
hence (etop, ebot, e) ∈ Triples(D).

Conversely, suppose that for all e ∈ Leaf(Q), (etop, ebot, e) ∈ Triples(D) and let
φe be a corresponding top matching w.r.t. {ebot, e} of Q on D. Let φ be obtained
by merging all such φe matchings. Then, by Lemma 5.18, φ is a top matching for
Q on D. Furthermore, by the definition of merge (Definition 5.17), the witness cut
of φ equals Leaf(Q). Hence, φ is a full matching of Q on D.

6. CONJUNCTIVE FORWARD XPATH

We will adapt the algorithm of Section 4 to handle the next-sibling (→) and
following-sibling (⇒) axes. However, in order to do this we need to disallow
disjunction (∨) and negation (¬) in the pattern, leaving us with the fragment
XPath(↓,⇓,→,⇒,∧), which we refer to as conjunctive forward XPath. All such
queries can be thought of as tree pattern queries with only label nodes, so we do not
need to consider syntax nodes. Every branching in the pattern implicitly denotes
a conjunction. We will show the following.
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 37

Theorem 6.1. Boolean incremental evaluation for an XPath(↓,⇓,→,⇒,∧) Pat-
tern Q and an XML document D can be performed in time O(depth(D)·log(width(D))·
poly(|Q|)) per update. The size of the auxiliary data structure is O(|D| · |Q|3).

For a query node q of Q, let the subpattern without siblings of q, denoted by
subtreeNoSibling(q), be the subtree of Q rooted at q from which all sibling edges
leaving q (and the corresponding subtrees) are removed. Here, by sibling edge, we
mean both “→”- and “⇒”-edges. Notice that we only remove sibling edges that are
directly attached to q, so subtreeNoSibling(q) can still contain sibling edges deeper
in the pattern.

Further, for a query node q of Q, the subpattern with only siblings of q, denoted
subtreeOnlySibling(q), is the subtree of Q rooted at q and containing all nodes
reachable from q by following only sibling edges. Notice that subtreeOnlySibling(q)
only contains sibling edges, and is thus a query in the fragment XPath(→,⇒,∧)
treated in the previous section.

Let downNodes(Q) be the subset of Nodes(Q) such that for each query node
q ∈ downNodes(Q), the unique incoming edge to q in Q has type ↓ or ⇓.

The algorithm works as follows. For each node u in D we store a record Ru
consisting of:

—the set of query nodes
MatchNoSibling(u) = {q ∈ Nodes(Q) | D |=u subtreeNoSibling(q)},

—the set of query nodes in downNodes(Q) that are satisfied in some child of u, i.e.,
the set MatchChild(u) = {q ∈ downNodes(Q) | ∃u′.child(u, u′) ∧D |=u′

Q[q]},
—the set of query nodes that are satisfied in some descendant of u, i.e., the set

MatchDesc(u) = {q ∈ Nodes(Q) | ∃u′.descendant(u, u′) ∧D |=u′
Q[q]},

—for each query node q, the number of children of u that have a descendant
satisfying Q[q], i.e., the cardinality numDescq(u) of the set {u′ | child(u, u′) ∧
∃u′′ descendant(u′, u′′) ∧D |=u′′

Q[q]}.

Without loss of generality, we assume that the root node ofQ does not have outgoing
sibling edges. Indeed, if it has, it can never be mapped to the root of D. Therefore,
it suffices to check whether MatchNoSibling(root(D)) contains root(Q) to decide
whether D |= Q.

However, to maintain the above records, we still need to store some additional
information. For each node u of D and each query node q ∈ downNodes(Q) we
also store the data structures needed to incrementally verify whether a string w
satisfies subtreeOnlySibling(q). Here, w is a string formed by relabeled versions
of the children of u in D, and the data structures are those maintained by the
algorithm in Section 5. The concrete details about the string w are given below.

We now show how the records Ru can be updated. As in Section 4, it suffices to
recompute this information for all nodes on the path of the updated node to the
root. Let u be the next node to be updated, v be its parent, and u1, . . . , uk its chil-
dren. We use MatchNoSibling(u)new, MatchChild(u)new, etc. to refer to the record
values after the update. We assume that MatchChild(u)new, MatchDesc(u)new,
and numDesc(u)new are given and show how to compute MatchNoSibling(u)new,
MatchChild(v)new, MatchDesc(v)new, and numDesc(v)new. If u is a leaf node, we

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

38 · Incremental XPath Evaluation

have MatchChild(u) = MatchDesc(u) = ∅ and numDescq(u) = 0, for all query
nodes q.

—MatchNoSibling(u)new: For a child q′ of q, we say that q′ is a ↓-child (respectively,
⇓-child), if type((q, q′)) =↓ (respectively, ⇓). A ↓-child q′ is satisfied if q′ ∈
MatchChild(u)new, and a ⇓-child q′ if q′ ∈ MatchChild(u)new∪MatchDesc(u)new.
Then, q ∈ MatchNoSibling(u)new if q’s label matches the label of u and all its ↓-
and ⇓-children are satisfied.

—MatchChild(v)new: For any q ∈ downNodes(Q), to know whether D |=u′
Q[q], for

some child u′ of v, we have to consider all query nodes which are reachable from q
by following edges typed with sibling axes, i.e., all nodes in subtreeOnlySibling(q).
Indeed, q ∈ MatchChild(v) should hold if these reachable query nodes can be
matched to children of v in such a manner that the matching is (1) consistent
with the sibling edges of the query and (2) every query node q′ that is reachable
from q by sibling edges is matched to such a child node u′ such that D |=u′

subtreeNoSibling(q′), i.e., q′ ∈ MatchNoSibling(u′).
The existence of such a matching can efficiently be decided (and maintained)
as follows. First, consider the string w = v1 · · ·u · · · vn, corresponding to the
sequence v1 · · ·u · · · vn of children of v where the vi = MatchNoSibling(vi) (and
u = MatchNoSibling(u)new), i.e., the label is formed by the set of query nodes
whose subpattern without siblings can be matched here. Second, consider the
query Qsib = subtreeOnlySibling(q). Then, we say that a query node q′ of Qsib

matches a string symbol vi = MatchNoSibling(vi) if q′ ∈ MatchNoSibling(vi).
Now, q ∈ MatchChild(v) if and only if there exists a matching of Qsib on w. This
matching does not need to be a root matching, but can be any matching. Fur-
thermore, notice that at most one label, namely the one for u, in w changes when
an update occurs. Therefore, we can use the algorithm presented in Section 5 to
incrementally maintain tree pattern queries over strings, in this slightly altered
semantics, to efficiently decide whether q ∈ MatchChild(v)new.

—numDesc(v)new: For all q, numDescqnew(v)

=

numDescq(v) + 1 if q ∈ MatchDesc(u)new and q /∈ MatchDesc(u)old
numDescq(v)− 1 if q /∈ MatchDesc(u)new and q ∈ MatchDesc(u)old
numDescq(v) otherwise

—MatchDesc(v)new : MatchDesc(v)new =
{q | ∃q′ ∈ MatchChild(v)new : q ∈ Nodes(Q[q′])} ∪ {q | numDescqnew(v) > 0}.

We argue that the algorithm works in time O(depth(D) · log(width(D)) ·poly(|Q|)).
We have to update at most depth(D) nodes, so it suffices to argue that han-
dling one node can be done in time O(log(width(D)) · poly(|Q|)). All sets ex-
cept MatchChild(v) can easily be updated in time O(|Q|). Further, for updat-
ing MatchChild(v), we have to apply the incremental maintenance algorithm for
strings, which has complexity O(log(w) · |P |6), where w ≤ width(D) (see Theo-
rem 5.1) and P is the query to be maintained. This algorithm has to be run for all
query nodes q ∈ downNodes(Q) and corresponding queries subtreeOnlySibling(Q).
These subpatterns are all disjoint, and therefore the sum of their sizes is at most
|Q|. The slightly altered semantics of the matching relation (that a query node
matches a document node if the label of the query node is in the set defined by
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 39

the document node) can add a linear factor |Q| to the algorithm of Section 5.
This all together means that the update of MatchChild(v) can be done in time
O(log(width(D)) · |Q|7). Thus the total time complexity of the algorithm presented
in this section is O(depth(D) · log(width(D)) · |Q|7).

Finally, we show that the data structure can be stored in space O(|D| · |Q|3).
As in Section 4, the node records can be stored in space O(|D| · |Q|). However,
this is dominated by the space needed to store the auxiliary data structures for the
incremental maintenance algorithm for strings. According to Theorem 5.1 these
data structures can be stored in space O(|w| · |P |3), where w is the string and P
the query to be evaluated. Then, as all subpatterns we use for incremental string
maintenance are disjoint, and every document node has only one parent, it follows
that all information can be stored in space O(|D| · |Q|3).

7. CONCLUSIONS AND OUTLOOK

We have shown that incremental evaluation of XPath queries can be performed
significantly more efficiently than re-evaluation, for several practically interesting
fragments of XPath.

Of course, our study is far from complete and this work should be seen as an initial
theoretical step in this line of work. Indeed, with the exception of Section 4.2, we
have exclusively investigated Boolean maintenance, so the array of possible further
research is still wide open. We hope that we were able to show that, incremental
evaluation for some seemingly very innocent fragments of XPath (essentially the tree
pattern fragment) is already quite non-trivial, even if the XML data is structured
as a string instead of a tree (Section 5). The overall question that needs attention
for future research is, Which XPath queries can we incrementally evaluate in time
polylogarithmic in the data and polynomial in the query? In pursuit of this overall
question, we list the following interesting questions:

—Can the algorithm/approach from Section 5 be extended from strings to trees?
—Can we strengthen the view maintenance approach? Ideally, we would like to

be able to maintain a set of designated output nodes in XPath Patterns, that
produce a relation as output of the query.

Finally, we remark that some of the results presented in this paper may be of
interest in automated verification as well. The XPath fragments we study are
highly similar to some temporal logics, since the X (next) and F (future) operators
in temporal logics correspond to the→ (resp., ↓) and⇒ (resp., ⇓) axes in XPath on
strings (resp., trees). Therefore, our results imply that, incremental maintenance of
the truth of a temporal logic can sometimes be maintained efficiently over strings
and trees as well.

ACKNOWLEDGMENTS

We acknowledge the financial support of the Future and Emerging Technologies
(FET) programme within the Seventh Framework Programme for Research of the
European Commission, under the FET-Open grant agreement FOX, number FP7-
ICT-233599. Wouter Gelade is a Research Assistant of the Fund for Scientific
Research — Flanders (Belgium). Wim Martens is supported by a by a grant of the

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

40 · Incremental XPath Evaluation

North-Rhine Westfalian Academy of Sciences and Arts, and the Stiftung Mercator
Essen.

Furthermore, we are grateful to the anonymous reviewers of ICDT 2009 and
of ACM Transactions on Database Systems, whose valuable suggestions helped
improve the presentation of this paper.

REFERENCES

Abiteboul, S., Bourhis, P., and Marinoiu, B. 2007. Incremental view maintenance for active

documents. In Journées Bases de Données Avancées (BDA).

Abiteboul, S., Bourhis, P., and Marinoiu, B. 2009. Efficient maintenance techniques for

views over active documents. In International Conference on Extending Database Technology

(EDBT). ACM Press, New York, 1076–1087.

Balmin, A., Papakonstantinou, Y., and Vianu, V. 2004. Incremental validation of XML doc-
uments. ACM Transactions on Database Systems 29, 4, 710–751.

Bar-Yossef, Z., Fontoura, M., and Josifovski, V. 2007. On the memory requirements of

XPath evaluation over XML streams. Journal of Computer and System Sciences 73, 3, 391–
441.

Barbosa, D., Mendelzon, A., Libkin, L., Mignet, L., and Arenas, M. 2004. Efficient in-

cremental validation of XML documents. In International Conference on Data Engineering

(ICDE). IEEE Computer Society, Washington DC, 671–682.

Benedikt, M., Fan, W., and Geerts, F. 2007. XPath satisfiability in the presence of DTDs.
Journal of the ACM 55, 2.

Benedikt, M. and Koch, C. 2008. XPath leashed. ACM Computing Surveys 41, 1.

Björklund, H., Gelade, W., Marquardt, M., and Martens, W. 2009. Incremental XPath

evaluation. In International Conference on Database Theory (ICDT). ACM Press, New York,
162–173.

Bojańczyk, M. and Parys, P. 2008. XPath evaluation in linear time. In International Sympo-

sium on Principles of Database Systems (PODS). ACM Press, New York, 241–250.

Clark, J. and DeRose, S. 1999. XML Path Language (XPath) version 1.0. Tech. rep., World
Wide Web Consortium. http://www.w3.org/TR/xpath/.

Dong, G., Libkin, L., Su, J., and Wong, L. 1999. Maintaining transitive closure of graphs in

SQL. International Journal of Information Technology 5, 1, 46–78.

Dong, G., Libkin, L., and Wong, L. 2003. Incremental recomputation in local languages. In-
formation and Computation 181, 2, 88–98.

Dong, G. and Su, J. 2000. Incremental maintenance of recursive views using relational

calculus/SQL∗. Sigmod RECORD 29, 1, 44–51.

Dong, G., Su, J., and Topor, R. 1995. Nonrecursive incremental evaluation of datalog queries.

Annals of Mathematics and Artificial Intelligence 14, 2–4, 187–223.

Gelade, W., Marquardt, M., and Schwentick, T. 2009. The dynamic complexity of for-

mal languages. In Annual Symposium on Theoretical Aspects of Computer Science (STACS).
Schloss Dagstuhl — Leibniz-Zentrum für Informatik, Germany, 481–492.

Glaister, I. and Shallit, J. 1996. A lower bound technique for the size of nondeterministic
finite automata. Information Processing Letters 59, 2, 75–77.

Gottlob, G., Koch, C., and Pichler, R. 2005. Efficient algorithms for processing XPath queries.

ACM Transactions on Database Systems 30, 2, 444–491.

Gottlob, G., Koch, C., Pichler, R., and Segoufin, L. 2005. The complexity of XPath query
evaluation and XML typing. Journal of the ACM 52, 2, 284–335.

Götz, M., Koch, C., and Martens, W. 2009. Efficient algorithms for descendant-only tree

pattern queries. Information Systems 34, 7, 602–623.

Griffin, T. and Libkin, L. 1995. Incremental maintenance of views with duplicates. In Inter-
national Symposium on Management of Data (SIGMOD). ACM Press, New York, 328–339.

Grohe, M., Koch, C., and Schweikardt, N. 2007. Tight lower bounds for query processing on

streaming and external memory data. Theoretical Computer Science 380, 1–2, 199–217.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · 41

Gupta, A., Mumick, I. S., and Subrahmanian, V. 1993. Maintaining views incrementally. In

International Symposium on Management of Data (SIGMOD). ACM Press, New York, 157–
166.

Hoffmann, C. and O’Donnell, M. 1982. Pattern matching in trees. Journal of the ACM 29, 1,

68–95.

Koch, C. 2010. Incremental query evaluation in a ring of databases. In International Symposium

on Principles of Database Systems (PODS). ACM Press, New York.

Libkin, L. and Sirangelo, C. 2008. Reasoning about XML with temporal logics and automata.
In International Symposium on Logic for Programming, Artificial Intelligence, and Reasoning

(LPAR). Springer, Germany, 97–112.

Libkin, L. and Wong, L. 1997. Incremental recomputation of recursive queries with nested sets
and aggregate functions. In International Symposium on Database Programming Languages

(DBPL). Springer, Germany, 222–238.

Liu, J., Vincent, M., and Mohania, M. 1999. Incremental maintenance of nested relational
views. In International Database Engineering and Applications Symposium (IDEAS). 197–

205.

Martens, W. and Neven, F. 2005. On the complexity of typechecking top-down XML transfor-
mations. Theoretical Computer Science 336, 1, 153–180.

Matsumura, H. and Tajima, K. 2005. Incremental evaluation of a monotone XPath fragment.

In ACM Conference on Information and Knowledge Management (CIKM). ACM Press, New
York, 245–246.

Miklau, G. and Suciu, D. 2004. Containment and equivalence for a fragment of XPath. Journal

of the ACM 51, 1, 2–45.

Neven, F. 2002. Automata theory for XML researchers. Sigmod RECORD 31, 3, 39–46.

Neven, F. and Schwentick, T. 2006. On the complexity of XPath containment in the presence

of disjunction, DTDs, and variables. Logical Methods in Computer Science 2, 3.

O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., and Westbury, N. 2004. ORDPATHs:

Insert-friendly XML node labels. In International Symposium on Management of Data (SIG-

MOD). ACM Press, New York, 903–908.

Onizuka, M., Chan, F. Y., Michigami, R., and Honishi, T. 2005. Incremental maintenance for

materialized XPath/XSLT views. In World Wide Web Conference (WWW). ACM Press, New

York, 671–681.

Pang, C., Dong, G., and Ramamohanarao, K. 2005. Incremental maintenance of shortest

distance and transitive closure in first-order logic and SQL. ACM Transactions on Database

Systems 30, 3, 698–721.

Parys, P. 2009. XPath evaluation in linear time with polynomial combined complexity. In
International Symposium on Principles of Database Systems (PODS). ACM Press, New York,

55–64.

Patnaik, S. and Immerman, N. 1997. Dyn-FO: A parallel, dynamic complexity class. Journal

of Computer and System Sciences 55, 2, 199–209.

Sawires, A., Tatemura, J., Po, O., Agrawal, D., Abbadi, A. E., and Candan, K. S. 2006.
Maintaining XPath views in loosely coupled systems. In International Conference on Very

Large Data Bases (VLDB). ACM Press, New York, 583–594.

Sawires, A., Tatemura, J., Po, O., Agrawal, D., and Candan, K. S. 2005. Incremental
maintenance of path-expression views. In International Symposium on Management of Data

(SIGMOD). ACM Press, New York, 443–454.

Schweikardt, N. 2007. Machine models and lower bounds for query processing. In International
Symposium on Principles of Database Systems (PODS). ACM Press, New York, 41–52.

Schwentick, T. 2004. XPath query containment. Sigmod RECORD 33, 1, 101–109.

Shmueli, O. and Itai, A. 1984. Incremental view maintenance. In International Symposium on
Management of Data (SIGMOD). ACM Press, New York, 240–255.

Simon, I. 1990. Factorization forests of finite height. Theoretical Computer Science 72, 1, 65–94.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

42 · Incremental XPath Evaluation

ten Cate, B. and Lutz, C. 2009. The complexity of query containment in expressive fragments

of XPath 2.0. Journal of the ACM 56, 6.

Vardi, M. Y. 1998. Reasoning about the past with two-way automata. In International Collo-
quium on Automata, Languages and Programming (ICALP). Springer, Germany, 628–641.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · App–1

This document is the online-only appendix to:

Incremental XPath Evaluation
HENRIK BJÖRKLUND
Ume̊a University, Department of Computing Science
and
WOUTER GELADE
Hasselt University and Transnational University of Limburg, School for Information
Technology, Belgium
and
WIM MARTENS
Technical University of Dortmund, Department of Computer Science

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY, Pages 1–0??.

A. TRANSLATING XPATH TO TREE AUTOMATA

The goal of this Appendix is to translate an XPath Pattern into an equivalent
unranked tree automaton as in the statement of Theorem 3.1.

Although XPath operates directly on unranked trees, we will intermediately work
with binary trees encoding these unranked trees. Following [Neven 2002], for an
(unranked) tree T , let enc(T) be its binary encoding, obtained as follows: The
nodes of enc(T) are the nodes of T plus a set of leaf nodes marked #. Further, the
root node of enc(T) is the root node of T and for any node, its left child in enc(T)
is its first child in T (or # if its a leaf), and its right child in enc(T) is its next
sibling in T (or # if it has none). Figure 12 shows an example.

We first show how to translate an XPath Patterns into a loop-free 2-way alter-
nating tree automaton in linear time (Lemma A.3) and then show how to transform
it into a non-deterministic tree automaton (Lemma A.5).

We start by defining these 2-way alternating tree automata, which operate on
binary trees:

Definition. Let B+(P) be the set of positive Boolean formulas over proposi-
tions P (i.e., formulas without negation), but including true and false. A two
way alternating tree automaton (2ATA) over binary trees is defined as a tuple
A = (States(A),Alph(A),Rules(A), init(A)), where

—States(A) is a finite set of states,

—Alph(A) is a finite set of alphabet symbols,

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–2 · Incremental XPath Evaluation

a

b

e f

c d

(a) Unranked tree T .

a

b

e

f

#

c

d

#

#

(b) Its binary encoding enc(T).

Fig. 12. An unranked tree and its binary encoding.

—Rules(A) is a set of transition rules on the form (q, a)→ θ, where q ∈ States(A), a ∈
Alph(A), and θ is a formula from B+({↖,↗,−,↙,↘}× States(A)), and

—init(A) is the inital state.

Rules(A) should be such that for each pair (q, a) ∈ States(A)×Alph(A) there is at
most one rule in Rules(A) with (q, a) as its left hand side. If (q, a)→ θ ∈ Rules(A),
we also write rhsA(q, a) = θ. Elements in {↖,↗,−,↙,↘} denote directions in
the tree. For a node u of T , u· ↗ (respectively, u· ↖) denotes the parent v of u if u
is the left child (respectively, right child) of v and is undefined otherwise. Further,
u ·− is u itself (stay transition), and u· ↙ (respectively, u· ↘) denotes the left child
(respectively, right child) of u if it exists and is undefined otherwise.

Given a binary tree T , a run tree of A on T is an unranked tree R in which each
node is labeled by an element of Nodes(T)×States(A) such that the following holds.

—The label of the root of R is (root(T), init(A)) and
—for every node x of R labeled (v, qv), with (qv, labT (v))→ θ ∈ Rules(A), there is

a set S ⊆ {↖,↗,−,↙,↘}× States(A) such that,
—for every (i, q′) ∈ S, v · i is defined and there exists a child y of x in R labeled

(v · i, q′), and
—the truth assignment that assigns true to all elements of S, and false to all

other elements of {↖,↗,−,↙,↘}× States(A), satisfies θ.

A run tree R is accepting if, for every leaf node of R labeled (u, q), rhsA(lab(u), q)
= true. A binary tree T is accepted by a 2ATA A if there exists a finite accepting
run tree of A on T , i.e., an accepting run tree with no infinite paths. By L(A) we
denote the set of trees accepted by A.

We say that a 2ATA A is loop-free if, for all possible trees T , every run tree of A
on T is finite, i.e., contains no infinite paths. Intuitively, this means that A never
rejects a tree by entering an infinite loop.

We now show that, given an XPath Pattern, we can efficiently construct an
equivalent two-way alternating tree automaton. We note, however, that it is well
known that there is a connection between XPath expressions and two-way alter-
nating automata. Benedikt, Fan and Geerts [Benedikt et al. 2007] have shown that
it is possible to construct, in linear time, a two-way alternating word automaton,
accepting string encodings of trees defined by an XPath query. This construction,
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · App–3

however, only works when the considered trees have a fixed depth. Further, ten
Cate and Lutz [ten Cate and Lutz 2009] have shown that it is possible to con-
struct, in quadratic time, a two-way alternating tree automaton equivalent to a
given XPath query. For our purposes, however, we need to construct a two-way
alternating tree automaton of linear size, equivalent to a given query. Therefore,
and for reasons of completeness, we give the full construction below.

Remark A.2 (Finite versus infinite alphabets). As stated in Section 2,
we consider the alphabet Σ, over which XML document labels range, to be infinite,
while a 2-way alternating tree automaton A has a finite alphabet Alph(A). A given
query Q, however, is finite, and only uses labels from a finite subset Γ of Σ plus
the wildcard symbol ∗ that matches any label. When constructing an automaton
for Q, we consider the automaton alphabet to be Γ ∪ {$}, where $ 6∈ Γ. When the
automaton is run on a tree T , we treat every symbol a 6∈ Γ occurring in T as the
symbol $.

Formally, this means that we extend the definition of L(A) as follows. Let T be
a binary tree using labels from Σ and let $ be a symbol not occurring in Σ. Let
T$ be the tree obtained from T by replacing every label a /∈ Alph(A) by $. In the
following, we assume Alph(A) to contain the symbols $ and # and define L(A) to
be {T | there is a finite accepting run tree of A on T$}.

Lemma A.3. Let Q be an XPath Pattern. A loop-free two-way alternating tree
automaton A with L(A) = {enc(T) | T |= Q} can be constructed in time O(|Q|).

Proof. Let Q be an XPath Pattern. We construct A = (States(A),Alph(A),
Rules(A), init(A)), such that L(A) = {enc(T) | T |= Q}, as follows. The set
States(A), contains, for each node u of Q, two states qu and qu. Similarly, States(A)
contains, for each edge e of Q, the states qe and qe, and additionally, for the edges
of type ↓,⇓, ↓∗,⇑, ↑∗, the states q′e and qe′. A state qu or qe can be seen as a pointer
to a node u or edge e in the pattern Q for which the automaton guesses that the
subtree below u or e, respectively, can be matched at its current position in the
tree T . The states qu and qe denote that the automaton guesses that the subtrees
rooted at u and e, respectively, cannot be matched here. The starting state init(A)
is the state corresponding to the root of Q, i.e., init(A) := qroot(Q).

Finally, the transition relation Rules(A) is given in Table II. (Recall that rhsA(q,
a) = θ if and only if (q, a) → θ is the unique rule in Rules(A) with (q, a) as its
left hand side.) For readability, we use the four predicates firstSibling, lastSibling,
isRoot and isLeaf to indicate that the node the automaton is currently visiting is
a first or a last sibling, the root, or a leaf in T , respectively. These can be easily
tested by the automaton using a constant number of transitions, because a node is
a first sibling in T if and only if it is a left child in enc(T) and not labeled #, a
last sibling in T if and only if its right child in enc(T) is labeled with #, and a leaf
in T if and only if its left child in enc(T) is labeled with #. We can also assume
w.l.o.g. that we can test whether a node is the root, e.g., by assuming that there is
a special end-marker above the original root of the input tree.8 Then a node is the

8That is, one could re-define enc(T) to incorporate this marker. We omitted this in the definition

of enc(T) to keep the overall argument simple.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–4 · Incremental XPath Evaluation

For every a ∈ Alph(A), we have the following transitions.
If type(u) = label

and Edges(u) 6= ∅: rhsA(qu, a) = false if labQ(u) /∈ {a, ∗}, otherwise
V

e∈Edges(u)(−, qe)

rhsA(qu, a) = true if labQ(u) /∈ {a, ∗}, otherwise
W

e∈Edges(u)(−, qe)

and Edges(u) = ∅: rhsA(qu, a) = false if labQ(u) /∈ {a, ∗}, otherwise true

rhsA(qu, a) = true if labQ(u) /∈ {a, ∗}, otherwise false

If type(u) = syntax

and labQ(u) = ∧/∨: rhsA(qu, a) =
V

e∈Edges(u)(−, qe) /
W

e∈Edges(u)(−, qe)

rhsA(qu, a) =
W

e∈Edges(u)(−, qe) /
V

e∈Edges(u)(−, qe)

and labQ(u) = ¬: rhsA(qu, a) = (−, qe), e ∈ Edges(u) unique
rhsA(qu, a) = (−, qe), e ∈ Edges(u) unique

With e = (u, v),
if type(e) = syntax: rhsA(qe, a) = (−, qv) and rhsA(qe, a) = (−, qv)

if type(e) = self: rhsA(qe, a) = (−, qv) and rhsA(qe, a) = (−, qv)

if type(e) =↓: rhsA(qe, a) = (↙, q′e) and rhsA(qe, a) = (↙, q′e)

rhsA(q′e, a) = (−, qv) ∨ (↘, q′e)

rhsA(q′e, a) = (−, qv) ∧ [(↘, q′e) ∨ lastSibling)]

if type(e) =⇓: rhsA(qe, a) = (↙, q′e) and rhsA(qe, a) = (↙, q′e)

rhsA(q′e, a) = (−, qv) ∨ (↙, q′e) ∨ (↘, q′e)

rhsA(q′e, a) = (−, qv) ∧ [(↙, q′e) ∨ isLeaf] ∧ [(↘, q′e) ∨ lastSibling]

if type(e) =↓∗: rhsA(qe, a) = (−, qv) ∨ (↙, q′e)
rhsA(q′e, a) = (−, qv) ∨ (↙, q′e) ∨ (↘, q′e)

rhsA(qe, a) = (−, qv) ∧ (↙, q′e)

rhsA(q′e, a) = (−, qv) ∧ [(↙, q′e) ∨ isLeaf] ∧ [(↘, q′e) ∨ lastSibling]

if type(e) =↑: rhsA(qe, a) = (↖, qe) ∨ (↗, qv)
rhsA(qe, a) = (↖, qe) ∨ (↗, qv)

if type(e) =⇑: rhsA(qe, a) = (↖, qe) ∨ (↗, q′e)
rhsA(q′e, a) = (−, qv) ∨ (↖, qe) ∨ (↗, q′e)

rhsA(qe, a) = (↖, qe) ∨ (↗, q′e)

rhsA(q′e, a) = (−, qv) ∧ [(↖, qe) ∨ firstSibling] ∧ [(↗, q′e) ∨ isRoot]

if type(e) =↑∗: rhsA(qe, a) = (−, qv) ∨ (↖, q′e) ∨ (↗, qe)
rhsA(q′e, a) = (↖, q′e) ∨ (↗, qe)

rhsA(qe, a) = (−, qv) ∧ [(↖, q′e) ∨ firstSibling] ∧ [(↗, qe) ∨ isRoot]

rhsA(q′e, a) = [(↖, q′e) ∨ firstSibling] ∧ [(↖, qe) ∨ isRoot]

if type(e) =→: rhsA(qe, a) = (↘, qv) and rhsA(qe, a) = (↘, qv) ∨ lastSibling
if type(e) =⇒: rhsA(qe, a) = (↘, qv) ∨ (↘, qe)

rhsA(qe, a) = [(↘, qv) ∧ (↘, qe)] ∨ lastSibling

if type(e) =←: rhsA(qe, a) = (↖, qv) and rhsA(qe, a) = (↖, qv) ∨ firstSibling
if type(e) =⇐: rhsA(qe, a) = (↖, qv) ∨ (↖, qe)

rhsA(qe, a) = [(↖, qv) ∧ (↖, qe)] ∨ firstSibling

Table II. Transitions of the 2ATA from the Proof of Lemma A.3.

root of the original tree if and only if its parent bears the special end-marker. For
u ∈ Nodes(Q) let Edges(u) denote the set of outgoing edges of u, i.e., edges of the
form (u, v) for some node v of Q. Then, for each node u and each edge e = (u, v)
the transitions given in Table II apply.

As an example let us look at the transitions from a state corresponding to the
descendant-edge (⇓). At first there is one step to the first child of the current
node. From then on, the additional state q′ is used to search for a proper sibling
or descendant node.

It now follows by induction that, for a tree T , u ∈ Nodes(T) and v ∈ Nodes(Q)
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · App–5

(respectively, e ∈ Edges(Q)), there is an accepting run tree of A on enc(T) from
(u, qv) (respectively, (u, qe)) if and only if T |=u Q[v] (respectively, T |=u Q[e]). It
hence follows that enc(T) ∈ L(A) if and only if T |= Q.

Finally, it is easy to see that the size of the resulting automaton is linear in the
size of Q and that it can be computed in linear time. Furthermore, A is loop-
free, because when following a transition, it either stays in the same state but
consistently moves only up- or only downwards in the tree; or, it changes its state
to a new state that corresponds to a node or edge one level deeper in the XPath
Pattern. This guarantees that each run tree of A is finite.

We now show that, given a loop-free two-way alternating tree automaton, it
is possible to construct an equivalent non-deterministic unranked tree automaton
(NTA) in exponential time. First, we formally introduce unranked tree automata.

Definition A.4. A non-deterministic unranked tree automaton (NTA) is a tu-
ple A = (States(A),Alph(A),Rules(A),Final(A)), where States(A) is a finite set
of states, Final(A) ⊆ States(A) is the set of final states, and Rules(A) is a set of
rules of the form q

a→ L, where L is a regular string language over States(A) for
every a ∈ Alph(A) and q ∈ States(A). The regular langage L is represented by a
non-deterministic finite string automaton.

A run of A on a tree T is a labeling λ : Nodes(T) → States(A) that respects the
rules of the automaton. In other words, for every v ∈ Nodes(T) with children

v1, . . . , vn, there is a rule λ(v)
labT (v)→ L with λ(v1) · · ·λ(vn) ∈ L. Note that when

v has no children, then this criterion reduces to ε ∈ L. A run is accepting if and
only if the root is labeled with an accepting state, that is, λ(ε) ∈ Final(A). A tree
is accepted if there is an accepting run. The set of all accepted trees is denoted by
L(A). We can extend the definition of L(A) to trees using the infinite alphabet Σ
similarly as we did for 2ATAs.

The proof of the following lemma goes along the lines of [Martens and Neven
2005], where the equivalence of two-way alternating finite automata and nonde-
teministic finite automata on (finite) strings was proved, using techniques from
Vardi [Vardi 1998].

Lemma A.5. Given a loop-free 2ATA A one can construct a non-deterministic
tree automaton B such that L(A) = L(B) in time 2O(|A|).

Proof. Let A = (States(A),Alph(A),Rules(A), init(A)) be a 2ATA. The NTA
B = (States(B),Alph(A),Rules(B), init(B),Final(B)) will simulate A in a top-
down manner. The states of B are tuples of subsets of States(A).

Let T be a tree in L(A) with accepting run tree R. Then B will read T in a
top-down manner, and for each node u in T , it will guess the states q of A such
that the label (u, q) appears somewhere in R. That is, B guesses, for each node u
in T , all states in which A visited u. Notice that, as R is an accepting run, each
such (u, q) “leads to acceptance” of A on T . Additionally, it also remembers these
states for the parent of u (for verifying the correctness of the transitions of A) and
the information whether u is a left or right child of its parent.

More formally States(B) := 2States(A) × 2States(A) × {↙,↘}. A tuple (U, V, i) ∈
States(B) contains the set V of states leading to acceptance from the current node

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–6 · Incremental XPath Evaluation

and the set U of states leading to acceptance from the parent of the current node.
Further, the root node of any document does not have a parent, but init(A)

should lead to acceptance here. Hence, init(B) = {(∅, V,↘) | init(A) ∈ V }. Notice
that we consider all sets V such that init(A) ∈ V as valid start states. We need
more than just {init(A)} to also take the other states into account in which A
visited the root. Here, the ↘ in the sets in init(B) is unimportant and chosen
arbitrarily.

Now, the transition relation of B should be locally consistent with A. That is,
let i ∈ {↙,↘} and define ī to be the converse direction, i.e., ī =↗ if i =↙ and
ī =↖ if i =↘. For a ∈ Alph(A), and U, V,W1,W2 ∈ 2States(A), we have that

(U, V, i) a→ (V,W1,↙)(V,W2,↘) ∈ Rules(B)

if and only if the following holds. Let S := ({i} × U) ∪ ({−} × V) ∪ ({↙}×W1) ∪
({↘}×W2). Then the truth assignment that assigns true to all elements of S, and
false to all other elements of {↖,↗,−,↙,↘}× States(A), satisfies θ := rhsA(q, a)
for every q ∈ V . The transition relation therefore checks that the set V is “correct”,
provided that all other sets are correct.

Finally, ((U, V, i), a) ∈ F if and only if, for S defined as ({̄i}×U)∪ ({−}×V), S
satisfies θ := rhsA(q, a) for all q ∈ V , in the same manner as above. The condition
on the final states hence guarantees that the guessed states at the leaf nodes are
correct and consistent with previous guesses.

It can now be shown that, for any tree T , there is an accepting run tree of A on
T if and only if there is an accepting run of B on T . Indeed, given a run tree of
A on T we can construct a consistent accepting run of B on T , and vice versa. It
should be observed, however, that we need the loop-freeness of A to ensure that an
accepting run of B leads to an accepting run of A.

The previous results can now be combined to prove Theorem 3.1. We only need
to transform the automaton constructed above into a non-deterministic unranked
tree automaton (see Definition A.4).

Proof of Theorem 3.1: Let Q be an XPath Pattern. A non-deterministic un-
ranked tree automaton A, with L(A) = {D | D |= Q}, can be constructed in time
2O(|Q|).

Proof. Let Q be an XPath Pattern. By combining Lemma A.3 and Lemma A.5,
we can construct an NTA B, with L(B) = {enc(D) | D |= Q} in time 2O(|Q|).
Denote the backward translation from (encoded) binary trees to unranked trees,
by dec, i.e. dec(enc(D)) = D. Then, again in [Neven 2002], it is noted that
given a non-deterministic tree automaton accepting encoded binary trees, one can
construct, in polynomial time, an equivalent unranked tree automaton accepting
their decoded unranked versions. (Actually, this non-deterministic unranked tree
automaton for the decoding can be constructed in linear time.) In other words,
we can construct, in time linear in the size of NTA B, (or, in time 2O(|Q|)), the
unranked tree automaton A accepting {dec(D) | D ∈ L(B)} = {D | D |= Q}. This
is the desired automaton.

Remark A.6 (Correspondence with XPath Containment). Notice that this
Appendix, together with Proposition 1 from [Miklau and Suciu 2004] provides an
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Björklund, Gelade, and Martens · App–7

alternative proof for Theorem 2 in [Libkin and Sirangelo 2008]. Libkin and Sir-
angelo show that, given an unranked tree automaton A and a Boolean combination
C of inclusions Q1 ⊆ Q2 between XPath queries Q1 and Q2, one can construct an
unranked tree automaton of size |A| · 2O(|C|) that accepts the empty language if and
only if C is true w.r.t. L(A). (Here, an inclusion Q1 ⊆ Q2 is true w.r.t. L(A) when,
for each tree T ∈ L(A), the result of evaluating Q1 on T is a subset of the result of
evaluating Q2 on T .)

Indeed, Proposition 1 from [Miklau and Suciu 2004] and observations from [Neven
and Schwentick 2006] show that the containment problem for two XPath queries Q1

and Q2 can be reduced to the language inclusion problem {T | T |= Q1} ⊆ {T | T |=
Q2} and that the containment problem w.r.t. a tree automaton A can be reduced to
({T | T |= Q1} ∩ L(A)) ⊆ {T | T |= Q2}.

Given queries Q1 and Q2 we can therefore construct a loop-free 2ATA in time
O(|Q1| + |Q2|) for the set {enc(T) | T |= Q1 ∧ T 6|= Q2}, which accepts the empty
language if and only if {T | T |= Q1} ⊆ {T | T |= Q2}. As a consequence, given a
Boolean combination C of inclusions between XPath queries, we can also construct
a loop-free 2ATA AC in time O(|C|) which accepts the empty language if and only
if C is true w.r.t. the set of all trees. Converting this 2ATA to an NTA gives an
equivalent NTA NC of size 2O(|C|). Finally, given a tree automaton A, the NTA for
L(NC) ∩ L(A) has size |A| · 2O(|C|) and accepts the empty language if and only if C
is true w.r.t. A.

This remark immediately implies the following corollary.

Corollary A.7 (See also Theorem 2 from [Libkin and Sirangelo 2008]).
Given an unranked tree automaton A and a Boolean combination C of XPath in-
clusions, we can construct an unranked tree automaton of size |A| · 2O(|C|) whose
language is empty if and only if C is true w.r.t. A.

Since emptiness of an NTA can be tested in linear time, this also gives an algorithm
to test whether C is true w.r.t. A in time |A| · 2O(|C|).

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

