
Regular Expressions with Counting:
Weak versus Strong Determinism

Wouter Geladea Marc Gyssensa Wim Martensb

a Hasselt University, Belgium
b TU Dortmund, Germany

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 1 / 29

Introduction

Regular Expressions

Regular Expressions are used in a wide array of applications
(Bioinformatics, Programming Languages, Model Checking, XML Schema
Languages, etc.)

Standard Regular Expressions (REG(Σ))

/0, ε, and every a ∈ Σ are in REG(Σ)

for standard regular expressions r and s,
rs, r + s, r?, and r∗ are in REG(Σ)

To keep users happy. . .
many applications add operators (counting, negation, intersection,. . .)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 2 / 29

Introduction

Regular Expressions

Regular Expressions are used in a wide array of applications
(Bioinformatics, Programming Languages, Model Checking, XML Schema
Languages, etc.)

Standard Regular Expressions (REG(Σ))

/0, ε, and every a ∈ Σ are in REG(Σ)

for standard regular expressions r and s,
rs, r + s, r?, and r∗ are in REG(Σ)

To keep users happy. . .
many applications add operators (counting, negation, intersection,. . .)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 2 / 29

Introduction

Regular Expressions

Regular Expressions are used in a wide array of applications
(Bioinformatics, Programming Languages, Model Checking, XML Schema
Languages, etc.)

Standard Regular Expressions (REG(Σ))

/0, ε, and every a ∈ Σ are in REG(Σ)

for standard regular expressions r and s,
rs, r + s, r?, and r∗ are in REG(Σ)

To keep users happy. . .
many applications add operators (counting, negation, intersection,. . .)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 2 / 29

Introduction

To keep users happy. . .
many applications add operators (counting, negation, intersection,. . .)

Regular Expressions with Counting (REG#(Σ))

All REG(Σ) are REG#(Σ)

If r is a REG#(Σ), then rk,` for k ≤ ` ∈ N is also a REG#(Σ)

Example: (ab)3,5

(matches ababab, abababab, and ababababab)

Counting is used in, e.g.,. . .

XML Schema

egrep

Perl patterns

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 3 / 29

Introduction

To keep users happy. . .
many applications add operators (counting, negation, intersection,. . .)

Regular Expressions with Counting (REG#(Σ))

All REG(Σ) are REG#(Σ)

If r is a REG#(Σ), then rk,` for k ≤ ` ∈ N is also a REG#(Σ)

Example: (ab)3,5

(matches ababab, abababab, and ababababab)

Counting is used in, e.g.,. . .

XML Schema

egrep

Perl patterns

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 3 / 29

Introduction

To keep users happy. . .
many applications add operators (counting, negation, intersection,. . .)

Regular Expressions with Counting (REG#(Σ))

All REG(Σ) are REG#(Σ)

If r is a REG#(Σ), then rk,` for k ≤ ` ∈ N is also a REG#(Σ)

Example: (ab)3,5

(matches ababab, abababab, and ababababab)

Counting is used in, e.g.,. . .

XML Schema

egrep

Perl patterns

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 3 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 4 / 29

Deterministic Regular Expressions

Deterministic regular expressions exist to facilitate matching
(also called one-unambiguous regular expressions)

“When matching a string from left to right,
it’s always clear which position in the expression to match next”

Example

c(a +b)∗a is not deterministic

cb∗a(b∗a)∗ is deterministic and equivalent

Deterministic expressions are used in, e.g., . . .

Document Type Definitions (DTD)

SGML

XML Schema

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 5 / 29

Deterministic Regular Expressions

Deterministic regular expressions exist to facilitate matching
(also called one-unambiguous regular expressions)

“When matching a string from left to right,
it’s always clear which position in the expression to match next”

Example

c(a +b)∗a is not deterministic

cb∗a(b∗a)∗ is deterministic and equivalent

Deterministic expressions are used in, e.g., . . .

Document Type Definitions (DTD)

SGML

XML Schema

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 5 / 29

Deterministic Regular Expressions

Deterministic regular expressions exist to facilitate matching
(also called one-unambiguous regular expressions)

“When matching a string from left to right,
it’s always clear which position in the expression to match next”

Example

c(a +b)∗a is not deterministic

cb∗a(b∗a)∗ is deterministic and equivalent

Deterministic expressions are used in, e.g., . . .

Document Type Definitions (DTD)

SGML

XML Schema

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 5 / 29

Deterministic Regular Expressions

Deterministic regular expressions exist to facilitate matching
(also called one-unambiguous regular expressions)

“When matching a string from left to right,
it’s always clear which position in the expression to match next”

Example

c(a +b)∗a is not deterministic

cb∗a(b∗a)∗ is deterministic and equivalent

Deterministic expressions are used in, e.g., . . .

Document Type Definitions (DTD)

SGML

XML Schema

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 5 / 29

Strong and Weak Determinism

Weak determinism: what we just saw

Strong determinism: weak determinism, plus
“It should also be clear which operator to use next”

Example

(a∗)∗ is not strongly deterministic

a∗ is strongly deterministic and equivalent

Notation

DETS(Σ): strongly deterministic REG(Σ)

DETW (Σ): weakly deterministic REG(Σ)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 6 / 29

Strong and Weak Determinism

Weak determinism: what we just saw

Strong determinism: weak determinism, plus
“It should also be clear which operator to use next”

Example

(a∗)∗ is not strongly deterministic

a∗ is strongly deterministic and equivalent

Notation

DETS(Σ): strongly deterministic REG(Σ)

DETW (Σ): weakly deterministic REG(Σ)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 6 / 29

Strong and Weak Determinism

Weak determinism: what we just saw

Strong determinism: weak determinism, plus
“It should also be clear which operator to use next”

Example

(a∗)∗ is not strongly deterministic

a∗ is strongly deterministic and equivalent

Notation

DETS(Σ): strongly deterministic REG(Σ)

DETW (Σ): weakly deterministic REG(Σ)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 6 / 29

Strong and Weak Determinism

Weak determinism: what we just saw

Strong determinism: weak determinism, plus
“It should also be clear which operator to use next”

Example

(a∗)∗ is not strongly deterministic

a∗ is strongly deterministic and equivalent

Notation

DETS(Σ): strongly deterministic REG(Σ)

DETW (Σ): weakly deterministic REG(Σ)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 6 / 29

Weak / Strong Determinism with Counting

Weak: “When matching a string from left to right,
it’s always clear which position in the expression to match next”

Example

(b?a2,3)3,3b is not weakly deterministic (witness: aaaaaab . . .)

(b?a2,3)2,2b is weakly deterministic

Strong: “It should also be clear which operator to use next”

Example

(a1,2)3,4 is weakly deterministic, but not strongly deterministic

(a2,2)3,4 is weakly and strongly deterministic

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 7 / 29

Weak / Strong Determinism with Counting

Weak: “When matching a string from left to right,
it’s always clear which position in the expression to match next”

Example

(b?a2,3)3,3b is not weakly deterministic (witness: aaaaaab . . .)

(b?a2,3)2,2b is weakly deterministic

Strong: “It should also be clear which operator to use next”

Example

(a1,2)3,4 is weakly deterministic, but not strongly deterministic

(a2,2)3,4 is weakly and strongly deterministic

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 7 / 29

Weak / Strong Determinism with Counting

Weak: “When matching a string from left to right,
it’s always clear which position in the expression to match next”

Example

(b?a2,3)3,3b is not weakly deterministic (witness: aaaaaab . . .)

(b?a2,3)2,2b is weakly deterministic

Strong: “It should also be clear which operator to use next”

Example

(a1,2)3,4 is weakly deterministic, but not strongly deterministic

(a2,2)3,4 is weakly and strongly deterministic

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 7 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?
Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?
What’s the complexity for, e.g., membership, inclusion testing?

We’ll see that weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 8 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?
Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?
What’s the complexity for, e.g., membership, inclusion testing?

We’ll see that weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 8 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?

Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?
What’s the complexity for, e.g., membership, inclusion testing?

We’ll see that weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 8 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?
Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?

What’s the complexity for, e.g., membership, inclusion testing?

We’ll see that weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 8 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?
Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?
What’s the complexity for, e.g., membership, inclusion testing?

We’ll see that weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 8 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?
Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?
What’s the complexity for, e.g., membership, inclusion testing?

We’ll see that weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 8 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?
Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?
What’s the complexity for, e.g., membership, inclusion testing?

We’ll see that weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 8 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 9 / 29

What you need to know about REG(Σ)

Theorem (Implicit in Brüggmann-Klein, 1993; Brügg.-Klein,Wood, 1998)

Expressive power in a picture:

DETS(Σ) = DETW (Σ) (REG(Σ)

Theorem (Brüggemann-Klein and Wood, 1998)

Given expression r , deciding whether there exists a deterministic expression
for L(r) is in EXPTIME

Theorem (Implicit in Brüggmann-Klein, 1993)

Every weakly deterministic expression can be made strongly deterministic
in linear time

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 10 / 29

What you need to know about REG(Σ)

Theorem (Implicit in Brüggmann-Klein, 1993; Brügg.-Klein,Wood, 1998)

Expressive power in a picture:

DETS(Σ) = DETW (Σ) (REG(Σ)

Theorem (Brüggemann-Klein and Wood, 1998)

Given expression r , deciding whether there exists a deterministic expression
for L(r) is in EXPTIME

Theorem (Implicit in Brüggmann-Klein, 1993)

Every weakly deterministic expression can be made strongly deterministic
in linear time

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 10 / 29

What you need to know about REG(Σ)

Theorem (Implicit in Brüggmann-Klein, 1993; Brügg.-Klein,Wood, 1998)

Expressive power in a picture:

DETS(Σ) = DETW (Σ) (REG(Σ)

Theorem (Brüggemann-Klein and Wood, 1998)

Given expression r , deciding whether there exists a deterministic expression
for L(r) is in EXPTIME

Theorem (Implicit in Brüggmann-Klein, 1993)

Every weakly deterministic expression can be made strongly deterministic
in linear time

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 10 / 29

What you need to know

Brüggemann-Klein and Wood, 1998

Testing weak determinism of an expression is easy (O(n2))

Core operation: Glushkov(r)

Consider r = c(a +b)∗a

 c1(a2 +b3)∗a4

start c1

b3

a2

a4
c

b

a

a

a

b

b

a

a

a

Expression r is deterministic iff Glushkov(r) is a DFA

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 11 / 29

What you need to know

Brüggemann-Klein and Wood, 1998

Testing weak determinism of an expression is easy (O(n2))

Core operation: Glushkov(r)

Consider r = c(a +b)∗a c1(a2 +b3)∗a4

start c1

b3

a2

a4
c

b

a

a

a

b

b

a

a

a

Expression r is deterministic iff Glushkov(r) is a DFA

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 11 / 29

What you need to know

Brüggemann-Klein and Wood, 1998

Testing weak determinism of an expression is easy (O(n2))

Core operation: Glushkov(r)

Consider r = c(a +b)∗a c1(a2 +b3)∗a4

start c1

b3

a2

a4
c

b

a

a

a

b

b

a

a

a

Expression r is deterministic iff Glushkov(r) is a DFA

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 11 / 29

Complexity of (Weakly) Deterministic Expressions

MEMBERSHIP: Given string w and expression r , is w ∈ L(r)?

INCLUSION: Given expressions r1, r2, is L(r1)⊆ L(r2)?

INTERSECTION: Given expressions r1, . . . , rn, is
⋂
i

L(ri) 6= /0?

Theorem

For (weakly) deterministic expressions:

MEMBERSHIP is in O(n2)

INCLUSION: in PTIME [Stearns, Hunt 1981]

INTERSECTION: PSPACE-complete
[Mar., Neven, Schwentick 2004]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 12 / 29

Complexity of (Weakly) Deterministic Expressions

MEMBERSHIP: Given string w and expression r , is w ∈ L(r)?

INCLUSION: Given expressions r1, r2, is L(r1)⊆ L(r2)?

INTERSECTION: Given expressions r1, . . . , rn, is
⋂
i

L(ri) 6= /0?

Theorem

For (weakly) deterministic expressions:

MEMBERSHIP is in O(n2)

INCLUSION: in PTIME [Stearns, Hunt 1981]

INTERSECTION: PSPACE-complete
[Mar., Neven, Schwentick 2004]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 12 / 29

Questions

The Situation for deterministic expressions. . .

Without counting

With counting

Expressiveness DETS(Σ) = DETW (Σ) (REG(Σ)

???

Succinctness DETS(Σ)≈ DETW (Σ)

???

Det-Test easy (Glushkov)

??

∃-Det-Test EXPTIME

???

Membership O(n2)

??

Complexity PTIME/ PSPACE

??

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 13 / 29

Questions

The Situation for deterministic expressions. . .

Without counting With counting

Expressiveness DETS(Σ) = DETW (Σ) (REG(Σ)

???

Succinctness DETS(Σ)≈ DETW (Σ)

???

Det-Test easy (Glushkov)

??

∃-Det-Test EXPTIME

???

Membership O(n2)

??

Complexity PTIME/ PSPACE

??

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 13 / 29

Questions

The Situation for deterministic expressions. . .

Without counting With counting

Expressiveness DETS(Σ) = DETW (Σ) (REG(Σ) ???
Succinctness DETS(Σ)≈ DETW (Σ) ???

Det-Test easy (Glushkov) ??
∃-Det-Test EXPTIME ???

Membership O(n2) ??
Complexity PTIME/ PSPACE ??

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 13 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 14 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 15 / 29

Expressive Power

Theorem

In terms of expressive power,
DETS(Σ) = DETW (Σ) = DET#

S (Σ) (DET#
W (Σ) (REG(Σ) (if |Σ|> 1)

DETS(Σ) = DETW (Σ) = DET#
S (Σ)=DET#

W (Σ) (REG(Σ) (if |Σ|= 1)

The equalities. . .

DETW (Σ) = DET#
S (Σ) (|Σ|> 1)

DETW (Σ) = DET#
W (Σ) (|Σ|= 1)

are non-trivial!

Witness separating languages:

(a2,3b?)∗ is in DET#
W (Σ), but not in DETW (Σ)

(aaa)∗(a +aa) is in REG(Σ), but not in DETW (Σ)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 16 / 29

Expressive Power

Theorem

In terms of expressive power,
DETS(Σ) = DETW (Σ) = DET#

S (Σ) (DET#
W (Σ) (REG(Σ) (if |Σ|> 1)

DETS(Σ) = DETW (Σ) = DET#
S (Σ)=DET#

W (Σ) (REG(Σ) (if |Σ|= 1)

The equalities. . .

DETW (Σ) = DET#
S (Σ) (|Σ|> 1)

DETW (Σ) = DET#
W (Σ) (|Σ|= 1)

are non-trivial!

Witness separating languages:

(a2,3b?)∗ is in DET#
W (Σ), but not in DETW (Σ)

(aaa)∗(a +aa) is in REG(Σ), but not in DETW (Σ)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 16 / 29

Expressive Power

Theorem

In terms of expressive power,
DETS(Σ) = DETW (Σ) = DET#

S (Σ) (DET#
W (Σ) (REG(Σ) (if |Σ|> 1)

DETS(Σ) = DETW (Σ) = DET#
S (Σ)=DET#

W (Σ) (REG(Σ) (if |Σ|= 1)

The equalities. . .

DETW (Σ) = DET#
S (Σ) (|Σ|> 1)

DETW (Σ) = DET#
W (Σ) (|Σ|= 1)

are non-trivial!

Witness separating languages:

(a2,3b?)∗ is in DET#
W (Σ), but not in DETW (Σ)

(aaa)∗(a +aa) is in REG(Σ), but not in DETW (Σ)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 16 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 17 / 29

Succinctness

Theorem

In terms of succinctness,
DET#

W (Σ) is exponentially smaller than DET#
S (Σ)

More precisely,
for every n ∈ N, there’s a DET#

W (Σ) r of size O(n) such that every

DET#
S (Σ) for L(r) is of size at least 2n

r = (a2n+1,2n+1
)1,2

“all strings of as of length 2n + 1 until 2n+2, but not of length 2n+1 + 1”

Corollary

The above theorem holds for unary languages

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 18 / 29

Succinctness

Theorem

In terms of succinctness,
DET#

W (Σ) is exponentially smaller than DET#
S (Σ)

More precisely,
for every n ∈ N, there’s a DET#

W (Σ) r of size O(n) such that every

DET#
S (Σ) for L(r) is of size at least 2n

r = (a2n+1,2n+1
)1,2

“all strings of as of length 2n + 1 until 2n+2, but not of length 2n+1 + 1”

Corollary

The above theorem holds for unary languages

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 18 / 29

Succinctness

Theorem

In terms of succinctness,
DET#

W (Σ) is exponentially smaller than DET#
S (Σ)

More precisely,
for every n ∈ N, there’s a DET#

W (Σ) r of size O(n) such that every

DET#
S (Σ) for L(r) is of size at least 2n

r = (a2n+1,2n+1
)1,2

“all strings of as of length 2n + 1 until 2n+2, but not of length 2n+1 + 1”

Corollary

The above theorem holds for unary languages

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 18 / 29

Succinctness

Theorem

In terms of succinctness,
DET#

W (Σ) is exponentially smaller than DET#
S (Σ)

More precisely,
for every n ∈ N, there’s a DET#

W (Σ) r of size O(n) such that every

DET#
S (Σ) for L(r) is of size at least 2n

r = (a2n+1,2n+1
)1,2

“all strings of as of length 2n + 1 until 2n+2, but not of length 2n+1 + 1”

Corollary

The above theorem holds for unary languages

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 18 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 19 / 29

Counter Automata

Counter Automaton: (Q,q0,C ,δ ,F ,τ)

Ingredients:

Q: states, q0: initial state

C : counter variables

α : C → N assigns values to counters

Transitions are guarded: δ ⊂ Q×Σ×Guard(C)×Update(C)×Q

F : Q→ Guard(C) acceptance function

τ : C → N assigns maximum values to counters

Guard(C): Boolean combination of true, false, c = k, c < k
Update(C): set of statements c + +, reset(c)

Remark

These are very similar to [McQueen]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 20 / 29

Counter Automata

Counter Automaton: (Q,q0,C ,δ ,F ,τ)

Ingredients:

Q: states, q0: initial state

C : counter variables

α : C → N assigns values to counters

Transitions are guarded: δ ⊂ Q×Σ×Guard(C)×Update(C)×Q

F : Q→ Guard(C) acceptance function

τ : C → N assigns maximum values to counters

Guard(C): Boolean combination of true, false, c = k, c < k
Update(C): set of statements c + +, reset(c)

Remark

These are very similar to [McQueen]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 20 / 29

Counter Automata

Counter Automaton: (Q,q0,C ,δ ,F ,τ)

Ingredients:

Q: states, q0: initial state

C : counter variables

α : C → N assigns values to counters

Transitions are guarded: δ ⊂ Q×Σ×Guard(C)×Update(C)×Q

F : Q→ Guard(C) acceptance function

τ : C → N assigns maximum values to counters

Guard(C): Boolean combination of true, false, c = k, c < k
Update(C): set of statements c + +, reset(c)

Remark

These are very similar to [McQueen]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 20 / 29

Counter Automata

Counter Automaton: (Q,q0,C ,δ ,F ,τ)

Ingredients:

Q: states, q0: initial state

C : counter variables

α : C → N assigns values to counters

Transitions are guarded: δ ⊂ Q×Σ×Guard(C)×Update(C)×Q

F : Q→ Guard(C) acceptance function

τ : C → N assigns maximum values to counters

Guard(C): Boolean combination of true, false, c = k, c < k
Update(C): set of statements c + +, reset(c)

Remark

These are very similar to [McQueen]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 20 / 29

Counter Automata

Counter Automaton: (Q,q0,C ,δ ,F ,τ)

Ingredients:

Q: states, q0: initial state

C : counter variables

α : C → N assigns values to counters

Transitions are guarded: δ ⊂ Q×Σ×Guard(C)×Update(C)×Q

F : Q→ Guard(C) acceptance function

τ : C → N assigns maximum values to counters

Guard(C): Boolean combination of true, false, c = k, c < k
Update(C): set of statements c + +, reset(c)

Remark

These are very similar to [McQueen]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 20 / 29

Counter Automata

Counter Automaton: (Q,q0,C ,δ ,F ,τ)

Ingredients:

Q: states, q0: initial state

C : counter variables

α : C → N assigns values to counters

Transitions are guarded: δ ⊂ Q×Σ×Guard(C)×Update(C)×Q

F : Q→ Guard(C) acceptance function

τ : C → N assigns maximum values to counters

Guard(C): Boolean combination of true, false, c = k, c < k
Update(C): set of statements c + +, reset(c)

Remark

These are very similar to [McQueen]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 20 / 29

Counter Automata

Counter Automaton: (Q,q0,C ,δ ,F ,τ)

Ingredients:

Q: states, q0: initial state

C : counter variables

α : C → N assigns values to counters

Transitions are guarded: δ ⊂ Q×Σ×Guard(C)×Update(C)×Q

F : Q→ Guard(C) acceptance function

τ : C → N assigns maximum values to counters

Guard(C): Boolean combination of true, false, c = k, c < k
Update(C): set of statements c + +, reset(c)

Remark

These are very similar to [McQueen]

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 20 / 29

Counter Automata: Determinism

Configuration

(q,α), where q is a state, and α : C → N

Determinism

For every reachable configuration (q,α),

for every a ∈ Σ,

there’s at most one transition (q,a,φ ,π,q′) with α |= φ

Note

Testing determinism is PSPACE-complete

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 21 / 29

Counter Automata: Determinism

Configuration

(q,α), where q is a state, and α : C → N

Determinism

For every reachable configuration (q,α),

for every a ∈ Σ,

there’s at most one transition (q,a,φ ,π,q′) with α |= φ

Note

Testing determinism is PSPACE-complete

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 21 / 29

Counter Automata: Determinism

Configuration

(q,α), where q is a state, and α : C → N

Determinism

For every reachable configuration (q,α),

for every a ∈ Σ,

there’s at most one transition (q,a,φ ,π,q′) with α |= φ

Note

Testing determinism is PSPACE-complete

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 21 / 29

Counter Automata: Determinism

Configuration

(q,α), where q is a state, and α : C → N

Determinism

For every reachable configuration (q,α),

for every a ∈ Σ,

there’s at most one transition (q,a,φ ,π,q′) with α |= φ

Note

Testing determinism is PSPACE-complete

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 21 / 29

Counter Automata: Determinism

Configuration

(q,α), where q is a state, and α : C → N

Determinism

For every reachable configuration (q,α),

for every a ∈ Σ,

there’s at most one transition (q,a,φ ,π,q′) with α |= φ

Note

Testing determinism is PSPACE-complete

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 21 / 29

From Expressions to Automata

We extend the Glushkov construction to REG#(Σ)
Denote the construction by Glushkov#

Theorem

For every expression r ∈ REG#(Σ),

L(r) = L(Glushkov#(r)), and

r is strongly deterministic ⇔ Glushkov#(r) is deterministic

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 22 / 29

From Expressions to Automata

We extend the Glushkov construction to REG#(Σ)
Denote the construction by Glushkov#

Theorem

For every expression r ∈ REG#(Σ),

L(r) = L(Glushkov#(r)), and

r is strongly deterministic ⇔ Glushkov#(r) is deterministic

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 22 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 23 / 29

Testing Determinism

Theorem

Testing weak determinism for REG#(Σ) is in time O(n3)
(Kilpeläinen and Tuhkanen 2007)

Theorem

Testing strong determinism for REG#(Σ) is in time O(n3)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 24 / 29

Testing Determinism

Theorem

Testing weak determinism for REG#(Σ) is in time O(n3)
(Kilpeläinen and Tuhkanen 2007)

Theorem

Testing strong determinism for REG#(Σ) is in time O(n3)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 24 / 29

Inclusion, Intersection

What should we expect? To put you in the right mood

Theorem (Gelade, Mar., Neven 2007)

INCLUSION for REG#(Σ) is EXPSPACE-complete

INTERSECTION for REG#(Σ) is PSPACE-complete

Theorem

INCLUSION for DET#
S (Σ) is in PSPACE (from automata)

INTERSECTION for DET#
S (Σ) and DET#

W (Σ) is
PSPACE-complete

MEMBERSHIP for DET#
S (Σ) is in O(n3) (from automata)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 25 / 29

Inclusion, Intersection

What should we expect? To put you in the right mood

Theorem (Gelade, Mar., Neven 2007)

INCLUSION for REG#(Σ) is EXPSPACE-complete

INTERSECTION for REG#(Σ) is PSPACE-complete

Theorem

INCLUSION for DET#
S (Σ) is in PSPACE (from automata)

INTERSECTION for DET#
S (Σ) and DET#

W (Σ) is
PSPACE-complete

MEMBERSHIP for DET#
S (Σ) is in O(n3) (from automata)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 25 / 29

Outline

1 Determinism in Regular Expressions

2 The Situation Without Counting

3 Results
Expressive Power
Succinctness
Expressions versus Automata
Complexity Results

4 Concluding Remarks

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 26 / 29

Concluding Remarks

The Situation for deterministic expressions. . .

Without counting

With counting

Expressiveness DETS(Σ) = DETW (Σ)

DET#
S (Σ) (DET#

W (Σ)

Succinctness DETS(Σ)≈ DETW (Σ)

strong >exp weak

Det-Test easy (Glushkov)

easy (+ Glushkov#)

∃-Det-Test EXPTIME

2EXPTIME (strong)

Membership O(n2)

O(n3)

Complexity PTIME/ PSPACE

PSPACE (strong)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 27 / 29

Concluding Remarks

The Situation for deterministic expressions. . .

Without counting With counting

Expressiveness DETS(Σ) = DETW (Σ) DET#
S (Σ) (DET#

W (Σ)
Succinctness DETS(Σ)≈ DETW (Σ) strong >exp weak

Det-Test easy (Glushkov) easy (+ Glushkov#)
∃-Det-Test EXPTIME 2EXPTIME (strong)

Membership O(n2) O(n3)
Complexity PTIME/ PSPACE PSPACE (strong)

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 27 / 29

Where are we going?

XML Schema uses weakly deterministic expressions with counting

What do we know about these?

Does this class have a nice “deterministic” automata model?
Is it decidable whether a regular language can be defined with a weakly
deterministic expression with counting?
What’s the complexity for, e.g., membership, inclusion testing?

Weak and strong determinism are very different
in expressions with counting

Do we want weak or strong determinism?

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 28 / 29

Thank you for listening

Gelade/Gyssens/Martens (MFCS 2009) Counting: Weak vs Strong Determinism August 24, 2009 29 / 29

	Determinism in Regular Expressions
	The Situation Without Counting
	Results
	Expressive Power
	Succinctness
	Expressions versus Automata
	Complexity Results

	Concluding Remarks

