
Efficient Algorithms for Descendant-Only Tree Pattern

Queries✩

Michaela Götza, Christoph Kocha, Wim Martensb,1

aCornell University
Ithaca, NY 14853, USA

bTechnical University of Dortmund
Germany

Abstract

Tree pattern matching is a fundamental problem that has a wide range of applications
in Web data management, XML processing, and selective data dissemination. In this
paper we develop efficient algorithms for the tree homeomorphism problem, i.e., the
problem of matching a tree pattern with exclusively transitive (descendant) edges. We
first prove that deciding whether there is a tree homeomorphism is LOGSPACE-complete,
improving on the current LOGCFL upper bound. Furthermore, we develop a practical
algorithm for the tree homeomorphism decision problem that is both space- and time
efficient. The algorithm is in LOGDCFL and space consumption is strongly bounded,
while the running time is linear in the size of the data tree. This algorithm immediately
generalizes to the problem of matching the tree pattern against all subtrees of the data
tree, preserving the mentioned efficiency properties.

Key words: XML, XPath, query processing, tree pattern queries, complexity

1. Introduction

Tree patterns are a simple query language for tree-structured data. They are at
the heart of several widely-used Web languages such as XPath and XQuery [4]. As a
consequence, they form part of a number of typing mechanisms such as XML Schema,
and of Web Programming Languages. They have also been used as query languages in
their own right, for example for expressing subscriptions in publish-subscribe systems [1,
5, 6, 14].

✩The present paper is the full version of reference [13], which appeared in the Symposium on Data
Base Programming Languages 2007.

Email addresses: goetz@cs.cornell.edu (Michaela Götz), koch@cs.cornell.edu (Christoph
Koch), wim.martens@udo.edu (Wim Martens)

1The third author wants to express his gratitude towards the FWO-Vlaanderen for a scholarship that
permitted him to visit Christoph Koch in the Technical University of Vienna in January–February, 2005.

Preprint submitted to Elsevier March 10, 2009

time space streaming
Yannakakis 1981 [20] O(|Q| · |D| · depth(D)) O(depth(Q) · |D|) no
Gottlob et al. 2002 [10] O(|Q| · |D|) O(|Q| · |D|) no
Olteanu et al. 2004 [17] O(|Q| · |D| · depth(D)) O(|Q| · depth(D) + |D|) yes
Bar-Yossef et al. 2005 [3] O(|Q| · |D|) O(|Q| · log |D|+ candD) yes
Ramanan 2005 [18] O((|Q|+ depth(D)) · |D|) O(|Q| · depth(D) + candD) yes
Our bottom-up algorithm O(|Q| · |D| · depth(|Q|)) O(depth(D) · branch(D)) no
Our LOGSPACE algorithm poly(|Q|+ |D|) O(log(|Q|+ |D|)) no

Table 1: Time and space consumption for algorithms solving the tree homeomorphism matching problem.
Here depth(·) and branch(·) denote the depth and maximal branching factor of a tree, respectively.

The general tree pattern matching problem considered in the literature is the problem
of finding a mapping between two node-labeled trees which is, in a sense, a cross of
a subtree homomorphism and a homeomorphism. In this article we consider a clean
and important special case of the tree pattern embedding problem that we call the tree
homeomorphism problem. The question we consider is whether there is a mapping θ from
the nodes of the first tree, the tree pattern or query, to the nodes of the second tree, the
data tree, such that if node y is a child of x in the first tree, then θ(y) is a descendant
of θ(x) in the second tree. We also consider the tree homeomorphism matching problem:
finding all nodes v of the data tree such that there is such a tree homeomorphism with
v the image of the root node of the pattern tree. This problem of selecting all nodes
whose subtrees match the tree pattern has frequent application in XML and Web query
processing [1, 10].

While this problem is of immediate practical relevance and a substantial number of
papers have studied complexity and efficient algorithms for tree pattern matching, the
precise complexity of both the general tree pattern matching problem and the tree home-
omorphism problem are open; they are both known to be in LOGCFL and LOGSPACE-
hard [11]. The former can be immediately concluded from earlier results on the com-
plexity of the acyclic conjunctive queries [12] and the positive navigational fragment of
XPath [11], both much stronger languages. The latter is a direct consequence of the fact
that reachability in trees is LOGSPACE-complete [8].

Much work has been dedicated to developing efficient algorithms for finding matches
of tree patterns and tree homeomorphisms. Certain algorithms aim at processing the
data tree as a stream (i.e., in a single scan) [5, 6, 14, 16, 9, 17, 2, 3, 18]. For this case a
number of lower bound results have been obtained using mechanisms from communication
complexity [2, 3, 15]. It is basically known that streaming algorithms for even simple
tree patterns consume space proportional to the size of the data tree in the worst case.
Table 1 lists algorithms for the tree homeomorphism matching problem together with
bounds on their running time and space consumption. Here D is the data tree and
Q is the tree pattern. We assume a random access machine model with unit cost for
reading and writing integers. Some of the algorithms presented support generalizations
of the tree homeomorphism problem but where a better bound is known for the tree
homeomorphism problem, it is shown. Some of the streaming algorithms [3, 18] use a
notion of candidate node sets candD which depends on the algorithm and which can be of

2

size close to |D| in the worst case. The algorithm of [3] makes the assumption of so-called
non-recursive data trees, in which no two nodes such that one is a descendant of the other
may have the same label. Finally, streaming algorithms such as [16] focus on being able
to process SAX-events in constant time, at the cost of an exponential preprocessing step.

In this article we study the tree homeomorphism (matching) problem. We establish a
tight complexity characterization and develop an algorithm for the node-selection prob-
lem (shown at the bottom of Table 1) that is both time- and space efficient. In detail,
the technical contributions of this article are as follows.

• We first develop a top-down algorithm for the tree homeomorphism problem that
is in LOGDCFL.2

• From this we develop a proof that the problem is LOGSPACE-complete, improving
on the LOGCFL upper bound from [11].

• As our main result we develop a bottom-up LOGDCFL algorithm for computing
all solutions of the tree homeomorphism problem which is both time and space
efficient. This is a rather difficult algorithm and the correctness proof is involved.
The algorithm runs in time O(|D| · |Q| · depth(Q)) and employs a stack of depth
bounded by O(depth(D) · branch(D)).

The algorithm may be of relevance in practical implementations. Indeed, in most
Web or XML applications, the data tree is much larger than the tree pattern yet
its depth is rather small. It can be observed that ours is the only algorithm in
Table 1 — and to the best of our knowledge, in existence — that can guarantee a
space bound that does not contain the size, but only depth and branching factor,
of the data tree as a term. At the same time the algorithm admits a good time
bound.

Furthermore, the algorithm is of relevance in theory as well. It is a first step in
classifying the complexity of positive Core XPath with only child and descendant
axes, which is probably the most widely used XPath fragment in practice. Its
precise complexity, however, is unknown.

• In some applications (e.g., for certain XML data trees), a few nodes can have
a very large number of children. Our algorithm can be made to run in space
O(depth(D) · log(branch(D))) with the same time bound if we assume the data
tree to be in a ranked form that can be obtained by a LOGSPACE linear-time
preprocessing algorithm. Given that ours is an offline algorithm it means little loss
of generality to assume that data trees are kept in a database in this preprocessed
form.

The article presents these result basically in the order given here.

2. Definitions

By N we denote the set of strictly positive integers. By Σ we always denote a fixed but
infinite set of labels. The trees we consider are rooted, ordered, finite, labeled, unranked

2For our purposes, it is enough to know that LOGDCFL is characterized by deterministic logspace
bounded pushdown automata which run in polynomial time [19].

3

trees, which are directed from the root downwards. That is, we consider trees with a
finite number of nodes and in which nodes can have arbitrarily many children. A Σ-tree
t (or tree t) is a relational structure over a finite number of unary labeling relations
a(·), where each a ∈ Σ, and binary relations Child(·, ·) and NextSibling(·, ·). Here, a(u)
expresses that u is a node with label a, and Child(u, v) (respectively, NextSibling(u, v))
expresses that v is a child (respectively, next sibling) of u. We assume that each node
in a tree bears precisely one label, i.e., for each u, there is precisely one a ∈ Σ such that
a(u) holds in t.

By ε we denote the empty tree. By a(T1 · · ·Tn) we denote the tree in which the root
bears the label a and has n non-empty subtrees T1, . . . , Tn, from left to right. If the
a-labeled root has no children, we write a rather than a(). By root(t) we denote the root
node of t.

By <pre and <post we denote the depth-first left-to-right pre-ordering, respectively,
left-to-right post-ordering in trees. That is, if u is a node with children u1, . . . , un from left
to right, then we have that u <pre u1 <pre · · · <pre un and u1 <post · · · <post un <post u.
Furthermore, u1 is the successor of u in <pre, i.e., there does not exists a v such that
u <pre v <pre u1. Similarly, u is the successor of un in the post-ordering. In Section 3,
we will assume the <pre ordering on nodes, and in Section 4, we will assume the <post

ordering.
A Σ-hedge H (or hedge H) is a finite ordered sequence T1 · · ·Tn of trees. When

we write a hedge as T1 · · ·Tn, we tacitly assume that every Ti is a non-empty tree.
In the hedge T1 · · ·Tn, we assume that ui <pre ui+1 and ui <post ui+1 holds for each
i = 1, . . . , n−1, where ui and ui+1 are the roots of Ti and Ti+1, respectively. Notice that
we do not necessarily assume a sibling relation between the roots of Ti and Ti+1.

In the sequel, we will slightly abuse terminology and use the term “tree” to also refer
to a hedge consisting of one tree, and we use the term “hedge” to also refer to the union
of trees and hedges. We assume familiarity with terms such as child, parent, descendant,
ancestor, leaf, root, first child, last child, first sibling, previous sibling, last sibling, and
next sibling.

For a hedge H , we denote by Nodes(H) the set of nodes of H . By |H |, we denote the
number of nodes of H . Let H = T1 · · ·Tn with n ≥ 1. The label of node u in the tree
or hedge H is sometimes also denoted by labH(u). The depth of a node u in H , denoted
by depthH(u), is 1 when u is the root of some Ti and 1 + depth(v) when u is a child
of v. The height of a node u in hedge H , denoted by heightH(u), is 1 when u is a leaf
and max(heightH(u1), . . . , heightH(uk)) + 1 when u has k > 0 children u1, . . . , uk. By
subtreeH(u), we denote the subtree of H rooted at node u. By parentH(u), we denote
the parent of u in H , if it exists. In the remainder of the article, we usually leave H
implicit when H is clear from the context.

2.1. The Tree Homeomorphism Problem.

A tree pattern query (with descendant edges) Q is an (unranked) tree over the al-
phabet Σ] {∗}. That is, we assume that the special label ∗ does not appear in Σ. In
the following, we use the terms data tree or data hedge to refer to ordinary Σ-trees and
Σ-hedges.

4

Definition 1 (Tree Pattern Matching). Given a data hedge H , a node u ∈ Nodes(H),
and a tree pattern query Q, we say that H matches Q at node u, denoted by H |=u Q,
if there exists a mapping h : Nodes(Q)→ Nodes(H) such that,

• if labQ(v) = a for some a ∈ Σ, then labH(h(v)) = a;

• if Child(v1, v2) holds in Q, then h(v1) is an ancestor of h(v2) in H ; and

• u = h(root(Q)).

If the above mapping h exists, we call h a tree pattern matching.

Notice that the ordering of children in our tree pattern queries does not matter, and
that the label ∗ is a wildcard label for the query. This corresponds to the well known
semantics of XPath queries with descendant axis [7]. In the following, we abbreviate by
H |= Q that H |=u Q for some u ∈ Nodes(H). Alternatively, we say that H matches Q.

In this article, we are interested in the following problems.

Definition 2 (Tree Homeomorphism (Matching) Problem). Given a data tree T
and a tree pattern query Q, the tree homeomorphism problem consists of deciding whether
T |= Q. Furthermore, we are interested in computing all answers for the tree homeomor-
phism problem, that is, computing all nodes u ∈ Nodes(T) such that T |=u Q. We refer
to the latter problem as tree homeomorphism matching problem.

We assume that trees are stored on tape as a set of records; one for each node. Each
record contains a pointer to its first child, last child, parent, previous sibling, and next
sibling.

In the remainder of the article, we assume a fixed data tree D and a fixed query tree
Q for ease of presentation. We will refer to nodes of D and Q as data nodes and query
nodes, respectively.

3. A Top-Down Algorithm

This section provides a simple top-down algorithm for the tree homeomorphism
matching problem. The core of this top-down algorithm lies in a simple procedure that
decides, given a data node d and a query node q, whether subtree(d) |= subtree(q).

3.1. A Top-Down LOGDCFL Algorithm

The procedure Match, illustrated in Algorithm 1 tests whether subtree(d) |= subtree(q).
The intuition of this procedure is the following. Essentially, we immediately follow the
semantics of the tree patterns. We test whether d matches q. If d matches q, it only re-
mains to (recursively) test whether all subpatterns rooted at children of q can be matched
somewhere in subtrees rooted at children dc of the data tree d. If d does not match q,
then we need to search whether subtree(q) matches in some subtree rooted at some child
dc of d.

Lemma 1. Match is correct. That is, given a data node d and a query node q, Match

returns true if and only if subtree(d) |= subtree(q).

5

Algorithm 1 Top-down algorithm Match.

Match (DNode d, QNode q)
2: if d matches q then

return ∀ child qc of q ∃ child dc of d: Match(dc,qc)
4: else . q not matched yet, try d’s children

return ∃ child dc of d: Match(dc,q)
6: end if

Proof. By induction over the size of the data tree, denoted by n.
n = 1: We have that subtree(d) = a for some a ∈ Σ. Match returns true if and only if
the query tree consists of one node and d matches this node. The correctness follows from
the tree pattern matching definition, which says that if subtree(d) = a, subtree(q) = a
or subtree(q) = ∗, subtree(d) |= subtree(q).
n > 1: We consider two cases.

• If d matches q, we return true if, for every child qc of q, there exists a child dc

of d such that Match(dc, qc) returns true. If the query tree consists of only one
node, this is obviously correct. If q has children, the correctness follows from the
induction hypothesis and the definition of tree pattern matchings: If subtree(d) =
a(T1 · · ·Tn), subtree(q) = x(Q1 · · ·Qm), x ∈ Σ] {∗}, a |= x, and, for every k =
1, . . . , m, there exists an ik ∈ {1, . . . , n}, such that Tik

|= Qk, then subtree(d) |=
subtree(q). If there exists a qc such that Match(dc, qc) is false for every dc, we
would also fail to match the whole query tree into a subtree of a child of d. Again
by the definition of tree pattern matchings it is then correct to return false.

• If d does not match q, we test whether there is a child dc of d such that subtree(q)
can be matched into subtree(dc). By the induction hypothesis, the recursive calls
of Match(dc, q) compute this correctly. If there is such a matching, it is correct to
return true by the definition of tree pattern matchings: If subtree(d) = a(T1 · · ·Tn)
and Ti |= subtree(q), then subtree(d) |= subtree(q). Furthermore, if subtree(d) =
a(T1 · · ·Tn), d does not match q, and there does not exist a Ti such that Ti |=
subtree(q), then, by definition, subtree(d) 6|= subtree(q). Hence, it is correct to
return false. �

Hence, Match is a correct algorithm for the tree homeomorphism problem. By
slightly adapting Match, we can even turn it into an algorithm Top-Down-Match

for the tree homeomorphism matching problem too. First, we need a procedure Exact-

Match that, given a data node d and query node q, decides whether subtree(d) matches
subtree(q) at node d. This is easy: Exact-Match only differs from Match in line 5,
where it just returns false. Given a data node d and the root qroot of the query tree,
Top-Down-Match now simply iterates over all the data nodes and returns every data
node d for which Exact-Match(d, qroot) returns true. From this construction and from
the correctness of Match, it is now immediate that Top-Down-Match is correct as
well.

6

Time and Space Complexity.

We start with an analysis of the time complexity of Match and then we describe
how an upper bound of the runtime of Exact-Match can be derived from that.

Observation 1. Match(d, q) compares each node in subtree(d) at most once with each
node in subtree(q). The running time of Match(d, q) is |subtree(d)| · |subtree(q)|.

Proof. This is an easy induction on |subtree(d)|. If |subtree(d)| = 1, then Match tests
whether d matches q and discovers that there are no children of d to iterate over. Hence,
the running time is in O(|subtree(q)|).

If |subtree(d)| > 1, then Match tests whether d matches q and it either calls itself
recursively for every child dc of d and every child qc of q; or it calls itself recursively
for every child dc of d and q. In both cases, we can apply the induction hypothesis. In
the first case, the time complexity becomes O(

∑
qc

(
∑

dc
(|subtree(dc)| · |subtree(qc)|))),

and in the second case, the time complexity becomes O(
∑

dc
(|subtree(dc)| · |subtree(q)|)).

Hence, both cases are in O(|subtree(d)| · |subtree(q)|). �

It is easy to see that Observation 1 implies that the time complexity of Exact-Match(d, q)
is also in O(|subtree(d)| · |subtree(q)|). As Top-Down-Match simply calls Exact-

Match for every data node, we immediately have the following result.

Proposition 1. The running time of Top-Down-Match is in O(|D|2 ·|Q|). Moreover,
Top-Down-Match makes O(|D|2 · |Q|) comparisons between a data node and a query
node.

It is immediate from our implementation that the algorithm can be executed by a
deterministic logarithmic space bounded auxiliary pushdown automaton (see, e.g., [19]).
Moreover, by Proposition 1, this auxiliary pushdown automaton runs in polynomial time.
It follows from [19] that the tree homeomorphism matching problem is in LOGDCFL.
As the maximum recursion depth of Algorithm 1 is O(depth(D)), this renders the algo-
rithm quite space-efficient, but the running time being quadratic in the size of the data
tree, and the many unnecessary comparisons between query and data nodes are quite
unsatisfactory. In Section 4, we show how these issues can be resolved by turning to a
bottom-up approach.

3.2. A LOGSPACE Procedure

While the top-down algorithm does not seem to be well-suited for efficiently com-
puting all nodes u for which D |=u Q, it is quite useful for deciding whether D |= Q,
from a complexity theory point of view. Indeed, as we will exhibit, a modified version of
Match can decide in LOGSPACE whether D |= Q.

For ease of presentation of the algorithm, we assume the depth-first left-to-right pre-
order ordering on nodes in trees and hedges in the remainder of this section. For a node
u, we denote by u+1 the successor node of u in the left-to-right pre-order <pre. We note
that this assumption does not restrict our algorithm as one can compute this successor
in LOGSPACE.

We argue how to transform Algorithm 1 into a LOGSPACE algorithm that decides
whether D |= Q. We will first give an intuition of the transformation. Then we will

7

Algorithm 2 Top-down algorithm L-Match. Here, +1 denotes the successor in the
depth-first left-to-right pre-ordering.

L-Match (DNode d, QNode q)
2: if d matches q, and both d and q have children then . θ(q) = d

return L-Match (d + 1,q + 1)
4: else if d does not match q and d has a child then

return L-Match (d + 1, q)
6: else if d matches q and q is a leaf then . θ(q) = d

if q is maximal then
8: return true . none of q’s ancestors has a next sibling

else
10: d′ ← Backtrack(d, q + 1) . node to which parent(q + 1) matched

return L-Match (d′ + 1, q + 1)
12: end if

else . d is a leaf and (d does not match q or q is not a leaf)
14: if d is maximal then

return false
16: end if

q′ ← q
18: while q′ has a parent do

d′ ← Backtrack(d, q′) . node to which parent(q′) was matched
20: if d′ is an ancestor of d + 1 then

return L-Match (d + 1, q′)
22: else q′ ← parent(q′)

end if
24: end while

return L-Match (d + 1, q′)
26: end if

discuss some implementation details that will allows us to analyze the space consumption.
A formal proof of the correctness follows.

Intuitively, the LOGSPACE algorithm processes the data and query trees in a top-
down manner, just like Algorithm 1, and it processes the children of a node from left to
right. Whenever Algorithm 1 uses the recursion stack to determine which function call
to issue next or which final value to return, the LOGSPACE algorithm recomputes the
information necessary to make these decisions.

Therefore, the essential difference between Algorithm 1 and the LOGSPACE algo-
rithm lies in a backtracking procedure. When, for example, Algorithm 1 matches a leaf
q of the query tree onto some data node d, then it uses the recursion stack to discover
the data node onto which q’s parent was matched in the data tree and tries to match
q’s next sibling in some subtree of that data node. Instead of using this recursion stack,
the LOGSPACE algorithm enters a subprocedure Backtrack(d, q) that recomputes the
data node onto which q’s parent was matched. In particular, Backtrack(d, q) computes
the highest possible node d′ on the path from D’s root to d, such that the path from D’s
root to d′ matches the path from Q’s root to q’s parent. The crux of the algorithm is
that this is correct, i.e., d′ is equal to the data node onto which q’s parent was matched;

8

and that Backtrack(d, q) can be performed using only logarithmic space on a Turing
Machine. Backtrack(d, q) stores d and q on tape and goes to the roots of the query
and data tree. It then matches the path to d with the path to q in a greedy manner. The
crux of executing Backtrack(d, q) using logarithmic space lies in the following. If we
arrive at a node u in D (resp., Q), we have to be able to determine the child of u that
lies on the path to d (resp., q). To this end, we first store d (resp., q) in a temporary
variable v. We continue following the parent relation in this fashion until we find u, at
which point we return the value of v, which is a child of u.3

In more detail, for given input nodes d and q the LOGSPACE procedure tests whether
d matches q and based on the result of this test it computes the next function call. This is
a rather extensive case study. In case d matches q and both nodes have children the next
function call has the leftmost child of d and the leftmost child of q as its input. In case d
does not match q but has children the next function call has the leftmost child of d and
q as its input. In other cases, computing the next function call can be more complicated.
When, for example, Algorithm 1 matches a leaf q of the query tree onto some data node
d it will try to match q + 1 next, which is the lowest right sibling we encounter on the
path from q to the root. If no such sibling exists, all query nodes are matched and the
algorithm returns true. Otherwise, Algorithm 1 uses the recursion stack to compute the
data node onto which q + 1’s parent was matched in the data tree and tries to match
q +1 in some proper subtree of that data node. Instead of using this recursion stack, the
LOGSPACE algorithm enters the subprocedure Backtrack(d, q + 1) that recomputes
the data node onto which q+1’s parent was matched. The next function call in that case
has the leftmost child of Backtrack(d, q + 1) and q + 1 as input. There is one more
case: If d is a leaf and either d does not match q or q has children, then Algorithm 1 tries
to match q to d’s right sibling if it has one. In general, Algorithm 1 will try to move a
query node onto d+1 next if such a node exists, otherwise it returns false. If d+1 exists,
it uses the recursion stack to find the ancestor-or-self of q that is closest to q and whose
parent was matched to an ancestor of d + 1. Algorithm 1 tries to match this ancestor in
subtree(d + 1). If no such parent exists then Algorithm 1 tries to match the root in the
subtree(d + 1). Analogously as before, the LOGSPACE algorithm uses Backtrack to
test for an ancestor of q whether its parent was matched to an ancestor of d + 1.

We present the LOGSPACE procedure in Algorithm 2. For ease of presentation,
we have written the algorithm as a recursive procedure, but it can be implemented to
only use logarithmic space. This can be seen by observing that every recursive call to
L-Match in Algorithm 2 is a return-statement, so the algorithm does not change when
the recursion stack is not used at all. The input of the algorithm is, just as before, the
root nodes d and q of the data tree D and query tree Q, respectively. In particular, we
can rewrite the LOGSPACE procedure into a non-recursive algorithm: We wrap a while
loop (with condition true) around the function body. In the function body we replace
each function call by an update of d and q (according to the input of the function call)
followed by a break statement. Thus we start an execution of the while loop for each
function call.

For the sake of understending the general idea behind Algorithm 2, let, for a query
node q, the remainder of q in Q be the subhedge of Q consisting of the nodes {q′ | q ≤pre

3Notice that the parent pointer is not mandatory for this argument. One can also determine v’s
parent in LOGSPACE by scanning the input tape and searching for a node with a child-pointer to v.

9

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Q

q

Figure 1: Illustration of the remainder of q in Q.

q′ ≤pre qmax}, where qmax is the maximal query node w.r.t. the depth-first left-to-right
ordering. We illustrate the remainder of q in Q in Figure 1. Given a data node d and
a query node q, the algorithm first tries to match the remainder of q in Q consistently
with what has already been matched in D (lines 2–12). If this fails, it either returns false
(line 15), or enters the backtracking procedure (lines 18–25).

We argued above that we can implement Backtrack in LOGSPACE. Algorithm 2
does not require a recursion stack and only uses logarithmic space. Thus we have the
following proposition.

Proposition 2. Algorithm 2 runs in LOGSPACE.

3.2.1. Correctness of L-Match

We want to show that L-Match returns true on input D and Q if and only if D |= Q.
To simplify the analysis, we imaginarily extend the algorithm by defining a matching θ.
If the algorithm compares the labels of d and q in the function call L-Match(d, q) and
they agree (in lines 2 and 6), we set θ(q) = d (and may overwrite older assignments).
This mapping θ is merely used to simplify the reasoning about the algorithm.
Soundness. We will prove that whenever L-Match returns true on input D and Q, then
D |= Q. In fact we prove a stronger claim: If L-Match returns true, then our mapping
θ is a tree pattern matching (cfr. Definition 1). Hence θ witnesses that if L-Match

returns true, then D |= Q.
In order to prove the soundness of L-Match, we first show the following Lemma,

that also implies that Backtrack is indeed correct. That is, given q and d, the node
onto which q’s parent was matched can be computed by calculating the highest possible
node d′ on the path from D’s root to d, such that the path from D’s root to d′ matches
the path from Q’s root to q’s parent.

Lemma 2. Let D be a data tree and Q be a query tree. Further, let L-Match(d, q) be a
function call resulting from the initial procedure call L-Match(root(D), root(Q)). Then
at the time when L-Match(d, q) is called

(1) the restriction of θ to query nodes smaller than q in the ordering <pre is a tree pattern
matching;

(2) θ matches the path 〈parent(q) · · · root(Q)〉 into the path 〈parent(d) · · · root(D)〉 as high
as possible; and

10

(3) the path 〈q · · · root(Q)〉 cannot be matched into the path 〈parent(d) · · · root(D)〉.

Proof. We prove the Lemma by induction on the position k of L-Match(d, q) in the se-
quence of function calls resulting from the initial procedure call L-Match(root(D), root(Q)).
If k = 1 then we have L-Match(root(D), root(Q)), in which case there is nothing to
show.

So, from now on, we assume that the Lemma is true for the first k function calls
and we let L-Match(d, q) be the kth function call. We prove that it is also true for the
k + 1th function call (if there is one). We consider four cases according to Algorithm 2.

• If the labels of d and q agree and both nodes have children (line 2), the next function
call is L-Match(d + 1, q + 1), where d + 1 and q + 1 are the leftmost children of
d and q, respectively. We know by induction that θ, restricted to query nodes
smaller than q, is a tree pattern matching. We extend this mapping by θ(q) = d.
This mapping clearly preserves labels. Hence, we only need to show that θ(q)
is a descendant of θ(parent(q)). But this clear, since by induction 〈parent(q) · · ·
root(Q)〉 is matched as high as possible into the path 〈parent(d) · · · root(D)〉, which
proves (1). Combining this with the fact that 〈q · · · root(Q)〉 cannot be matched
into 〈parent(d) · · · root(D)〉 we conclude that 〈q · · · root(Q)〉 is matched as high as
possible into 〈d · · · root(D)〉, which proves (2). As we must match q + 1 onto a
descendant of θ(q), it then follows that the path 〈d · · · root(D)〉 cannot match the
path 〈q + 1 · · · root(Q)〉, which proves (3).

• If the labels of d and q do not agree and d has children (line 4), the next function
call is L-Match(d + 1, q), where d + 1 is the leftmost child of d. We do not extend
θ in that case and all requirements (1), (2), and (3) follow from the induction
hypothesis.

• If the labels of d and q agree, q is a leaf, and q is not maximal (line 6), we extend the
mapping θ by θ(q) = d. As in the first case of this proof we know by induction that
θ, restricted to query nodes less than q, is a tree pattern matching. The extended θ
is still a tree pattern matching, because, due to the induction hypothesis, 〈parent(q)
· · · root(Q)〉 is matched into the path 〈parent(d) · · · root(D)〉. Hence, (1) is true.

Backtrack(d, q + 1) calculates the highest ancestor d′ of the data node d such
that 〈d′ · · · root(D)〉 matches 〈parent(q +1) · · · root(Q)〉. Why does d′ exist? First,
note that parent(q + 1) is an ancestor of q due to the left-to-right pre-order order-
ing. Second, by induction, 〈parent(q) · · · root(Q)〉 can be matched into the path
〈parent(d) · · · root(D)〉. Putting both facts together, the sub-path 〈parent(q + 1)
· · · root(Q)〉 can still be matched into the path 〈parent(d) · · · root(D)〉. Hence, d′

exists and d′ + 1 is its leftmost child.

The next function call is L-Match(d′ + 1, q + 1). By induction, the mapping
θ matches the path 〈parent(q) · · · root(Q)〉 into the path 〈parent(d) · · · root(D)〉
as high as possible and therefore, θ also matches the sub-path 〈parent(q + 1) · · ·
root(Q)〉 as high as possible into 〈parent(d) · · · root(D)〉. It also follows that Back-

track in fact calculated the node onto which parent(q + 1) was matched, e.g.
d′ = θ(parent(q + 1)). Combining the last two facts with the descendant require-
ment that is fulfilled by θ yields (2) and (3): θ matches the sub-path 〈parent(q +1)

11

· · · root(Q)〉 as high as possible into the path 〈d′ · · · root(D)〉 and therefore 〈q + 1
· · · root(Q)〉 cannot be matched into 〈d′ · · · root(D)〉.

• If d is a leaf and (d does not match q or q is not a leaf) and d is not maximal (line
13), we have to try to match q somewhere else. We do not extend θ, so θ restricted
to query nodes smaller than q is still a tree pattern matching, which proves (1). To
prove the other items, we consider two cases.

(Case 1): Assume that the next function call is L-Match(d + 1, q′) in line 25.
Then q′ has no parent (q′ = root(Q)) and (2) is trivially true. To prove (3), i.e.,
to prove that root(Q) cannot be matched into the path 〈parent(d+1) · · · root(D)〉,
we consider two cases.

– If q = q′ = root(Q), by induction, root(Q) cannot be matched into 〈parent(d)
· · · root(D)〉 and therefore also not into 〈parent(d + 1) · · · root(D)〉, which is a
sub-path of 〈parent(d) · · · root(D)〉, which proves (3).

– If q 6= q′ = root(Q), then root(Q) is an ancestor of q. By the induction hypoth-
esis on (1) we have that 〈parent(θ(root(Q)) · · · root(D)〉 is a sub-path of 〈d · · ·
root(D)〉. Also, 〈parent(d + 1) · · · root(D)〉 is a sub-path of 〈d · · · root(D)〉.
As L-Match did not return a function call in line 21, θ(root(Q)) is not an
ancestor of parent(d + 1). Hence, 〈parent(θ(root(Q))) · · · root(D)〉 includes
〈parent(d + 1) · · · root(D)〉. By induction, 〈parent(θ(root(Q))) · · · root(D)〉
does not match root(Q) and this property carries over to 〈parent(d + 1) · · ·
root(D)〉, which proves (3).

(Case 2): Otherwise, the next function call is L-Match(d + 1, q′) in line 21.
Backtrack(d, q′) has calculated the highest ancestor d′ of the data node d such
that 〈d′ · · · root(D)〉 matches 〈parent(q′) · · · root(Q)〉. Why does d′ exist? First,
note that q′ lies on the path 〈q · · · root(Q)〉 and has a parent (line 20). Further, note
that, by induction, the path 〈parent(d) · · · root(D)〉 matches the path 〈parent(q)
· · · root(Q)〉 and therefore it also matches the sub-path 〈parent(q′) · · · root(Q)〉. It
follows that d′ exists and that d′ + 1 is its leftmost child.

We know that q′ is the lowest node on 〈q · · · root(Q)〉 such that Backtrack(d, q′) =
d′ is an ancestor of d + 1, by the condition in the while loop. Next, we will prove
(2). By induction, the mapping θ matches the query path 〈parent(q) · · · root(Q)〉
and therefore also the sub-path 〈parent(q′) · · · root(Q)〉 as high as possible into the
data path 〈parent(d) · · · root(D)〉. It follows that the mapping θ also matches the
path 〈parent(q′) · · · root(Q)〉 as high as possible into the sub-path 〈d′ · · · root(D)〉.
As d′ is an ancestor of d + 1 (line 21) we now have that the mapping θ matches
the path 〈parent(q′) · · · root(Q)〉 as high as possible into the path 〈parent(d+1) · · ·
root(D)〉, which proves (2).

In order to prove (3), i.e., to prove that the path 〈parent(d+1) · · · root(D)〉 cannot
match the path 〈q′ · · · root(Q)〉, we consider two cases:

– If q = q′, by the induction hypothesis, the path 〈parent(d) · · · root(D)〉 cannot
match the path 〈q · · · root(Q)〉. We have that 〈parent(d + 1) · · · root(D)〉 is a
sub-path of 〈parent(d) · · · root(D)〉 because d is a leaf. The claim follows.

12

– If q 6= q′, recall that q′ is the lowest ancestor of q such that θ(parent(q′))
is an ancestor of d + 1 (observe the while loop and recall that, by induction,
d′ = θ(parent(q′))). It follows, that q′ is matched somewhere on the path from
parent(d) to (but not including) parent(d+1). By the induction hypothesis, we
cannot match the path 〈q′ · · · root(Q)〉 any higher. Hence, the path 〈parent(d+
1) · · · root(D)〉 does not match the path 〈q′ · · · root(Q)〉.

• Otherwise there does not follow a function call. �

Proposition 3. Algorithm 2 is sound. That is, given a data D and query tree Q, if
Algorithm 2 returns true, then D |= Q.

Proof. If L-Match(d, q) returns true in line 8, then q is maximal (line 7) and the label
of d matches the one of q (line 6). By Lemma 2 the mapping θ is a tree pattern matching
of Q\{q} on D, such that q’s parent is matched onto some ancestor of d. We extend the
mapping by θ(q) = d, and conclude that D |= Q. �

Completeness. In this section we want to prove that whenever L-Match returns false
on input D and Q, then D 6|= Q. For two nodes x and y in a tree, we denote by 〈x · · ·
y〉 the path from x to y that excludes y itself. In order to prove the completeness, we
first show the following Lemma. Recall that the previous sibling of a node is its sibling
to the left.

Lemma 3. Let D be a data tree and let Q be a query tree. Let L-Match(d, q) be a
function call resulting from the initial procedure call L-Match(root(D), root(Q)). Then,

it holds for all previous siblings d̂ of nodes on the path 〈d · · · θ(parent(q))〉 or, in case q
has no parent, on the path 〈d · · · root(D)〉 that

subtree(d̂) 6|= subtree(q).

Proof. Note that, by Lemma 2, we can refer to the restriction of θ to query nodes
smaller than q as a tree pattern matching. The proof is by induction on the position k
of L-Match(d, q) in the sequence of function calls resulting from the initial procedure
call L-Match(root(D), root(Q)). If k = 1 then we have L-Match(root(D), root(Q))
in which case there is nothing to show because there are no left siblings on the path
〈root(D)〉.

So, from now on, we assume that k ≥ 1 and the Lemma is true for the first k function
calls. Let L-Match(d, q) be the kth function call. We prove that it is also true for the
k + 1th function call (if there is one). We consider four cases according to Algorithm 2.

• If the labels of d and q agree and both nodes have children (line 2), θ(q) is defined
to be d. The next function call is L-Match(d+1, q +1), where d+1 and q +1 are
the leftmost children of d and q, respectively. The path 〈d + 1 · · · θ(parent(q + 1))〉
is the path 〈d + 1 · · · d〉. Since d + 1 has no left sibling there is nothing to show.

• If the labels of d and q do not agree and d has children (line 4), the next function
call is L-Match(d + 1, q), where d + 1 is the leftmost child of d. Since d + 1 has
no left siblings, the claim follows from the induction hypothesis.

13

• If the labels of d and q agree, q is a leaf (line 6), and q is not maximal, θ(q) is
defined to be d. Backtrack(d, q + 1) calculates the highest ancestor d′ of d such
that 〈d′ · · · root(D)〉 matches 〈parent(q+1) · · · root(Q)〉. By Lemma 2 we have that
θ(parent(q + 1)) = d′. The next function call is L-Match(d′ + 1, q + 1). The path
〈d′ +1 · · · θ(parent(q + 1))〉 is the path 〈d′ +1 · · · d′〉, where d′ is d′ +1’s parent. As
d′ + 1 has no left sibling, there is nothing to show.

• If d is a leaf and (the labels of d and q do not agree or q has children) (line 13)
and d is not maximal, then subtree(d) does not match subtree(q). We first show
the following invariant which we will need later:

Invariant 2. For every call of L-Match until the k-th call, whenever the body of
the while loop in line 18 is executed without returning a function call in line 21, it
follows for the current q′ that subtree(θ(parent(q′))) does not match subtree(parent(q′)).

Proof. We prove the claim by induction over the number of executions of the
while body, denoted by `.

` = 1: Here q′ = q, q has a parent (line 18), and we know that (i) subtree(q) cannot
be matched into subtree(d) (line 13), (ii) q cannot be matched into the path
〈parent(d) · · · θ(parent(q))〉 by Lemma 2, (iii) there are no right siblings on the
path 〈d · · · θ(parent(q))〉, since otherwise we would have returned a function

call in line 21, and (iv) subtree(q) cannot be matched into subtree(d̂) for every

left sibling d̂ of the path 〈d · · · θ(parent(q))〉, by the induction hypothesis of
Lemma 3. From (i–iv) we can conclude that no proper subtree of θ(parent(q))
matches subtree(q), which implies that subtree(θ(parent(q))) does not match
subtree(parent(q)).

` > 1: Let the claim be true for the first ` while loop executions. We prove that it
is also true for the ` + 1th execution. Let q′ be the query node of the ` + 1th

while loop execution. Here, q′ 6= q and q′ has a parent (line 18). There must
have been a function call L-Match(q′, θ(q′)) and there must have been a while
loop execution with the child of q′ on the path from q to q′ as current node.
We know that (i) subtree(q′) cannot be matched into subtree(θ(q′)) by the
induction hypothesis, (ii) q′ cannot be matched into the path 〈parent(θ(q′))
· · · θ(parent(q′))〉 by Lemma 2, (iii) there are no right siblings on the path
〈θ(q′) · · · θ(parent(q′))〉, since otherwise we would have returned a function call

in line 21, and (iv) subtree(q′) cannot be matched into subtree(d̂), for every

left sibling d̂ of the path 〈θ(q′) · · · θ(parent(q′))〉 by the induction hypothesis of
Lemma 3. From (i–iv), we can conclude that no proper subtree of θ(parent(q′))
matches subtree(q′), which implies that the subtree(θ(parent(q′))) does not
match the subtree(parent(q′)). �

We return to the proof of the main induction. We denote the left sibling of d + 1
by prevSib(d + 1). We consider two cases.

(Case 1): Assume that next function call is L-Match(d + 1, q′) in line 25. Here,

q′ is the query root. We need to show that there is no left sibling d̂ on the path
〈d + 1 · · · root(D)〉, such that subtree(d̂) |= subtree(q′). We consider two cases:

14

– If q = q′ = root(Q), by the induction hypothesis, subtree(q) cannot be

matched into subtree(d̂) for any left sibling d̂ of the path 〈d · · · root(D)〉. Since
parent(d+1) is an ancestor of d, it is enough to show that the subtree rooted at
prevSib(d + 1), which is a subtree that includes d, does not match subtree(q).
We know that (i) subtree(q) cannot be matched into subtree(d), (ii) q cannot
be matched into the path 〈parent(d) · · · root(D)〉 by Lemma 2, (iii) there are
no right siblings on the path 〈d · · · prevSib(d + 1)〉 due to the left-to-right pre-

order successor, and (iv) subtree(q) cannot be matched into the subtree(d̂) for

every left sibling d̂ of the path from d to root(D) by the induction hypothesis.
From (i–iv) it follows that we cannot match subtree(q) into the subtree rooted
at prevSib(d + 1).

– If q 6= q′ = root(Q), then by Lemma 2 there must have been a function
call L-Match(q′, θ(q′)). By the induction hypothesis, subtree(q′) cannot be

matched into subtree(d̂) for any of the left siblings d̂ of the path 〈θ(q′) · · ·
root(D)〉. Furthermore, there must have been a while loop execution with q′’s
child on the path from q to q′ as current query node. Since parent(d + 1)
is an ancestor of θ(q′) (otherwise we would have returned a function call in
line 21), it is enough to show that the subtree rooted at prevSib(d + 1) does
not match the subtree(q′). We know that (i) subtree(q′) cannot be matched
into subtree(θ(q′)) by Invariant 2, (ii) q′ cannot be matched into the path
from parent(θ(q′)) to root(D) by Lemma 2, (iii) there are no right siblings
on the path 〈θ(q′) · · · prevSib(d + 1)〉, because parent(d + 1) is an ancestor of
θ(q′), which is an ancestor of d, and (iv) subtree(q′) cannot be matched into

subtree(d̂) for every left sibling d̂ of the path from θ(q′) to root(D) by the
induction hypothesis. From (i–iv) it follows that we cannot match subtree(q′)
into the subtree rooted at prevSib(d + 1).

(Case 2): Otherwise, the next function call is L-Match(d + 1, q′) in line 21.
Backtrack(d, q′) has calculated the highest ancestor d′ of the data node d such
that 〈d′ · · · root(D)〉matches 〈parent(q′) · · · root(Q)〉. By Lemma 2, d′ equals θ(parent(q′)).

We know that q′ is the lowest node on 〈q · · · root(Q)〉 such that θ(parent(q′)) is an
ancestor of d + 1, because of the condition in the while loop. It follows that q′

is matched somewhere on the path 〈d · · · parent(d + 1)〉 (for the case q′ 6= q). No
matter whether q′ = q or not, there was a function call L-Match(q′, d0) for some d0

on the path 〈d · · · parent(d + 1)〉. By the induction hypothesis and Lemma 2 there

is no left sibling d̂ on the path 〈d0 · · · θ(parent(q′))〉 such that subtree(d̂) matches
subtree(q′).

Since d0 is in the subtree rooted at prevSib(d + 1), we now only need to show that
subtree(prevSib(d + 1)) does not match subtree(q′). We consider two cases:

– If q = q′, then we know that (i) subtree(q) cannot be matched into subtree(d),
(ii) q cannot be matched into the path 〈parent(d) · · · θ(parent(q))〉 by Lemma 2,
(iii) there are no right siblings on the path 〈d · · · prevSib(d + 1)〉 due to the
definition of the left-to-right pre-order successor, and (iv) subtree(q) cannot be

matched into subtree(d̂) for every left sibling d̂ of the path 〈d · · · θ(parent(q))〉

15

by the induction hypothesis. From (i–iv) it follows that the subtree rooted at
prevSib(d + 1) does not match subtree(q′).

– If q 6= q′, there must have been a while loop execution with q′’s child on the
path from q to q′ as current query node and there must have been a function
call L-Match(θ(q′), q′). We know that (i) subtree(q′) cannot be matched
into subtree(θ(q′)) by Invariant 2, (ii) q′ cannot be matched into the path
〈parent(θ(q′)) · · · θ(parent(q))〉 by Lemma 2, (iii) there are no right siblings
on the path 〈θ(q′) · · · prevSib(d + 1)〉, because there are no right siblings on the
path 〈d · · · prevSib(d + 1)〉, and the path 〈θ(q′) · · ·prevSib(d + 1)〉 is a subpath
of that path (otherwise we would have returned a function call earlier, when
the child of q′ was the current query node), and (iv) subtree(q′) cannot be

matched into subtree(d̂) for every previous sibling d̂ of the path 〈θ(q′) · · ·
θ(parent(q))〉 by the induction hypothesis. From (i–iv) it follows that we
cannot match subtree(q′) into the subtree rooted at prevSib(d + 1).

• Otherwise there does not follow a function call. �

Proposition 4. Algorithm 2 is complete. That is, given a data D and query tree Q, if
Algorithm 2 returns false, then D 6|= Q.

Proof. We prove the proposition by induction on the number of nodes in the data tree
D. If |D| = 1 then L-Match(root(D), root(Q)) returns true if root(Q) is a leaf with an
appropriate label in line 8 and false otherwise in line 15, which proves the completeness
for that case.

Now suppose that |D| > 1. Assume L-Match returns false in line 15. Let d and q
be the nodes such that, in the execution of L-Match(d, q), false was returned. Due to
line 13, d is a leaf and either q has children or the labels of q and d do not agree. Due to
line 14, d is the maximal node w.r.t. <pre, which means that there are no right siblings
on the path from d to the root.

Consider a slight modification of the data tree: We attach an extra rightmost child to
the root. Its value in the left-to-right pre-order is now d + 1, the highest value of nodes
in the data tree. Call this tree D′. Observe from the algorithm, that replacing D by
D′ does not make any difference in the function calls before L-Match(d, q), because the
algorithm traverses the data tree according to the left-to-right pre-order. However, in
the function call L-Match(d, q) the algorithm would not return false anymore, instead
it would call L-Match(d + 1, q′) for some query node q′. By Lemma 3 we know that for
every child d′ of the data root in D, subtree(d′) cannot match subtree(q′). We consider
two cases.

• Assume that q′ has a parent. It is clear that if there was a matching from Q into
D, we would be able to match the subtree(q′) into some subtree of the data root.
But we are not able to do this, so D 6|= Q.

• Assume that q′ is the query root. By Lemma 2 we know that we cannot match the
query root into the path 〈parent(d+1) · · · root(D)〉. Hence, the labels of the query
root and the data root do not agree and if there was a matching from Q into D,
we would be able to match subtree(q′) into some subtree of the data root. But we
are not able to do this, so D 6|= Q. �

16

Termination. Before we can conclude that L-Match is correct, we need to prove that
the function call L-Match(root(D), root(Q)) terminates on every input D and Q. First,
note that the while loop in line 18 terminates, because in every execution q′ is overwritten
with parent(q′) and our input trees are of finite depth.

We now only need to argue that whenever we call L-Match(d, q) for some d ∈ D and
q ∈ Q, we have not called L-Match(d, q) before. We prove this in the following lemma
(it is an immediate consequence of Lemma 4 letting q0 = q and d0 = d).

Lemma 4. Let L-Match(d, q) be a function call resulting from the initial procedure call
L-Match(root(D), root(Q)). Then at the time when L-Match(d, q) is called

∀q0 ≥ q, ∀d0 ≥ d, we have not yet called L-Match(d0, q0) before.

Proof. We prove the lemma by induction on the position k of L-Match(d, q) in the
sequence of function calls resulting from the initial procedure call.

More specifically, our induction hypothesis will be: at the time when L-Match(d, q)
is called,

(I1): ∀q0 ≥ q, ∀d0 ≥ d, we have not yet called L-Match(d0, q0) before;

(I2): for all right siblings q̂ of nodes on the path 〈q · · · root(Q)〉, for all nodes q0 ∈
subtree(q̂), and for all data nodes d0 ∈ subtree(θ(parent(q̂))), we have not yet
called L-Match(d0, q0).

(I3): for all nodes q̂ < q, for all nodes q0 ∈ subtree(q̂), for all right siblings d̂ on the path

〈θ(q̂) · · · root(D)〉, and for all data nodes d0 ∈ subtree(d̂), we have not yet called
L-Match(d0, q0).

We illustrate the hypotheses (I2) and (I3) in Figure 2.
If k = 1 then we have L-Match(root(D), root(Q)) in which case there is nothing to

show.
So, from now on we assume that the Lemma holds for the first k function calls. Let

L-Match(d, q) be the kth function call. We prove that the Lemma also holds for the
k + 1th function call (if there is one).

Let us start with a simple observation concerning (I3). The induction hypothesis for
(I3) implies that, for all query nodes q̂ < q, for all query nodes q0 ∈ subtree(q̂), for all

right siblings d̂ on the path 〈θ(q̂) · · · root(D)〉, and for all data nodes d0 ∈ subtree(d̂) we
have not called L-Match(d0, q0) before we called L-Match(d, q). We argue why this
remains true even after calling L-Match(d, q), but before the next function call is made.
Towards a contradiction, assume that this was not the case. In that case there would
be a query node q̂ < q such that q ∈ subtree(q̂), and a right sibling d̂ on the path 〈θ(q̂)

· · · root(D)〉, such that d ∈ subtree(d̂). But this cannot be because, due to Lemma 2,
the ancestors of q are matched on the path 〈d · · · root(D)〉 and hence d cannot be in a
subtree of a right sibling on the path 〈θ(q̂) · · · root(D)〉. Hence, (I3) is also still true right
after calling L-Match(d, q). (†)

Next we will consider the four possible function calls following the kth function call
L-Match(d, q) and we will show that (I1), (I2), and (I3) still hold for the next function
call.

17

���
�

���
�

���
�

		

���
�

�
�

���
�

���
�

���
�

root(D)

d0

dq

root(Q)

q̂

q0

(a) Induction hypothesis (I2).

���
�

���
�

���
�

���
� ���

�

��

!!"
"

##$
$

%%&
&

''(
(

))*
*

q̂

q0

q
d

d0

d̂

root(D)root(Q)

(b) Induction hypothesis (I3).

Figure 2: Illustrations of the induction hypotheses in the proof of Lemma 4.

• If the next function call is L-Match(d + 1, q + 1) (line 3), then θ(q) is defined to
be d. Here, d + 1 is the leftmost child of d and q + 1 is the leftmost child of q.
The induction hypothesis for (I1) implies that for all q0 ≥ q, for all data nodes
d0 ≥ d, we have not called L-Match(d0, q0) before we called L-Match(d, q). In
the meantime, we only executed L-Match(d, q), so for all q0 ≥ q + 1, for all data
nodes d0 ≥ d + 1, we have not called L-Match(d0, q0), which proves (I1).

Item (I2) of the induction hypothesis implies that, for all right siblings q̂ of nodes
on the path 〈q · · · root(Q)〉, for all nodes q0 ∈ subtree(q̂), for all data nodes d0 ∈
subtree(θ(parent(q̂))), we have not called L-Match(d0, q0) before we called L-Match(d, q).
Since q+1 is the leftmost child of q, we only need to show that, for all right siblings q̂
of q +1, for all nodes q0 ∈ subtree(q̂), for all data nodes d0 ∈ subtree(θ(parent(q̂)))
(which is the subtree(d)), we have not called L-Match(d0, q0) before. But this
follows from the induction on (I1), because data nodes in subtree(d) are greater or
equal to d and query nodes in subtrees of q + 1’s right siblings are greater than q.
This shows (I2).

In order to prove (I3) we need to show that for q̂ < q + 1, for all query nodes

q0 ∈ subtree(q̂), for all right siblings d̂ on the path 〈θ(q̂) · · · root(D)〉, and for all

data nodes d0 ∈ subtree(d̂) we have not called L-Match(d0, q0) before calling
L-Match(d + 1, q + 1).

By the observation (†) above this is true for q̂ < q. So, let us consider q̂ = q. The
fact that θ(q) = d now implies that d0 > d and q0 ≥ q. The claim follows from
the induction on item (1) and the fact that we only called L-Match(d, q) in the

18

meantime.

• If the next function call is L-Match(d + 1, q) (line 5), then d + 1 is the leftmost
child of d. The induction on (I1) implies that (I1) is true (as above). Since we
only called L-Match(d, q) in the meantime and did not change the mapping θ at
all, (I2) is a direct consequence of the induction hypothesis on (I2). Since we did
not change the mapping θ and the query node serving as argument of the k + 1th

function call is the same as the argument of the kth function call, (I3) follows from
the observation (†) made above.

• If the next function call is L-Match(d′ + 1, q + 1) (line 11), then θ(q) is defined
to be d. Here, q + 1 is a right sibling of a node on the path 〈q · · · root(Q)〉 (due
to the left-to-right pre-order and the fact that q is a leaf, see line 6) and d′ + 1 is
the leftmost child of some ancestor of d. The induction on (I1) assures that, for
all q0 ≥ q, for all data nodes d0 ≥ d, we have not called L-Match(d0, q0) before
we called L-Match(d, q). In the meantime, we executed L-Match(d, q), so for all
q0 ≥ q +1, for all data nodes d0 ≥ d, we have not called L-Match(d0, q0). In order
to prove (I1), we still need to show that this is also true for all q0 ≥ q + 1 and for
all data nodes d0 with d′ + 1 ≤ d0 < d. We consider two cases:

– If q0 ∈ subtree(q + 1) we can make use of the induction hypothesis on (I2).
The query node q + 1 is a right sibling of a node on the path 〈q · · · root(Q)〉
and hence we have not called L-Match(d0, q0) before for all nodes d0 ∈
subtree(θ(parent(q+1))). This proves our case because, by Lemma 2, θ(parent(q+
1)) is equal to d′ and d′ is an ancestor of d. Clearly, subtree(d′) includes all
nodes d0 with d′ + 1 ≤ d0 < d. Hence, for all q0 ∈ subtree(q + 1) and for all
d0 with d′ + 1 ≤ d0 < d we have not called L-Match(d0, q0) before.

– If q0 6∈ subtree(q + 1) we can make use of the induction hypothesis on (I2)
again. By definition of the left-to-right pre-order, q0 is then in a subtree of
some right sibling q̂ of a node on the path 〈q + 1 · · · root(Q)〉. This q̂ is also
a right sibling of a node on the path 〈q · · · root(Q)〉. By induction on (I2) it
follows that, for all data nodes d0 ∈ subtree(θ(parent(q̂))), we have not called
L-Match(d0, q0). This proves our case, because parent(q̂) is an ancestor of
or equal to parent(q + 1) and, by Lemma 2, θ(parent(q̂)) is an ancestor of or
equal to θ(parent(q + 1)), which is equal to d′. Clearly, subtree(d′) includes
all nodes d0 with d′ + 1 ≤ d0 < d and so does subtree(θ(parent(q̂))). Hence,
for all q0 6∈ subtree(q + 1) and for all d0 with d′ + 1 ≤ d0 < d we have not
called L-Match(d0, q0) before.

As mentioned above, right siblings of a node on the path 〈q + 1 · · · root(Q)〉 are
also a right siblings of a node on the path 〈q · · · root(Q)〉. Hence, (I2) immediately
follows from the induction hypothesis on (I2).

In order to prove (I3) we need to show that, for q̂ < q + 1, for all query nodes

q0 ∈ subtree(q̂), for all right siblings d̂ on the path 〈θ(q̂) · · · root(D)〉, and for all

data nodes d0 ∈ subtree(d̂), we have not called L-Match(d0, q0) before calling
L-Match(d′ + 1, q + 1).

By the observation (†) above this is true for q̂ < q. So, let us consider q̂ = q.
The left-to-right pre-order and the fact that θ(q) = d, implies that d0 > d and

19

q0 ≥ q. The claim follows from the induction on (I1) and the fact that we only
called L-Match(d, q) in the meantime.

• If the next function call is L-Match(d + 1, q′) (line 21 or line 25), then d + 1 is a
right sibling of a node on the path 〈d · · · root(D)〉 (due to the left-to-right pre-order
and the fact that d is a leaf, see line 13) and q′ is an ancestor of or is equal to q.

The induction on (I1) implies that, for all q0 ≥ q, for all data nodes d0 ≥ d, we have
not called L-Match(d0, q0) before we called L-Match(d, q). In the meantime, we
only executed L-Match(d, q), so, for all q0 ≥ q, for all data nodes d0 ≥ d + 1, we
have not called L-Match(d0, q0) before.

In order to prove (I1) we still need to show that this is also true for all query
nodes q0 with q′ ≤ q0 < q and for all data nodes d0 ≥ d + 1. So, take a query
node q0 such that q′ ≤ q0 < q. Note that such a query node q0 is in subtree(q′).
Furthermore, each node d0 that is greater or equal to d + 1 is in the subtree of
some right sibling d̂ on the path 〈prevSib(d + 1) · · · root(D)〉 because d is a leaf.
This path is a subpath of 〈θ(q′) · · · root(D)〉, because q′ is the lowest ancestor of
q whose parent is an ancestor of d + 1, which means that q′ is mapped onto a
node on 〈parent(d) · · · prevSib(d + 1)〉 by Lemma 2 and the fact that q′ < q. By
induction on (I3) it follows that we have not called L-Match(d0, q0) before calling
L-Match(d, q).

Since q′ is an ancestor of or equal to q, the path 〈q′ · · · root(Q)〉 is a sub-path of the
path 〈q · · · root(Q)〉. Hence, (I2) immediately follows from the induction on (I2).

Since we did not change the mapping θ and the query node serving as argument
of the k + 1th function call is smaller or equal to the argument of the kth function
call, (I3) follows from the observation (†) made above. �

Propositions 3, 4, and Lemma 4 imply the correctness of L-Match.

Proposition 5. Algorithm 2 is correct. That is, given the roots d and q of a data D
and query tree Q, L-Match(d, q) decides whether D |= Q.

3.2.2. Space Complexity of L-Match.

We already argued in the main body of the paper that the recursion stack has no
influence on the operation of L-Match. It remains to argue why Backtrack only
needs logarithmic space. Backtrack(d, q) calculates the highest ancestor d′ of the data
node d such that the path 〈d′ · · · root(D)〉 matches the path 〈parent(q) · · · root(Q)〉.
The difficulty lies in the fact that we cannot store both paths. Instead, we store d and
q. We also store two help variables d0 and q0, which are initialized to be root(D) and
root(Q), respectively. We now iterate over the following. We compare the labels of d0

and q0. If they match, we overwrite d0 and q0 with the children of d0 and q0 that lie on
the paths to d and q, respectively. This is performed as explained in the beginning of
this section: We can start at d (resp., q), scan the input tape for the unique node that
has a child pointer to d (resp., q), and continue upwards in this manner until we find a
child of d0, resp., q0. If the labels of d0 and q0 do not match, we only overwrite d0 with
its child on the path to d. We continue until we matched the whole path 〈parent(q) · · ·
root(Q)〉. Finally we return the data node onto which we matched parent(q).

20

3.2.3. The Complexity of the Tree Homeomorphism Problem.

As argued above, L-Match can be performed in LOGSPACE. Putting this together
with the fact that reachability in trees is LOGSPACE-complete, given the tree as a
pointer structure [8], we obtain the following Theorem.

Theorem 3. The tree homeomorphism problem is LOGSPACE-complete.

4. The Bottom-up Algorithm

Although the previously presented top-down algorithms for tree homeomorphism
matching are quite space-efficient, their time complexity is quite high and they involve
quite a lot of recomputing of already obtained matchings, which is unsatisfactory. We
therefore turn to a bottom-up matching approach which has the property that no ob-
tained matchings between the data and query tree need to be recomputed, which leads
to a better time complexity of the overall algorithm.

Before presenting the bottom-up algorithm for the tree homeomorphism matching
problem in detail, we need to introduce several formal notions. As in the previous
section, we first present an algorithm for the tree homeomorphism problem and then
show how to change it into an algorithm for the tree homeomorphism matching problem.

In the present section, we assume the left-to-right post-order ordering <post on nodes
in trees and hedges. For a node u, we denote by u + 1 and u − 1 the successor and
predecessor of u in the left-to-right postorder ordering, respectively. Moreover, when
we, e.g., use terminology such as “largest” and “smallest”, we always assume the left-to-
right post ordering. In this section, we also assume that XML documents are stored on
tape in left-to-right postorder (or, alternatively, together with a left-to-right postorder
index), which allows a random-access machine model to verify the left-to-right post-
order ordering in constant time. To simplify the presentation of our algorithm, we also
assume two dummy nodes in every tree and hedge: nil and ∞. The node nil is such that
nil + 1 is the smallest node in the hedge, and the node ∞ is defined as the successor
of the largest node of the hedge. Given two nodes hfrom ≤ huntil in a hedge H , we
denote by the interval [hfrom, huntil] the subhedge of H consisting only of the nodes
{v | hfrom ≤ v ≤ huntil}.

4 The notion of such an interval in a tree is illustrated in
Figure 3(a). Here, the interval [hfrom, huntil] is the striped area in the tree. Given a
hedge H and a node h ∈ Nodes(H), we denote by subhedgeH(h) the subhedge [hfrom, h],
where hfrom is the smallest descendant of h’s leftmost sibling according to the left-to-right
postorder ordering. We illustrate this notion in Figure 3(b).

When H is a data hedge or a tree pattern query, we refer to [hfrom, huntil] as a data
or query hedge interval, respectively. We extend the semantics of tree pattern matching
to hedges as follows. Let Q1 · · ·Qn be a query hedge interval [qfrom, quntil] and D1 · · ·Dm

be a data hedge interval [dfrom, duntil]. We say that [dfrom, duntil] matches [qfrom, quntil],
denoted by [dfrom, duntil] |= [qfrom, quntil], if, for every Qi, i = 1, . . . , n, there exists a Dj ,
j = 1, . . . , m, such that Dj |= Qi.

Before presenting the intuition about the bottom-up tree homeomorphism algorithm,
we describe an auxiliary procedure RTop, which, given two nodes hfrom and huntil,

4Notice that our definition of a hedge did not assume all root nodes of the individual trees to be
siblings of one another.

21

+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+
+,+,+,+,+,+,+,+,+,+,+

-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-

rtop(hfrom, huntil)

huntil

hfrom

(a)

.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.
.,.,.,.,.,.

/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/
/,/,/,/,/,/

h

(b)

Figure 3: Illustration of a hedge interval and RTop (left) and of subhedgeH(h) (right).

returns the rightmost node among the topmost nodes in the interval [hfrom, huntil]. More
formally, RTop(hfrom, huntil) is the node u such that depth(u) is minimal and u is larger
than every other node v in [hfrom, huntil] with depth(u) = depth(v). This notion is
illustrated in Figure 3(a). Furthermore, in order to simplify the presentation of the
algorithm, we define RTop(hfrom, huntil) = ∞ if hfrom > huntil. Notice that RTop can
easily be computed in time linear in the depth of the tree and in logarithmic space by
traversing the path from huntil to the query root and comparing the previous siblings
of nodes on the path with hfrom w.r.t. the left-to-right post-ordering. Indeed, assume
that hfrom ≤ huntil. Let u be the highest ancestor of huntil that has a previous sibling
s such that s ≥ hfrom. If no such u exists, then rtop(hfrom, huntil) is huntil. Otherwise,
rtop(hfrom, huntil) is s.

We first present an algorithm for deciding whether D |= Q and show later how it can
be extended to an algorithm for the tree homeomorphism matching problem. The main
procedure of our algorithm is called TMatch. Given a data node d and query nodes
qfrom and quntil, TMatch returns the largest query node q in the interval [qfrom, quntil]
such that subtreeD(d) matches [qfrom, q] if q exists; and qfrom − 1 otherwise. Hence, if d
is the root of D, and qfrom and quntil are the leftmost leaf and the root of Q, respectively,
then D |= Q if and only if TMatch returns quntil.

TMatch uses an auxiliary procedure called HMatch, which, given a data node d
and query nodes qfrom and quntil, returns the largest node q in the interval [qfrom, quntil]
such that subhedgeD(d) matches [qfrom, q] if q exists; and qfrom − 1 otherwise.

We start by explaining the operation of TMatch, which is presented in Algorithm 3.
Given a data node d and query nodes qfrom and quntil, TMatch first starts by recursively
calling HMatch with the same query nodes for the subhedge D′ of D defined by d’s last
child, yielding result qbest (see Figure 4(a)). In the remainder of TMatch, we essentially
want to test how qbest can be improved when we also consider the node d in addition to
D′. One particular interesting case is when qbest is a last sibling and its parent has the
same label as d. In this case, we can at least improve our best query node to qbest’s parent
which we call here q′best. Furthermore, it is possible that q′best is not yet the best query
node we can obtain. In particular, we still need to test which part of the hedge defined
by [q′best +1, lastSib(q′best)] can be matched in the subtree below d (see Figure 4(b)). The

22

01010101010101010100101010101010101010010101010101010101001010101010101010100101010101010101010010101010101010101001010101010101010100101010101010101010010101010101010101001010101010101010100101010101010101010

21212121212121212122121212121212121212212121212121212121221212121212121212122121212121212121212212121212121212121221212121212121212122121212121212121212212121212121212121221212121212121212122121212121212121212

d

D′

QD

qbest

(a) Operation of TMatch: recursive call of HMatch.

31313131313131313313131313131313133131313131313131331313131313131313313131313131313133131313131313131331313131313131313313131313131313133131313131313131331313131313131313

41414141414141414414141414141414144141414141414141441414141414141414414141414141414144141414141414141441414141414141414414141414141414144141414141414141441414141414141414

d

D′

D Q

?

q′best

(b) Operation of TMatch: recursive call of TMatch.

qhedge

QD

qtree

D′ D′′

d

(c) Operation of HMatch: first recursive calls of
TMatch and HMatch.

51515151515515151515155151515151551515151515515151515155151515151551515151515515151515155151515151551515151515

61616161616616161616166161616161661616161616616161616166161616161661616161616616161616166161616161661616161616 qhedge

QD

D′ D′′

d

??

(d) Operation of HMatch: a subsequent recursive call
of TMatch, trying to improve qtree.

Figure 4: Illustrations of the tree homeomorphism algorithm.

largest node that is obtained in this manner is the node that TMatch should return.
We now explain the operation of HMatch, which is presented in Algorithm 4. Essen-

tially, given d, qfrom, and quntil, HMatch starts by recursively calling itself with the same
query nodes on the hedge defined by the previous sibling of d (i.e., D′ in Figure 4(c)),
yielding qhedge, and by calling TMatch with the same query nodes on the subtree un-
der d itself (D′′ in Figure 4(c)), yielding qtree. The remainder of HMatch consists of
iteratively improving qtree and qhedge. That is, while it is possible that D′ and D′′ yield

23

Algorithm 3 Function TMatch. Here, +1 and−1 denote the successor and predecessor
in the depth-first left-to-right post-ordering, respectively.

TMatch (DNode d, QNode qfrom, QNode quntil)
2: if d is a leaf then qbest ← qfrom − 1

else qbest ← HMatch(lastChild(d), qfrom, quntil)
4: end if

if qbest + 1 ≤post quntil and d matches qbest + 1 then
6: qbest ← qbest + 1

if qbest + 1 ≤post lastSib(qbest) then
8: return TMatch(d, qbest + 1, lastSib(qbest))

else return qbest

10: end if
else return qbest

12: end if

small values of qtree and qhedge, their concatenation can give rise to a much larger part
of the query that can be matched. Essentially, this is due to the fact that the matching
of tree pattern queries is unordered. For example, it can occur that we need to match a
certain first sibling in D′, a second one in D′′, a third one again in D′ and so on. Hence,
the procedure HMatch alternates between finding best matches in D′ and D′′ until it
reaches a fixpoint.

However, we need to take care in how this fixpoint is computed. One possible case
is illustrated in Figure 4(d). This particular case builds further on the situation in
Figure 4(c). Here, we try to improve qtree by starting the TMatch procedure again for
the node d, but now only with the part of the query marked with question marks. The
case where qtree is larger than qhedge is dual and not illustrated here.

Example 1. Figure 5(a) and 5(b) illustrate an example for the bottom up algorithm.
For brevity, we denote TMatch and HMatch with TM and HM, respectively. The
first calls of TM and HM demonstrate the basic recursive structure of our algorithm:
TM on a node d calls HM on the rightmost child of d. HM on a node d returns TM

of d if that node is a first sibling; or performs a divide-and-conquer technique by calling
HM on the left sibling of d and TM on d itself (as in the function call HM(d4, q1, q5)).
Further recursive calls to TM or HM are then needed to maximize the part of the query
that can be matched.

The simplest function call in the example that performs such further recursive calls
is the call HM(d2, q1, q5), which starts by computing qhedge = HM(d1, q1, q5) and qtree =
TM(d2, q1, q5). As can be seen in Figure 5(b), qhedge = nil. The call TM(d2, q1, q5)
is more successful, because d2 and q1 are both labeled with a. In general, it might be
possible that q2 and further nodes can be matched in subtree(d2). The function call
TM(d2, q2, q4) checks that possibility. (For sure, q1 and q5 cannot both be matched on
d2, which is why we restrict the query tree interval by q4.) But q2 is not labeled with
a so the return value of the two TM calls is q1. After this initial phase, HM(d2, q1, q5)
tries to improve qtree and qhedge iteratively. It calls HM(d1, q2, q4) and improves qhedge

to be q2, because q2 and d1 are both labeled with b. Further improvements fail as there
is no c-labeled node in the subhedge of d2.

24

Algorithm 4 Function HMatch. Here, +1 and−1 denote the successor and predecessor
in the depth-first left-to-right post-ordering, respectively.

HMatch (DNode d, QNode qfrom, QNode quntil)
2: if d is a first sibling then return TMatch(d, qfrom, quntil)

else
4: qhedge ← HMatch(prevSib(d), qfrom, quntil)

qtree ← TMatch(d, qfrom, quntil)
6: loop

if qhedge = qtree then return qhedge

8: else if qtree <post qhedge then
rtop← RTop(qtree + 1, qhedge)

10: while rtop <post ∞ and qhedge <post lastSib(rtop) do
qtree ← TMatch(d, rtop+1, lastSib(rtop))

12: rtop← RTop(qtree + 1, qhedge)
end while

14: if qtree ≤post qhedge then return qhedge

end if
16: else

rtop← RTop(qhedge + 1, qtree)
18: while rtop <post ∞ and qtree <post lastSib(rtop) do

qhedge ← HMatch(prevSib(d), rtop + 1, lastSib(rtop))
20: rtop← RTop(qhedge + 1, qtree)

end while
22: if qhedge ≤post qtree then return qtree

end if
24: end if

end loop
26: end if

A similar iterative improvement is illustrated by HM(d3, q1, q5). Observe that we try
to improve qtree here and call TM(d4, q2, q4) and TM(d4, q3, q3). Only the latter call
yields an improvement. But we cannot omit the former one: if subtree(d4) would match
subtree(q4), then the former call would yield q4 and the latter call would yield q3. As we
want our algorithm to return the largest query node such that the interval ending with
it can be matched the result of the former call would have been the relevant one in that
case.

4.1. Correctness.

The main technical difficulty of this section is proving that TMatch is correct.

Lemma 5. Let D be a data tree and let Q be a query tree. TMatch is correct, that is,
given the root node d of D, the smallest and largest node qfrom and quntil of Q, respectively,
TMatch returns quntil iff D |= Q.

For the proof of Lemma 5, we start with a few simple observations.

Observation 4. A node u is not a last sibling ⇔ u + 1 is a leaf.
25

∗

q5
a

q1

d

q4

b

q2

c

q3

e

d

d5
f

d3
b

d1

a

d2

c

d4

(a) Query tree (left) and data tree (right) of Example 1.

TM(d1, q1, q5)⇒ nil

TM(d2, q2, q4)⇒ q1

TM(d1, q2, q4)⇒ q2

TM(d1, q3, q3)⇒ q2

TM(d6, q1, q5)⇒ q5

HM(d5, q1, q5)⇒ q4

TM(d5, q1, q5)⇒ q4

HM(d4, q1, q5)⇒ q3

HM(d3, q1, q5)⇒ q2

TM(d3, q1, q5)⇒ q2

HM(d2, q1, q5)⇒ q2

HM(d1, q1, q5)⇒ nil

TM(d2, q1, q5)⇒ q1

HM(d1, q2, q4)⇒ q2

TM(d2, q3, q3)⇒ q2

TM(d4, q1, q5)⇒ nil

TM(d4, q2, q4)⇒ q1

TM(d4, q3, q3)⇒ q3

(b) Function calls of HMatch (HM) and TMatch (TM) of Example 1.

Figure 5: Illustrations for Example 1.

Proof. Left to right: if u is not a last sibling, then u+1 is the leftmost descendant leaf
of the right sibling of u, or the right sibling of u itself if it is a leaf. Right to left: if u is
the last node in a left-to-right postorder traversal, then u is a last sibling for which u+1
does not exist. For all other last siblings u, u + 1 is u’s parent, which is not a leaf. �

We call a hedge interval complete when if it contains a certain node, it also contains
its children.

26

Observation 5. In Algorithms 3 and 4, the following properties hold:

(1) quntil is always a last sibling.

(2) qfrom is always a leaf.

(3) [qfrom, quntil] is always a complete interval.

Proof. (1) In our initial call of TMatch, quntil is the root node of the tree, which is
always a last sibling. The property for the deeper recursive calls follows immediately
from a straightforward inspection of the recursive function calls in the algorithm.
(2) In our initial call of TMatch, qfrom is the smallest node of Q, which is always a leaf.
Furthermore, in TMatch we only call HMatch with qfrom as a second parameter and
TMatch with qbest + 1 as a second parameter if qbest is not a last sibling (which is a
leaf due to Observation 4). In HMatch all recursive calls have either qfrom or rtop + 1
as second parameter. We show that, in this case, rtop is never a last sibling. Hence,
according to Observation 4, rtop + 1 is always a leaf. In the calls of TMatch on line
11, we have that rtop < ∞ and qhedge < lastSib(rtop), due to the while condition. As
rtop < ∞, we have that rtop ≤ qhedge due to the calls of RTop on line 9 and line 12.
Hence, rtop < lastSib(rtop). The proof is analogous for the calls of HMatch on line 19.
(3) In the initial call of TMatch, the claim obviously holds. In TMatch we call
HMatch with qfrom and quntil, for which the claim then trivially also holds; and TMatch

with qbest+1 and lastSib(qbest) if qbest is not a last sibling. Hence, [qbest+1, lastSib(qbest)]
is equal to the hedge subtree(nextSib(qbest)) · · · subtree(lastSib(qbest)), which is complete.
The proof for the recursive calls in HMatch is analogous. �

Observation 6. Let d1 and d2 be data nodes and q be a query node. If [d1, d2] does
not match subtree(q), then [d1, d2] does not match any query tree interval containing
subtree(q).

Proof. Let qfrom and quntil be such that [qfrom, quntil] = subtree(q). For q′from ≤ qfrom and
q′until ≥ quntil, it can be shown by a simple structural induction on the hedge [q′from, q′until]
that [d1, d2] does not match [q′from, q′until]. �

Observation 7. Let H be a data hedge and [qfrom, quntil] be a complete query tree inter-
val. We have that q is the largest node in [qfrom, quntil] such that H |= [qfrom, q] if and
only if

• H matches [qfrom, q]; and

• either q = quntil or H does not match subtree(q + 1).

Proof. Left to right: Let H be a data hedge and let [qfrom, quntil] be a query tree interval.
Let q be the largest node in [qfrom, quntil] such that H |= [qfrom, q]. If q = quntil we are
done. Otherwise, if, towards a contradiction, H matches subtree(q + 1), then we also
immediately have that H matches [qfrom, q + 1], which contradicts the maximality of q.

Right to left: Let q be a query node in [qfrom, quntil] such that H matches [qfrom, q]. If
q = quntil then we are done. Otherwise, notice that, as q + 1 is in the complete interval
[qfrom, quntil], we have that subtree(q + 1) is entirely contained in [qfrom, quntil]. Hence, if
H does not match subtree(q + 1), then H also cannot match [qfrom, q + 1]. The latter
can be shown by a simple structural induction on [qfrom, q + 1]. �

27

4.1.1. Correctness of TMatch.

For readability, we split the correctness proof into several lemmas. Essentially, the
proof is by induction on the height of the data node d in D.

Lemma 6. Let d be a leaf data node and qfrom and quntil be query nodes. Given d,
qfrom, and quntil, TMatch is correct, that is, TMatch returns the largest node q in
[qfrom, quntil] such that subtree(d) |= [qfrom, q] if it exists; and qfrom − 1 otherwise.

Proof. By induction on the number of nodes of [qfrom, quntil].

qfrom = quntil: We initialize qbest with qfrom−1 on line 2. If d does not match qfrom on line
5, we immediately return qbest = qfrom − 1 on line 11. If d matches qfrom = quntil

on line 5, qbest gets the value qfrom on line 6. As qfrom = quntil is a last sibling
(Observation 5), we do not execute the recursive call on line 8 and return qfrom in
line 9. Both cases are easily seen to be correct.

qfrom < quntil: We initialize qbest with qfrom − 1 on line 2. If d does not match qfrom on
line 5, we return qbest = qfrom− 1 in line 11, which is correct. If d matches qfrom in
line 5, then qbest gets the value qfrom and we enter the if-test on line 7. We need to
consider two cases:

(1) qfrom is a last sibling: In this case, we return qfrom on line 9. This is correct, as
qfrom + 1 is qfrom’s parent, which cannot be matched onto d due to the semantics
of the descendant axis.

(2) qfrom is not a last sibling: If qfrom has a right sibling, we execute TMatch re-
cursively on d, qfrom+1, and lastSib(qfrom), yielding q. By induction, q is computed
correctly. That is, if q = (qfrom+1)−1, which implies that d does not match qfrom+1,
we return qfrom, which is correct. Otherwise, we argue that subtree(d) = d matches
[qfrom, q] but not subtree(q + 1). By Observation 7, this would complete the proof.
By induction, we immediately have that d matches [qfrom, q]. If q < lastSib(qfrom),
we also have by induction that d does not match subtree(q+1). If q = lastSib(qfrom),
then q + 1 is qfrom’s parent. Hence, d does not match subtree(q + 1), as q + 1 has
a child and d has not. �

Lemma 7. Let d be a data node with height n > 1 and qfrom and quntil be query nodes. If
HMatch is correct for all data nodes of height up to n− 1, then TMatch is correct for
all data nodes of height up to n. That is, given d, qfrom, and quntil, TMatch returns the
largest node q in [qfrom, quntil] such that subtree(d) |= [qfrom, q] if it exists; and qfrom − 1
otherwise.

Proof. Assume that HMatch is correct for all data nodes of height up to n − 1. As
d is not a leaf, we start by calling HMatch on lastChild(d), qfrom, and quntil on line 3
(see also Figure 4(a)), yielding qbest. By our assumption, qbest is computed correctly. We
now prove the lemma by induction on the number of nodes of [qfrom, quntil].

qfrom = quntil: We consider two cases.

(1) If subhedge(lastChild(d)) does not match qfrom, then qbest is qfrom − 1. Conse-
quently, we test whether d matches qfrom on line 5. If d does not match qfrom, we
return qfrom − 1 on line 11. If d matches qfrom, then qbest gets the value qfrom. As

28

qfrom = quntil is a last sibling (Observation 5), we do not execute the recursive call
on line 8 and return qfrom in line 9. Both cases are easily seen to be correct.

(2) Otherwise, qbest = qfrom = quntil. In this case we return qbest, which is correct.

qfrom < quntil: (1) If both subhedge(lastChild(d)) and d do not match qfrom, then we
return qfrom − 1 on line 11, which is correct.

(2) If subhedge(lastChild(d)) matches qfrom and qbest = quntil on line 5, then we re-
turn quntil. Due to the correctness of HMatch, this means that subhedge(lastChild(d))
already matches [qfrom, quntil], hence, subtree(d) matches [qfrom, quntil] by our tree
pattern matching semantics.

(3) If subhedge(lastChild(d)) matches qfrom, qbest+1 ≤ quntil, and d does not match
qbest + 1 on line 5, then we return qbest in line 11. We consider two cases.

• qbest is not a last sibling: Hence, qbest + 1 is a leaf (Observation 4). Due
to the correctness of HMatch for subhedge(lastChild(d)), we know that
subhedge(lastChild(d)) does not match subtree(qbest + 1) = qbest + 1. Hence,
returning qbest is correct.

• qbest is a last sibling: Hence, qbest + 1 is qbest’s parent. Due to the correctness
of HMatch, we have that subhedge(lastChild(d)) |= [qfrom, qbest]. Towards a
contradiction, assume that subhedge(d) |= subtree(qbest + 1). As d does not
match qbest +1, this implies that subhedge(lastChild(d)) |= subtree(qbest +1).
However, this contradicts that HMatch is correct. Hence, it is correct to
return qbest due to Observation 7.

(4) Otherwise, denote by q0
best the value of the variable qbest after the assignment

on line 3. We have that q0
best is correctly computed on line 3 and that d matches

q0
best + 1, after which qbest gets the value q0

best + 1. Notice that q0
best + 1 ≥ qfrom.

We need to consider two cases:

• q0
best + 1 is a last sibling: We return q0

best + 1 in line 9. If q0
best + 1 = quntil,

this is correct. If q0
best + 1 < quntil, towards a contradiction, assume that

subtree(d) matches subtree(q0
best + 2). As q0

best + 2 is the parent of q0
best + 1,

this would mean that subhedge(lastChild(d)) |= subtree(q0
best + 1), which is a

contradiction.

• q0
best+1 is not a last sibling: If q0

best+1 has a right sibling, we execute TMatch

on d, q0
best + 2, and lastSib(q0

best + 1) on line 8, yielding q. By induction, q is
computed correctly. If q is (q0

best + 2)− 1, which implies that subtree(d) does
not match q0

best+2, we return q0
best+1, which is correct. Otherwise, according

to Observation 7, we need to show that subtree(d) matches [qfrom, q] but not
subtree(q + 1). By induction, we have that subtree(d) matches [qfrom, q]. If
q < lastSib(q0

best + 1), we also have by induction that subtree(d) does not
match subtree(q+1). If q = lastSib(q0

best+1), we have that subtree(d) does not
match subtree(q + 1), because there does not exist an u 6= 1 s.t. subtree(d) |=
subtree(q0

best + 1), and q + 1 is q0
best + 1’s parent. �

29

4.1.2. Correctness of HMatch.

Lemma 8. Let rtop = RTop(q1, q2) and q1 ≤ q2. If q1 ∈ subhedge(q2), then rtop = q2

and q2 ≤ lastSib(rtop). If q1 /∈ subhedge(q2), then rtop < q2 and q2 < lastSib(rtop).

Proof. Recall that, by definition, subhedge(q2) is the interval [qsmall, q2], where qsmall

is the smallest descendant of q2’s leftmost sibling.
q1 ∈ subhedge(q2): As both q1 and q2 are in subhedge(q2), we have that [q1, q2] is entirely
contained in subhedge(q2).

By definition, rtop is the largest node in [q1, q2] among the nodes with minimal depth.
As q2 has minimal depth in subhedge(q2) and q2 is the largest node in [q1, q2], we have
that rtop = q2.
q1 /∈ subhedge(q2): Notice that this can only occur when q2 has a parent. As q1 ≤ q2,
we have that q1 < qsmall. By definition of the left-to-right postordering, we have that q1

is either a left sibling of an ancestor of q2 (not including the ancestors themselves), or a
descendant-or-self thereof. Let u1 and u2 be the two unique siblings such that u1 6= u2,
q1 is in subtree(u1), and q2 is in subtree(u2). Notice that q1 ≤ u1 < q2 < u2. Hence, u1

is in [q1, q2] and depth(u1) < depth(q2). As q2 has minimal depth in subhedge(q2), we
have that rtop is not in subhedge(q2). By definition of RTop, this immediately implies
that rtop < q2. Furthermore, as depth(lastSib(rtop)) = depth(rtop) ≤ depth(u1) =
depth(u2) and as lastSib(rtop) is also rtop’s largest sibling, we have that lastSib(rtop)
≥ u2 > q2. �

Corollary 1. If rtop = RTop(q1, q2) then q1 ∈ subhedge(rtop).

Proof. As rtop is in [q1, q2], rtop is also the rightmost node among the topmost nodes in
[q1, rtop]. If we assume that q1 /∈ subhedge(rtop), then Lemma 8 implies that rtop < rtop
which is a contradiction. �

Lemma 9. All function calls of TMatch(d, q1, q2) in the loop of HMatch have the
property that [q1, q2] is an interval which includes subtree(qhedge + 1). All function calls
of HMatch(d, q1, q2) in the loop of HMatch have the property that [q1, q2] is an interval
which includes subtree(qtree + 1).

Proof. For the first statement, we have to show that (i) q1 ≤ qsmall, where qsmall is the
smallest node in subtree(qhedge + 1) and (ii) q2 ≥ qhedge + 1.

First, observe that the function calls of RTop on line 9 and line 12 results in a value
of rtop that is at most qhedge. If rtop < qhedge then rtop < qsmall as, by Lemma 8,
rtop = qhedge when rtop is in [qsmall, qhedge]. Hence, rtop + 1 ≤ qsmall. If rtop = qhedge,
we know that rtop is not a last sibling due to the condition of the while loop on line 10.
Hence, qsmall = qhedge + 1 = rtop + 1 is a leaf (Observation 4). This proves property (i).

Property (ii) is immediate as the condition of the while-loop on line 10 requires that
q2 = lastSib(rtop) ≥ qhedge + 1.

The proof of the second statement is analogous to the proof of the first statement.�

Lemma 10. The loop on line 6, and the while loops on lines 10 and 18 perform at most
a linear number of iterations.

30

Proof. Notice that we exit the loop on line 6 if max(qtree, qhedge) does not increase.
However, this value cannot keep increasing indefinitely as it is bounded from above by
quntil in the algorithm. Hence, the loop performs at most a linear number of iterations.

The while loop on line 10 terminates after a linear number of iterations, as the value
of rtop increases with each execution and the while loop only continues as long as rtop is
smaller than qhedge, a value which remains unchanged. The argument for the while loop
on line 18 is analogous. �

Lemma 11. Let d be a data node and qfrom and quntil be query nodes. If TMatch is
correct for all data nodes of height up to n, then HMatch is correct for all data nodes
of height up to n. That is, given d, qfrom, and quntil, HMatch returns the largest node
q in [qfrom, quntil] such that subhedge(d) matches [qfrom, q] if it exists; and nil otherwise.

Proof. Let k be such that d has k left siblings (including d itself). We prove the lemma
by induction on k.

If k = 1 then the Lemma is immediate from the function call on line 2 and the
assumption that TMatch is correct for all data nodes of height up to n.

So, from now on, we assume that k > 1. We need to show that the algorithm returns
qfrom− 1 if subhedge(d) does not match qfrom. Otherwise, we show that we return a q in
[qfrom, quntil] if subhedge(d) matches [qfrom, q] and either

• q = quntil, or

• neither subtree(d), nor subhedge(prevSib(d)) matches subtree(q + 1).

In the remainder of the proof, we refer to the above property with the label (†). The
correctness of property (†) follows directly from our tree pattern query semantics if we
return qfrom− 1 and from Observation 7 otherwise. Indeed, from Observation 5 we know
that [qfrom, quntil] is complete. Furthermore, subhedge(d) does not match subtree(q + 1)
if and only if neither subtree(d) nor subhedge(prevSib(d)) match subtree(q + 1).

Notice that the loop on line 6 terminates by Lemma 10. We now proceed with an
induction over the number ` of loop executions proving that the following invariants hold:

(I1): if qtree is not qfrom − 1 then subhedge(d) matches [qfrom, qtree];

(I2): if qhedge is not qfrom − 1 then subhedge(d) matches [qfrom, qhedge];

(I3): qtree = quntil or subtree(d) does not match subtree(qtree + 1); and,

(I4): qhedge = quntil or subhedge(prevSib(d)) does not match subtree(qhedge + 1).

At the same time, we show that, if the algorithm returns a certain value q, the
property (†) holds for q.
` = 0 (before the first loop execution): We computed qhedge, which results from executing
HMatch on prevSib(d), qfrom, and quntil; and we computed qtree, which results from
executing TMatch on d, qfrom, and quntil (see also Figure 4(c)). By induction on k,
we have that qhedge is computed correctly. Moreover, as we assume that TMatch is
correct for all data nodes of height up to n, we also have that qtree is computed correctly.
Properties (I1)–(I2) immediately follow from the correctness of the recursive calls of
TMatch and HMatch. Moreover, Observation 7 implies that (I3)–(I4) also hold. As

31

the algorithm does not return anything up to here, we do not have to show yet that (†)
holds.
` ≥ 1 (subsequent loop executions): We consider three cases.
(1) If qhedge = qtree, we return qhedge. This is correct, as in this case, properties (I1)–(I4)
immediately imply property (†).
(2) If qtree < qhedge, notice that we do not change the value of qhedge in this iteration of
the loop. Hence, for the induction, we only need to show that properties (I1) and (I3)
are preserved. We consider two cases.
If qhedge = quntil the while loop in line 10 is not executed and we return quntil in line 14.

Here, it follows immediately from (I2) that (†) holds.
If qhedge < quntil we consider two cases.

• If subtree(d) does not match subtree(qhedge+1), none of the function calls TMatch(d, q1, q2)
in the while loop yield a value greater than qhedge. This follows from the cor-
rectness of TMatch for data nodes up to height n, and from Lemma 9, stating
that [q1, q2] always includes subtree(qhedge + 1). Indeed, should such a function
call TMatch(d, q1, q2) yield a greater value than qhedge, then we would have that
subtree(d) matches subtree(qhedge +1), which contradicts that we are investigating
the case that subtree(d) does not match subtree(qhedge+1). Hence, we return qhedge

in line 14. Correctness of the property (†) for qhedge now follows from the following
facts:

– qhedge ≥ qfrom, as qtree < qhedge;

– qhedge < quntil;

– subhedge(d) matches [qfrom, qhedge], by (I2);

– subtree(d) does not match subtree(qhedge + 1); and,

– subhedge(prevSib(d)) does not match subtree(qhedge + 1) by (I4).

• If subtree(d) matches subtree(qhedge + 1) the proof is more complicated. First,
observe that the while loop on line 10 terminates by Lemma 10.

For the remainder of this case, we will show that qtree > qhedge after exiting the
while loop in the i + 1th execution of the test on line 10. In particular, this implies
that the algorithm will not return any value in iteration ` of the loop. So we only
need to show that, at the end of the current iteration, properties (I1) and (I3) hold.

To show (I3), we will show that, if in the jth execution of the while loop we obtain
a value q for the variable qtree for which it holds that q > qhedge then we either
have that q = quntil or that subtree(d) does not match subtree(q + 1). Afterwards,
we show (I1).

We start by showing that qtree > qhedge after exiting the while loop:

Goal 1: qtree > qhedge after exiting the while loop in the i + 1th execution of the
test on line 10. So we execute the while body i times and then exit the loop.

Let qi
tree denote the value of qtree at the end of the ith execution (i.e., after the

assigment on line 11) and let q0
tree be the value of qtree before entering the while

loop. Furthermore, let rtopi denote the value of rtop at the end of the ith execution

32

(i.e., after the assigment on line 12). Let rtop0 be the value of rtop before entering
the while loop.

(i = 0): We will show that this case does not occur. That is, the body of the while
loop is always executed at least once. Towards a contradiction, assume that we do
not execute the body of the while loop. We consider two cases. If we exit the while
loop one of them must hold.

– Case 1: rtop0 <∞ and qhedge ≥ lastSib(rtop0). Recall that rtop0 = RTop(q0
tree+

1, qhedge). Due to Lemma 8, qhedge ≥ lastSib(rtop0) implies that (i) rtop0 =
lastSib(rtop0) = qhedge and that (ii) q0

tree + 1 is in subhedge(qhedge). As
qhedge < quntil and qhedge is a last sibling this means that q0

tree + 1 is in
subtree(qhedge + 1). Moreover, as we are in the case that qtree < qhedge, we
know by induction on ` (statement (I3) in particular) that subtree(d) does
not match subtree(q0

tree + 1). However, as we have shown above that q0
tree + 1

is in subtree(qhedge + 1), this contradicts the fact that we are in the case that
subtree(d) matches subtree(qhedge + 1).

– Case 2: rtop0 = ∞. By definition of RTop, this means that q0
tree + 1 >

qhedge. But we are currently investigating in the case that q0
tree < qhedge.

Contradiction.

Hence, we showed that the while loop on line 10 is executed at least once.

(i > 0): Again, we consider the two possible settings in which we exit the while
loop. We show again that the first of the two does not occur here.

– Case 1: rtopi <∞ and qhedge ≥ lastSib(rtopi). Recall that rtopi = RTop(qi
tree+

1, qhedge). Due to Lemma 8, qhedge ≥ lastSib(rtopi) implies that (i) rtopi =
lastSib(rtopi) = qhedge and that (ii) qi

tree + 1 is in subhedge(qhedge), im-
plying that qi

tree + 1 ≤ qhedge. As qhedge < quntil and qhedge is a last sib-
ling this means that qi

tree + 1 is in subtree(qhedge + 1). Since we did not
exit the while loop in the ith test, we have that qhedge < lastSib(rtopi−1).
Hence, we have that qi

tree + 1 ≤ qhedge < lastSib(rtopi−1). Recall that
qi
tree = HMatch(prevSib(d), rtopi−1+1, lastSib(rtopi−1)). By the correctness

of TMatch, Observation 7, and the fact that [rtopi−1 +1, lastSib(rtopi−1)] is
a complete interval (Observation 5) we can conclude that subtree(d) does not
match subtree(qi

tree+1) which, we argued above, is a subtree of subtree(qhedge+
1). Hence, subtree(d) does not match subtree(qhedge + 1), which contradicts
the fact that we are in the case that subtree(d) matches subtree(qhedge + 1).

– Case 2: rtopi = ∞. Hence, qi
tree + 1 > qhedge. We prove that it cannot be

the case that qi
tree = qhedge. Hence, qi

tree > qhedge and Goal 1 follows. To this
end, assume, towards a contradiction, that qi

tree = qhedge. Recall that qi
tree =

TMatch(d, rtopi−1 + 1, lastSib(rtop)). Moreover, lastSib(rtopi−1) > qhedge

since otherwise we would have exited the while loop right after test i. We
conclude that qhedge + 1 is a node in [rtopi−1 + 1, lastSib(rtopi−1)]. However,
as subtree(d) matches subtree(qhedge + 1), this would imply that subtree(d)
also matches [rtopi−1 + 1, qhedge + 1] = [rtopi−1 + 1, qi

tree + 1] which is in
contradiction with the correctness of TMatch.

33

This concludes the proof of Goal 1.

Goal 2. If in the jth execution of the while loop we obtain a value q for the variable
qtree for which it holds that q > qhedge and q+1 ≤ quntil, then we have that subtree(d)
does not match subtree(q + 1).

Observe that we need at least one execution of the body of the while, since before
the first execution we have that qtree < qhedge. Let qj

tree denote the value of qtree

at the end of the jth execution (i.e., after the assigment on line 11) and let q0
tree be

the value of qtree before entering the while loop. Furthermore let rtopj denote the
value of rtop at the end of the jth execution (i.e., after the assigment on line 12).
Let rtop0 be the value of rtop before entering the while loop.

Hence, for every j ≥ 1, qj
tree is the result of a function call TMatch(d, rtopj−1 +

1, lastSib(rtopj−1)). If qj
tree > qhedge we will exit the while loop right after the

current iteration. We consider three cases.

– If qj
tree < lastSib(rtopj−1) we have that subtree(d) does not match the subtree

of qj
tree + 1 due to the correctness of TMatch for data nodes up to height n

and Observation 7.

– If qj
tree = quntil the claim is trivial.

– The remaining case is that qj
tree = lastSib(rtopj−1) < quntil. In this case,

qj
tree + 1 is the parent of qj

tree due to Observation 4. We consider two cases.

j = 1: We want to prove that subtree(d) does not match subtree(q0
tree+1) and

that subtree(q0
tree +1) is a subtree of subtree(q1

tree +1). Then we can conclude
that subtree(d) does not match subtree(q1

tree + 1).

We start by proving that subtree(d) does not match subtree(q0
tree + 1). By

induction on ` (and, in particular, by (I3)) we know that q0
tree = quntil or

subtree(d) does not match subtree(q0
tree + 1). If q0

tree = quntil we wouldn’t be
in the case that q0

tree < qhedge. We can conclude that subtree(d) does not
match subtree(q0

tree + 1) .

It remains to be shown that subtree(q0
tree +1) is a subtree of subtree(q1

tree +1).
Line 9 states that rtop0 = RTop(q0

tree + 1, qhedge). Corollary 1 implies that
then q0

tree+1 is a node in subhedge(rtop0). Now we take into consideration that
we are investigating in the case that q1

tree = lastSib(rtop0) which implies that
subhedge(rtop0) ⊆ subhedge(q1

tree). Combining this with the consequence of
the Corollary it follows that q0

tree + 1 is a node in subhedge(q1
tree). Recall that

q1
tree + 1 is q1

tree’s parent. Hence, q0
tree + 1 is a node in subtree(q1

tree + 1) and
subtree(q0

tree + 1) is a subtree of subtree(q1
tree + 1).

j > 1: Analogously as in the j = 1 case, we prove that subtree(d) does not

match subtree(qj−1
tree+1) and that subtree(qj−1

tree+1) is a subtree of subtree(qj
tree+

1). Then we can conclude that subtree(d) does not match subtree(qj
tree + 1).

We start by proving that subtree(d) does not match subtree(qj−1
tree + 1). We

have that qj−1
tree = TMatch(d, rtopj−2 + 1, lastSib(rtopj−2)). Notice that, if

qj−1
tree < lastSib(rtopj−2), we immediately have by the correctness of TMatch

and Observation 7 that subtree(d) does not match subtree(qj−1
tree + 1). So,

towards a contradiction, let us assume that qj−1
tree ≥ lastSib(rtopj−2).

34

Notice that qhedge < lastSib(rtopj−2) and that rtopj−1 ≤ qhedge, otherwise we
wouldn’t have arrived in the jth iteration. Moreover, rtopj−2 < rtopj−1. As
rtopj−2 < rtopj−1 ≤ lastSib(rtopj−2), we also have that lastSib(rtopj−1) ≤
lastSib(rtopj−2). This implies that lastSib(rtopj−1) ≤ lastSib(rtopj−2) <
qj−1
tree +1 ≤ qj

tree, which is in contradiction with qj
tree = lastSib(rtopj−1), which

is the case we are investigating.

It remains to be shown that subtree(qj−1
tree +1) is a subtree of subtree(qj

tree+1).
Line 12 states that rtopj−1 = RTop(qj−1

tree +1, qhedge). Corollary 1 implies that

then qj−1
tree +1 is a node in subhedge(rtopj−1). Now we take into consideration

that we are investigating the case that qj
tree = lastSib(rtopj−1) which implies

that subhedge(rtopj−1) ⊆ subhedge(qj
tree). Combining this with the conse-

quence of the Corollary it follows that qj−1
tree +1 is a node in subhedge(qj

tree). Re-
call that qj

tree+1 is qj
tree’s parent. Hence, qj−1

tree +1 is a node in subtree(qj
tree+1)

and subtree(qj−1
tree + 1) is a subtree of subtree(qj

tree + 1).

This concludes the proof of Goal 2.

It remains to show that (I1) holds at the end of the `-th iteration of the loop, that
is, that subhedge(d) matches [qfrom, qtree]. Due to (I2) we have that subhedge(d)
matches [qfrom, qhedge]. Recall that the number of while loop executions is at least
one. Hence, we have that qtree = TMatch(d, rtop+1, lastSib(rtop)), where rtop ≤
qhedge < qtree ≤ lastSib(rtop). The first inequality follows from the fact that
rtop <∞ and the definition of RTop, the second one follows from Goal 1, and the
third one from the correctness of TMatch. Hence, we have that

– subhedge(d) |= [qfrom, rtop] and

– subtree(d) |= [rtop + 1, qtree].

Moreover, the facts that rtop+1 is a leaf (Observation 4) and qtree ≤ lastSib(rtop)
imply that subhedge(d) |= [qfrom, qtree].

This concludes the proof the case where subtree(d) matches subtree(qhedge + 1).

This concludes the proof of the case where qhedge < quntil, and also the proof of the case
where qtree < qhedge.
(3) If qhedge < qtree the proof is dual to the proof of case (2). �

The correctness of Lemma 5 now follows from Lemmas 6, 7, and 11.
We now argue how TMatch can be modified to a procedure TMatch-All, that

computes all data nodes u such that D |=u Q. In order to compute all the matches,
we add a test to line 9 of TMatch. That is, before returning qbest, we test whether
qbest is the root of Q, and we output d if it is. Now we return qbest − 1, as if the query
root was not matched. Furthermore, TMatch-All recursively calls TMatch-All and
HMatch-All instead of TMatch and HMatch. Here HMatch-All is the same as
HMatch, except that it recursively calls TMatch-All and HMatch-All instead of
HMatch and TMatch.

The following theorem can now be proved:

Theorem 8. Let d be the root node of D and let qfrom be the smallest and qroot be the
largest node of Q, respectively. TMatch-All is correct, that is, TMatch-All(d, qfrom, quntil)
outputs the data nodes u such that D |=u Q.

35

Proof. It follows directly from our additional test and the correctness of TMatch that
D |=u Q for all the nodes u that TMatch-All outputs.

It remains to prove that, if D |=u Q, then TMatch-All outputs u. Towards a
contradiction, assume that there is an u such that D |=u Q, but u was not reported by
TMatch-All. By an easy induction it can be shown that for every data node d0 in
D there is a call TMatch-All for d0’s subtree and Q. In particular, there was a call
TMatch-All(u, qfrom, qroot). Since this call did not output u, it follows that u must have
children and that HMatch-All(lastChild(u), qfrom, qroot) < qroot−1, (because otherwise
qroot and u would have been compared and u would have been written to the output).
In general, we have that HMatch-All(d, q1, q2) = min((HMatch(d, q1, q2), qroot − 1)).
It then follows that HMatch-All(lastChild(u), qfrom, qroot) = HMatch(lastChild(u),
qfrom, qroot).

If we now call TMatch(u, qfrom, qroot), it calls HMatch(lastChild(u), qfrom, qroot),
which yields again a value less than qroot−1. Therefore, the return value of TMatch(u, qfrom, qroot)
is less than qroot. But we assumed that subtree(u) |= Q, which contradicts the correctness
of TMatch proved in Lemma 5. �

4.2. Time and Space Complexity.

First, we need to show that our algorithm determines in PTIME whether D |= Q.
Notice that the näıve manner of computing the running time of TMatch gives rise
to only an exponential upper bound. Indeed, define (i) T (N) as the running time of
TMatch on d, qfrom, and quntil, where subtree(d) and [qfrom, quntil] have N nodes in
total, and (ii) H(N) as the running time of HMatch on d, qfrom, and quntil, where
subhedge(d) and [qfrom, quntil] have N nodes in total. Then, we have that T (2) ≤ p(N)
for a polynomial p, T (N) ≤ p(N) + H(N − 1) + T (N − 1), and H(N) ≤ T (N) + X(N),
where X(N) ≥ 0. Hence, T (N) ≤ 2N−1, which is obviously not sufficient.

We therefore employ a slightly more sophisticated approach in the following Lemma.

Lemma 12. Given the root node of a data tree D, and the smallest and largest query
nodes and of a query tree Q, respectively, TMatch runs in time O(|D| · |Q| · depth(Q)).
Moreover, TMatch makes O(|D| · |Q|) comparisons between a data node and a query
node.

Proof. Let |D| and |Q| be the number of nodes in the data and query tree, respectively.
We first show by induction on the height n of the data node d that the number of calls to
the function TMatch in the computation tree is at most |D||Q|. To this end, we prove
three intermediate goals.

Goal 1: Let d be a leaf data node. A computation of TMatch(d, qfrom, quntil) yielding
result q makes at most |[qfrom, q + 1]| calls to TMatch.

By induction on the size of the query tree interval [qfrom, quntil]. If d is a leaf and
qfrom = quntil, then TMatch does not call HMatch recursively and the test on line 7
fails. Therefore, there is only 1 call to TMatch and the induction hypothesis holds. If
qfrom < quntil, and TMatch is not called recursively, then the minimal value we return
is qfrom − 1. Again, there is only 1 call to TMatch and the induction hypothesis holds.
Otherwise, we call TMatch on line 8, yielding result q. By induction, the total number
of calls to TMatch is at most 1+|[qfrom+1, q+1]|. As |[qfrom, q+1]| = 1+|[qfrom+1, q+1]|,
the induction holds. This concludes the proof of Goal 1.

36

Goal 2: Let d be a data node with height n > 1. If the computation of HMatch(lastChild(d),
qfrom, quntil), yielding the result q0

best, performs at most |subhedge(lastChild(d))|·|[qfrom, q0
best+

1]| calls to TMatch, then the computation of TMatch(d, qfrom, quntil), yielding result
q, makes at most |subtree(d)| · |[qfrom, q + 1]| calls to TMatch.

We prove Goal 2 by induction on the size of the query tree interval [qfrom, quntil].
TMatch starts by calling HMatch(lastChild(d), qfrom, quntil) yielding q0

best. Hence,
|subhedge(lastChild(d))| · |[qfrom, q0

best + 1]| calls to TMatch are performed by this sub-
routine.

If qfrom = quntil, then we either return q0
best on line 11 or q0

best + 1 on line 9. In both
cases, the number of calls to TMatch is at most |subhedge(lastChild(d))| · |[qfrom, q0

best +
1]|+ 1 which is at most |subtree(d)| · |[qfrom, q0

best + 1]|.
If qfrom < quntil, and TMatch is not called recursively, then the minimal value we re-

turn is q0
best. Again, the number of calls to TMatch is at most 1+|subhedge(lastChild(d))|·

|[qfrom, q0
best + 1]| and the induction hypothesis holds. Otherwise, we call TMatch on

line 8, yielding result q. By induction, the total number of calls to TMatch is at most
1 + |subhedge(lastChild(d))| · |[qfrom, q0

best + 1]|+ |subtree(d)| · |[q0
best + 2, q + 1]| which is

at most |subtree(d)| · |[qfrom, q + 1]|. This concludes the proof of Goal 2.
Goal 3: Let d be a data node. If the computation of TMatch(d, q1, q2), yielding

qtree makes at most |subtree(d)| · |[q1, qtree + 1]| calls to TMatch, then the computation
of HMatch(d, qfrom, quntil), yielding q makes at most |subhedge(d)| · |[qfrom, q + 1]| calls
to TMatch.

Let k be such that d has k left siblings (including d itself). We prove the lemma by
induction on k. If k = 1, Goal 3 is an immediate consequence from the assumption of
Goal 3 and the recursive call of TMatch on line 2. If k > 1, then we start by calling
HMatch(prevSib(d), qfrom, quntil), yielding q1,0

hedge, and calling TMatch(d, qfrom, quntil),

yielding q1,0
tree. By induction on k, we have that the call of HMatch induces |subhedge(prevSib(d))|·

|[qfrom, q1,0
hedge +1]| calls to TMatch. Moreover, by the statement of Goal 3, we have that

the recursive call of TMatch induces |subtree(d)| · |[qfrom, q1,0
tree + 1]| calls to TMatch

in total.
According to Lemma 10, the loops on line 6, 10, and 18 perform at most a linear

number of iterations. Hence, TMatch and HMatch are called (directly) at most a
quadratic number of times in the loop.

By qi,j
tree, we denote the value of the variable qtree in the i-th iteration of the loop and

at the end of the j-th iteration of the while loop in line 10. Moreover, let ` denote the
number of loop executions and let maxi denote the number of executions of the while
loop on line 10 in the ith loop execution. Then, we have that every computation of
TMatch(d, q1, q2) in the while loop performs at most |subtree(d)| · |[qi,j−1

tree +2, qi,j
tree +1]|

calls to TMatch when j > 1 and at most |subtree(d)| · |[q
i−1,maxi−2(j)
tree + 2, qi,1

tree + 1]|

calls otherwise. Notice that q1,0
tree < q1,1

tree < · · · < q1,max1

tree < q2,1
tree < · · · < q`,max`

tree ≤ q,
where q is the value we return. Hence, the sum of the calls to TMatch made by the
computations of TMatch on line 11 is at most |subtree(d)| · |[q1,0

tree + 2, q + 1]|.
Analogously, we obtain that the sum of the calls to TMatch by the computations of

HMatch on line 19 is at most |subhedge(prevSib(d))| · |[q1,0
tree + 2, q + 1]|.

37

In total, this means that the number of calls to TMatch is at most

|subhedge(prevSib(d))| · |[qfrom, q1,0
hedge + 1]|

+ |subhedge(prevSib(d))| · |[q1,0
hedge + 2, q + 1]|

+ |subtree(d)| · |[qfrom, q1,0
tree + 1]|+ |subtree(d)| · |[q1,0

tree + 2, q + 1]|

which is at most |subhedge(d)| · |[qfrom, q + 1]|. Hence, Goal 3 follows.
As a consequence of Goals 1, 2, and 3, the total number of calls to TMatch performed

by the algorithm is |D||Q|. As the only data versus query node comparison in the
algorithm occurs in line 5 of TMatch, and as each call of TMatch performs at most
one data versus query node comparison (excluding comparisons in recursive calls), the
total algorithm also performs at most |D||Q| data versus query node comparisons.

We now argue how this leads us to showing that the overall algorithm has polynomial
running time. Consider the entire tree of the calls to TMatch and HMatch in the algo-
rithm, where the children of a node are the functions it calls directly. This computation
tree contains at most |D||Q| calls of TMatch. Moreover, every call of HMatch per-
forms at least one direct recursive call to TMatch, so the computation tree also contains
at most |D||Q| calls of HMatch. Analogously, the entire computation tree contains at
most |D||Q| calls to rtop. As rtop can be implemented to run in time O(depth(Q)), the
total algorithm runs in time O(|D||Q|depth(Q)). �

The depth(Q) factor in the complexity of TMatch is due to the calls to rtop in
HMatch, and the computation of the successors of query nodes.

From the complexity of TMatch and the definition of TMatch-All, we can im-
mediately infer the following complexity results about TMatch-All.

Theorem 9. TMatch-All(D, Q) runs in time O(|D|·|Q|·depth(Q)). Moreover, TMatch-

All makes O(|D| · |Q|) comparisons between a data node and a query node.

Currently, the maximum recursion depth of TMatch-All is O(depth(D)×branch(D)),
where branch(D) is the maximum number of children a node in D has. We have the
branch(D) factor because HMatch(d, qfrom, quntil) calls HMatch(prevSib(d), qfrom, quntil).
However, this bound can be improved using a simple preprocessing step: we can turn
D into a binary tree Dbin by inserting intermediate levels of special nodes between each
data node and its children. By doing so, D only grows linearly in size and the depth
only grows by a factor of log(branch(D)).

As Q only uses descendant axes, we have that D |=u Q if and only if Dbin |=
u Q.5

When this preprocessing step is carried out, our algorithm still has O(|D||Q|depth(Q))
time complexity, but the recursion/stack depth is improved toO(depth(D)·log(branch(D))).

5. Conclusions and Final Thoughts

As our main results we have exhibited a complexity result, showing that tree pattern
matching with only descendant axes is LOGSPACE-complete; and a time-and space

5Under the assumption that the new dummy nodes do not match ∗, which can be trivially incorporated
in the algorithm.

38

efficient bottom-up algorithm for computing all possible exact matches of such a tree
pattern in a tree.

From a theory point of view, this is still only a small step in finding the exact com-
plexity of positive conjunctive Core XPath with only child and descendant axes (or,
alternatively, tree pattern queries with child and descendant axes), which is probably the
most widely used fragment of XPath in practice. Hence, it is quite surprising that the
exact complexity of this fragment is still unknown.

From a practical point of view, our bottom-up algorithm gives a good space and time
bound on the processing of such descendant-only tree pattern queries. A minor annoyance
we still feel for the algorithm is the depth(Q) factor in the time complexity. However, we
need to stress that, in practical applications, depth(Q) will indeed be very small. In our
algorithm, this depth(Q) factor arises from computing the RTop(qtree, qhedge)-values in
each call of HMatch in the algorithm. It may be possible that this factor can be avoided
when integrating the computation of these values in the recursion of the algorithm. For
a practical application, one can also avoid the depth(Q) factor in run-time evaluation by
a pre-processing step that computes all the values of RTop(qtree, qhedge) in advance on
the query.

References

[1] M. Altinel and M. Franklin. Efficient filtering of XML documents for selective dissemination of
information. In Proc. International Conference on Very Large Data Bases (VLDB), pages 53–64,
2000.

[2] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the memory requirements of XPath evaluation
over XML streams. In Proc. International Symposium on Principles of Database Systems (PODS),
pages 177–188, 2004.

[3] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in query evaluation over XML streams.
In Proc. International Symposium on Principles of Database Systems (PODS), 2005.

[4] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: Optimal XML pattern matching.
In Proc. ACM SIGMOD International Conference on Management of Data (SIGMOD), pages
310–321, 2002.

[5] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and R. Rastogi. Tree pattern aggregation for
scalable XML data dissemination. In Proc. International Conference on Very Large Data Bases
(VLDB), pages 826–837, 2002.

[6] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of XML documents
with XPath expressions. In Proc. International Conference on Data Engineering (ICDE), pages
235–244, 2000.

[7] J. Clark and S. DeRose. XML Path Language (XPath). Technical report, World Wide Web
Consortium, November 1999. http://www.w3.org/TR/xpath.

[8] S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space. Journal of
Algorithms, 8:385–394, 1987.

[9] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and predicate evaluation
for high-performance XML filtering. ACM Transactions on Database Systems, 28(4):467–516, 2003.

[10] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. ACM
Transactions on Database Systems, 30(2):444–491, 2005.

[11] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath query evaluation and
XML typing. Journal of the ACM, 52(2):284–335, 2005.

[12] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. Journal of
the ACM, 48(1):431–498, 2001.

[13] M. Götz, C. Koch, and W. Martens. Efficient algorithms for the tree homeomorphism problem. In
Proc. International Symposium on Database Programming Languages (DBPL), pages 17–31, 2007.

[14] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with
deterministic automata and stream indexes. ACM Transactions on Database Systems, 29(4):752–
788, 2004.

39

[15] M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query processing on stream-
ing and external memory data. In Proc. International Colloquium on Automata, Languages and
Programming (ICALP), 2005.

[16] A. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In Proc. ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages 419–430, 2003.

[17] D. Olteanu, T. Furche, and F. Bry. An evaluation of regular path expressions with qualifiers against
XML streams. In Proc. British National Conference on Databases (BNCD), pages 31–44, 2004.

[18] P. Ramanan. Evaluating an XPath query on a streaming XML document. In Proc. International
Conference on Management of Data (COMAD), pages 41–52, 2005.

[19] I. H. Sudborough. Time and tape bounded auxiliary pushdown automata. In Proc. Mathematical
Foundations of Computer Science (MFCS), pages 493–503. Springer Verlag, 1977.

[20] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. International Conference on
Very Large Data Bases (VLDB), pages 82–94, 1981.

40

