
Typechecking Top-Down XML

Tranformations: Fixed Input or Output

Schemas ⋆

Wim Martens a,∗, Frank Neven b, and Marc Gyssens b

a Technical University of Dortmund
Germany

b Hasselt University and
Transnational University of Limburg,

Agoralaan, Gebouw D
B-3590 Diepenbeek, Belgium

Abstract

Typechecking consists of statically verifying whether the output of an XML trans-
formation always conforms to an output type for documents satisfying a given input
type. In this general setting, both the input and output schema as well as the trans-
formation are part of the input for the problem. However, scenarios where the input
or output schema can be considered to be fixed, are quite common in practice. In
the present work, we investigate the computational complexity of the typechecking
problem in the latter setting.

Key words: XML, XSLT, tree transformations, typechecking, unranked tree
transducers, complexity

⋆ An extended abstract of a part of this paper appeared as Section 3 in reference [22]
in the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 2004.
∗ Corresponding author.

Email addresses: wim.martens@udo.edu (Wim Martens),
frank.neven@uhasselt.be (Frank Neven), marc.gyssens@uhasselt.be (Marc
Gyssens).

Preprint submitted to Elsevier Science 7 April 2008

1 Introduction

In a typical XML data exchange scenario on the web, a user community cre-
ates a common schema and agrees on producing only XML data conforming
to that schema. This raises the issue of typechecking: verifying at compile time
that every XML document which is the result of a specified query or docu-
ment transformation applied to a valid input document satisfies the output
schema [33,34].

The typechecking problem is determined by three parameters: the classes of
allowed input and output schemas, and the class of XML-transformations. As
typechecking quickly becomes intractable [2,23,26], we focus on simple but
practical XML transformations where only little restructuring is needed, such
as, for instance, in filtering of documents. In this connection, we think, for
example, of transformations that can be expressed by structural recursion [8]
or by a top-down fragment of XSLT [5]. As is customary, we abstract such
transformations by unranked tree transducers [19,23]. As schemas, we adopt
the usual Document Type Definitions (DTDs) and their robust extensions:
regular tree languages [26,17] or, equivalently, specialized DTDs [29,3]. The
latter serve as a formal model for XML Schema [31].

Our work should be contrasted with the work on general-purpose XML pro-
gramming languages like XDuce [14] and CDuce [4] where the programmer
adds redundant type annotation to facilitate typechecking. In our setting no
types have to be given by the programmer to capture the behavior of the
various rules constituting a translation.

The typechecking scenario outlined above is very general: both the schemas
and the transducer are determined to be part of the input. However, for some
exchange scenarios, it makes sense to consider the input and/or output schema
to be fixed when transformations are always from within and/or to a specific
community. Therefore, we revisit the various instances of the typechecking
problem considered in [23] and determine the complexity in the presence of
fixed input and/or output schemas. The main goal of this paper is to inves-
tigate to which extent the complexity of the typechecking problem is lowered
in scenarios where the input and/or output schema is fixed. An overview of
our results is presented in Table 2.

The remainder of the paper is organized as follows. In Section 2, we discuss
related work. In Section 3, we provide the necessary definitions. In Section 4,
we discuss typechecking in the restricted settings of fixed output and/or input
schemas. The results are summarized in Table 2. We obtain several new cases
for which typechecking is in polynomial time: (i) when the input schema is
fixed and the schemas are DTDs with SL-expressions; (ii) when the output

2

schema is fixed and the schemas are DTDs with NFAs; and (iii) when both the
input and output schemas are fixed and the schemas are DTDs using DFAs,
NFAs, or SL-expressions. We conclude in Section 5.

2 Related Work

The research on typechecking XML transformations was initiated by Milo,
Suciu, and Vianu [26]. They obtained the decidability for typechecking of
transformations realized by k-pebble transducers via a reduction to satisfia-
bility of monadic second-order logic. Unfortunately, in this general setting, the
latter non-elementary algorithm cannot be improved [26]. Interestingly, type-
checking of k-pebble transducers has recently been related to typechecking
of compositions of macro tree transducers [12]. Alon et al. [1,2] investigated
typechecking in the presence of data values and show that the problem quickly
turns undecidable. As our interest lies in formalisms with a more manageable
complexity for the typechecking problem, we choose to work with XML trans-
formations that are much less expressive than k-pebble transducers and that
do not change or use data values in the process of transformation.

A problem related to typechecking is type inference [25,29]. This problem
consists in constructing a tight output schema, given an input schema and a
transformation. Of course, solving the type inference problem implies a solu-
tion for the typechecking problem, namely, checking containment of the in-
ferred schema into the given one. However, characterizing output languages
of transformations is quite hard [29]. For this reason, we adopt different tech-
niques for obtaining complexity upper bounds for the typechecking problem.

The transducers considered in the present paper are restricted versions of the
DTL-programs, studied by Maneth and Neven [19]. They already obtained a
non-elementary upper bound on the complexity of typechecking (due to the
use of monadic second-order logic in the definition of the transducers). Re-
cently, Maneth et al. considered the typechecking problem for an extension of
DTL-programs and obtained that typechecking was still decidable [20]. Their
typechecking algorithm, like the one of [26], is based on inverse type inference.
That is, they compute the pre-image of all ill-formed output documents and
test whether the intersection of the pre-image and the input schema is empty.
Tozawa considered typechecking with respect to tree automata for a fragment
of top-down XSLT [35]. He uses a more general framework, but he was not
able to derive a bound better than double-exponential on the complexity of
his algorithm.

Martens and Neven investigated polynomial time fragments of the typecheck-
ing problem by putting syntactical restrictions on the tree transducers, and

3

making them as general as possible [24]. Here, tractability of the typechecking
problem is obtained by bounding the deletion path width of the tree transduc-
ers. The deletion path width is a notion that measures the number of times
that a tree transducer copies part of its input. In particular, it also gives rise
to tractable fragments of the typechecking problem where the transducer is
allowed to delete in a limited manner.

3 Preliminaries

In this section we provide the necessary background on trees, automata, and
tree transducers. In the following, Σ always denotes a finite alphabet.

By N we denote the set of natural numbers. A string w = a1 · · ·an is a finite
sequence of Σ-symbols. The set of positions, or the domain, of w is Dom(w) =
{1, . . . , n}. The length of w, denoted by |w|, is n. The label ai of position i in
w is denoted by labw(i). The size of a set S, is denoted by |S|.

As usual, a nondeterministic finite automaton (NFA) over Σ is a tuple N =
(Q, Σ, δ, I, F) where Q is a finite set of states, δ : Q×Σ → 2Q is the transition
function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. A run ρ on N for a string w ∈ Σ∗ is a mapping from Dom(w) to Q
such that ρ(1) ∈ δ(q, labw(1)) for q ∈ I, and for i = 1, . . . , |w| − 1, ρ(i + 1) ∈
δ(ρ(i), labw(i + 1)). A run is accepting if ρ(|w|) ∈ F . A string is accepted if
there is an accepting run. The language accepted by N is denoted by L(N).
The size of N is defined as |Q| + |Σ| +

∑

q∈Q,a∈Σ |δ(q, a)|.

A deterministic finite automaton (DFA) is an NFA where (i) I is a singleton
and (ii) |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ.

3.1 Trees and Hedges

It is common to view XML documents as finite trees with labels from a finite
alphabet Σ. Figures 1(a) and 1(b) give an example of an XML document
together with its tree representation. Of course, elements in XML documents
can also contain references to nodes. But, as XML schema languages usually do
not constrain these nor the data values at leaves, it is safe to view schemas as
simply defining tree languages over a finite alphabet. In the rest of this section,
we introduce the necessary background concerning XML schema languages.

The set of unranked Σ-trees, denoted by TΣ, is the smallest set of strings over Σ
and the parenthesis symbols “(” and “)” such that ε in TΣ and, for a ∈ Σ and
w ∈ TΣ

∗, a(w) is in TΣ. So, a tree is either ε (empty) or is of the form a(t1 · · · tn)

4

<store>

<dvd>

<title> "Amelie" </title>

<price> 17 </price>

</dvd>

<dvd>

<title> "Good bye, Lenin!" </title>

<price> 20 </price>

</dvd>

<dvd>

<title> "Pulp Fiction" </title>

<price> 11 </price>

<discount> 6 </discount>

</dvd>

</store>
(a) An example XML document.

store

dvd

title

“Amelie”

price

17

dvd

title

“Good bye, Lenin!”

price

20

dvd

title

“Pulp Fiction”

price

11

discount

6
(b) Its tree representation with data values.

Fig. 1. An example of an XML document and its tree representation.

store (ε)

dvd (1)

title

(1 1)

price

(1 2)

dvd (2)

title

(2 1)

price

(2 2)

dvd (3)

title

(3 1)

price

(3 2)

discount

(3 3)
(a) The tree of Figure 1(b) without data values. The nodes
are annotated next to the labels, between brackets.

store (1)

dvd (1 1)

title

(1 1 1)

price

(1 1 2)

dvd (1 2)

title

(1 2 1)

price

(1 2 2)

dvd (1 3)

title

(1 3 1)

price

(1 3 2)

discount

(1 3 3)
(b) Tree of Figure 2(a) viewed as a hedge. The nodes are annotated
next to the labels, between brackets.

Fig. 2. The document of Figure 1 without data values, viewed as a tree and as a
hedge.

where each ti is a tree. When we write a(t1 · · · tn), we implicitly assume that
each ti is non-empty. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached
to a root labeled a. We write a rather than a(). Note that there is no a priori

5

bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. For every t ∈ TΣ, the set of tree-nodes of t, denoted by Dom(t), is
the set defined as follows:

(i) if t = ε, then Dom(t) = ∅; and,
(ii) if t = a(t1 · · · tn), where each ti ∈ TΣ, then Dom(t) = {ε}∪

⋃n
i=1{iu | u ∈

Dom(ti)}.

Figure 2(a) contains a tree in which we annotated the nodes between brackets.
Observe that the n child nodes of a node u are always u1, · · · , un, from left
to right. The label of a node u in the tree t = a(t1 · · · tn), denoted by labt(u),
is defined as follows:

(i) if u = ε, then labt(u) = a; and,
(ii) if u = iu′, then labt(u) = labti(u′).

We define the depth of a tree t, denoted by depth(t), as follows: if t = ε, then
depth(t) = 0; and if t = a(t1 · · · tn), then depth(t) = max{depth(ti) | 1 ≤ i ≤
n} + 1. In the sequel, whenever we say tree, we always mean Σ-tree. A tree
language is a set of trees.

A hedge is a finite sequence of trees. Hence, the set of hedges, denoted by HΣ,
equals T ∗

Σ . For every hedge h ∈ HΣ, the set of hedge-nodes of h, denoted by
Dom(h), is the subset of N∗ defined as follows:

(i) if h = ε, then Dom(h) = ∅; and,
(ii) if h = t1 · · · tn and each ti ∈ TΣ, then Dom(h) =

⋃n
i=1{iu | u ∈ Dom(ti)}.

The label of a node u = iu′ in the hedge h = t1 · · · tn, denoted by labh(u), is de-
fined as labh(u) = labti(u′). Note that the set of hedge-nodes of a hedge consist-
ing of one tree is different from the set of tree-nodes of this tree. For example:
if the tree in Figure 2(a) were to represent a single-tree hedge, it would have
the set of hedge-nodes {1, 11, 12, 13, 111, 112, 121, 122, 131, 132, 133}, as shown
in Figure 2(b). The depth of the hedge h = t1 · · · tn, denoted by depth(h), is
defined as max{depth(ti) | i = 1, . . . , n}. For a hedge h = t1 · · · tn, we denote
by top(h) the string obtained by concatenating the root symbols of all tis,
that is, labt1(ε) · · · labtn(ε).

In the sequel, we adopt the following conventions: we use t, t1, t2, . . . to denote
trees and h, h1, h2, . . . to denote hedges. Hence, when we write h = t1 · · · tn we
tacitly assume that all ti’s are trees.

6

3.2 DTDs and Tree Automata

We use extended context-free grammars and tree automata to abstract from
DTDs and the various proposals for XML schemas. We parameterize the def-
inition of DTDs by a class of representations M of regular string languages
such as, for instance, the class of DFAs (Deterministic Finite Automata) or
NFAs (Non-deterministic Finite Automata). For M ∈ M, we denote by L(M)
the set of strings accepted by M . We then abstract DTDs as follows.

Definition 1 Let M be a class of representations of regular string languages
over Σ. A DTD is a tuple (d, sd) where d is a function that maps Σ-symbols
to elements of M and sd ∈ Σ is the start symbol.

For convenience of notation, we denote (d, sd) by d and leave the start sym-
bol sd implicit whenever this cannot give rise to confusion. A tree t satis-
fies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n children,
labt(u1) · · · labt(un) ∈ L(d(labt(u))). We denote the set of trees satisfying d
by L(d).

Given a DTD d, we say that a Σ-symbol a occurs in d(b) when there exist
Σ-strings w1 and w2 such that w1aw2 ∈ L(d(b)). We say that a occurs in d if
a occurs in d(b) for some b ∈ Σ.

We denote by DTD(M) the class of DTDs where the regular string languages
are represented by elements of M. The size of a DTD is the sum of the sizes
of the elements of M used to represent the function d.

Example 2 The following DTD (d, store) is satisfied by the tree in Fig-
ure 2(a):

d(store) = dvd dvd∗

d(dvd) = title price (discount + ε)

This DTD defines the set of trees where the root is labeled with “store”; the
children of “store” are all labeled with “dvd”; and every “dvd”-labeled node
has a “title”, “price”, and an optional “discount” child.

In some cases, our algorithms are easier to explain on well-behaved DTDs as
considered next. A DTD d is reduced if, for every symbol a that occurs in d,
there exists a tree t ∈ L(d) and a node u ∈ Dom(t) such that labt(u) = a.
Hence, for example, the DTD (d, a) where d(a) = a is not reduced. Reducing
a DTD(DFA) is in ptime, while reducing a DTD(SL) is in conp (see the Ap-
pendix, Corollary 30). Here, SL is a logic as defined next. Basically, reducing a
DTD amounts to recursively deleting all symbols defining the empty language,
and deleting all symbols that cannot be reached from the start symbol.

7

To define unordered languages, we make use of the specification language SL
studied in [28] and also used in [1,2]. The syntax of this language is as follows:

Definition 3 For every a ∈ Σ and natural number i, a=i and a≥i are atomic
SL-formulas; “true” is also an atomic SL-formula. Every atomic SL-formula is
an SL-formula and the negation, conjunction, and disjunction of SL-formulas
are also SL-formulas.

A string w over Σ satisfies an atomic formula a=i if it has exactly i occurrences
of a; w satisfies a≥i if it has at least i occurrences of a. Furthermore, “true”
is satisfied by every string. Satisfaction of Boolean combinations of atomic
formulas is defined in the obvious way. 1 By w |= φ, we denote that w satisfies
the SL-formula φ.

As an example, consider the SL-formula ¬(discount≥1 ∧ ¬price≥1). This ex-
presses the constraint that a discount can only occur when a price occurs.
The size of an SL-formula is the number of symbols that occur in it, that is,
Σ-symbols, logical symbols, and numbers (every i in a=i or a≥i is written in
binary notation).

We recall the definition of non-deterministic tree automata from [6]. We refer
the unfamiliar reader to [27] for a gentle introduction. Such automata are
sometimes also called ‘hedge automata’.

Definition 4 A nondeterministic tree automaton (NTA) is a 4-tuple B =
(Q, Σ, δ, F), where Q is a finite set of states, F ⊆ Q is the set of final states,
and δ : Q×Σ → 2Q∗

is a function such that δ(q, a) is a regular string language
over Q for every a ∈ Σ and q ∈ Q.

For simplicity, we often denote the regular languages in B’s transition function
by regular expressions.

A run of B on a tree t is a labeling λ : Dom(t) → Q such that, for every
v ∈ Dom(t) with n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that,
when v has no children, the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is
accepting if the root is labeled with an accepting state, that is, λ(ε) ∈ F . A
tree is accepted if there is an accepting run. The set of all accepted trees is
denoted by L(B) and is called a regular tree language.

A tree automaton is bottom-up deterministic if, for all q, q′ ∈ Q with q 6= q′

and a ∈ Σ, δ(q, a)∩δ(q′, a) = ∅. We denote the set of bottom-up deterministic
NTAs by DTA.

Example 5 We give a bottom-up deterministic tree automaton B = (Q, Σ,

1 The empty string is obtained as
∧

a∈Σ a=0 and the empty set as ¬ true.

8

∧

∨

false ¬

false

false

∧

true

∨

false false true

(a) The tree t.

qtrue

qtrue

qfalse qtrue

qfalse

qfalse

qtrue

qtrue

qtrue

qfalse qfalse qtrue

(b) Graphical representation of the run r of B on t.

Fig. 3. Illustrations for Example 5.

δ, F) which accepts the parse trees of well-formed Boolean expressions that are
true. Here, the alphabet Σ is {∧,∨,¬, true, false}. The states set Q contains
the states qtrue and qfalse, and the accepting state set F is the singleton {qtrue}.
The transition function of B is defined as follows:

• δ(qtrue, true) = ε. We assign the state qtrue to leafs with label “true”.
• δ(qfalse, false) = ε. We assigns the state qfalse to leafs with label “false”.
• δ(qtrue,∧) = qtrueq

∗
true.

• δ(qfalse,∧) = (qtrue + qfalse)
∗qfalse(qtrue + qfalse)

∗.
• δ(qtrue,∨) = (qtrue + qfalse)

∗qtrue(qtrue + qfalse)
∗.

• δ(qfalse,∨) = qfalseq
∗
false.

• δ(qtrue,¬) = qfalse.
• δ(qfalse,¬) = qtrue.

Consider the tree t depicted in Figure 3(a). The unique accepting run r of B
on t can be graphically represented as shown in Figure 3(b). Formally, the run
of B on t is the function λ : Dom(t) → Q : u 7→ labr(u) mapping a node of t
to its label in r. Note that B is a DTA.

As for DTDs, we parameterize NTAs by the formalism used to represent the
regular languages in the transition functions δ(q, a). So, for a class of repre-
sentations of regular languages M, we denote by NTA(M) the class of NTAs
where all transition functions are represented by elements of M. The size of
an automaton B then is |Q| + |Σ| +

∑

q∈Q,a∈Σ |δ(q, a)|. Here, by |δ(q, a)|, we
denote the size of the automaton accepting δ(q, a). Unless explicitly specified
otherwise, δ(q, a) is always represented by an NFA.

In our proofs, we will use reductions from the following decision problems for
string automata:

Emptiness: Given an automaton A, is L(A) = ∅?

9

Universality: Given an automaton A, is L(A) = Σ∗?
Intersection emptiness: Given the automata A1, . . . , An, is L(A1) ∩ · · · ∩

L(An) = ∅?

The corresponding decision problems for tree automata are defined analo-
gously.

In the Appendix, we show that the following statements hold over the al-
phabet {0, 1} (Corollary 23). These proofs are only minor modifications of
the unrestricted alphabet cases. We provide the proofs to make the paper
self-contained.

(1) Intersection emptiness of an arbitrary number of DFAs is pspace-hard.
(2) Universality of NFAs is pspace-hard.

Over the alphabet {0, 1, 0′, 1′}, the following statement holds:

(3) Intersection emptiness of an arbitrary number of TDBTAs is exptime-
hard.

TDBTA stands for top-down deterministic binary tree automaton. These are
defined in Section 4.1.

3.3 Transducers

We adhere to transducers as a formal model for simple transformations corre-
sponding to structural recursion [8] and a fragment of top-down XSLT.As in
[26], the abstraction focuses on structure rather than on content. That is, our
tree transducers only restructure trees. Their operation does not depend on
the actual data values present in a tree. We next define the tree transducers
used in this paper. To simplify notation, we restrict ourselves to one alphabet.
That is, we consider transducers mapping Σ-trees to Σ-trees. 2

For a set Q, denote by HΣ(Q) (respectively TΣ(Q)) the set of Σ-hedges (re-
spectively trees) where leaf nodes are labeled with elements from Σ∪Q instead
of only Σ.

Definition 6 A tree transducer is a 4-tuple T = (Q, Σ, q0, R), where Q is a
finite set of states, Σ is the input and output alphabet, q0 ∈ Q is the initial
state, and R is a finite set of rules of the form (q, a) → h, where a ∈ Σ, q ∈ Q,
and h ∈ HΣ(Q). When q = q0, h is restricted to be either empty, or consist of

2 In general, of course, one can define transducers where the input alphabet differs
from the output alphabet.

10

only one tree with a Σ-symbol as its root label. Transducers are required to be
deterministic: for every pair (q, a), there is at most one rule in R.

The restriction on rules with the initial state ensures that the output is always
a tree rather than a hedge. Also, notice that our transducers are not required
to be total.

The translation defined by a tree transducer T = (Q, Σ, q0, R) on a tree t
in state q, denoted by T q(t), is inductively defined as follows: if t = ε then
T q(t) = ε; if t = a(t1 · · · tn) and there is a rule (q, a) → h ∈ R then T q(t) is
obtained from h by replacing every node u in h labeled with state p by the
hedge T p(t1) · · ·T

p(tn). Note that such nodes u can only occur at leaves. So, h
is only extended downwards. If there is no rule (q, a) → h ∈ R then T q(t) = ε.
Finally, the transformation of t by T , denoted by T (t), is defined as T q0

(t),
interpreted as a tree.

For a ∈ Σ, q ∈ Q and (q, a) → h ∈ R, we denote h by rhs(q, a). If q and
a are not important, we say that h is an rhs. The size of T is |Q| + |Σ| +
∑

q∈Q,a∈Σ |rhs(q, a)|, where |rhs(q, a)| denotes the number of nodes in rhs(q, a).
In the sequel, we always use p, p1, p2, . . . and q, q1, q2, . . . to denote states.

Let q be a state of tree transducer T and a ∈ Σ. For a string w = a1 · · ·an,
we define top(T q(w)) = top(T q(a1)) · · · top(T q(an)).

We give an example of a tree transducer:

Example 7 Let T = (Q, Σ, p, R) where Q = {p, q}, Σ = {a, b, c, d, e}, and R
contains the rules

(p, a) → d(e) (p, b) → d(q)

(q, a) → c p (q, b) → c(p q)

Note that the right-hand side of (q, a) → c p is a hedge consisting of two trees,
while the other right-hand sides consist of only one tree.

Our tree transducers can be implemented as XSLT programs in a straightfor-
ward way. For instance, the XSLT program equivalent to the above transducer
is given in Figure 4 (we assume the program is started in mode p).

A comparison with ordinary tree transducers is given in [23].

Example 8 Consider the tree t shown in Figure 5(a). In Figure 5(b) we give
the translation of t by the transducer of Example 7. In order to keep the
example simple, we did not list T q(ε) and T p(ε) explicitly in the process of
translation.

We discuss two important features of tree transducers: copying and deletion.

11

<xsl:template match="a" mode ="p">

<d>

<e/>

</d>

</xsl:template>

<xsl:template match="b" mode ="p">

<d>

<xsl:apply-templates mode="q"/>

</d>

</xsl:template>

<xsl:template match="a" mode ="q">

<c/>

<xsl:apply-templates mode="p"/>

</xsl:template>

<xsl:template match="b" mode ="q">

<c>

<xsl:apply-templates mode="p"/>

<xsl:apply-templates mode="q"/>

</c>

</xsl:template>

Fig. 4. The XSLT program equivalent to the transducer of Example 7.

b
b b

a b
a
b

(a) The tree t of Example 8.

T p(t)

↓
d

T q(b) T q(b(ab)) T q(a(b))

↓
d

c c

T p(a) T p(b) T q(a) T q(b)

c T p(b)

↓
d

c c

d

e

d c c

c d

(b) The translation of t by the transducer T

of Example 7.

Fig. 5. A tree and its translation.

12

In Example 7, the rule (q, b) → c(p q) copies the children of the current node
in the input tree twice: one copy is processed in state p and the other in state
q. The symbol c is the parent node of the two copies. So, one could say that
the current node is translated in the new parent node labeled c. The rule
(q, a) → c p copies the children of the current node only once. However, no
parent node is given for this copy. So, there is no node in the output tree
that can be interpreted as the translation of the current node in the input
tree. We therefore say that it is deleted. For instance, T q(a(b)) = c d where d
corresponds to b and not to a.

We define some relevant classes of transducers. A transducer is non-deleting
if no states occur at the top-level of an rhs. We denote by Tnd the class of
non-deleting transducers and by Td the class of transducers where we allow
deletion. Furthermore, a transducer T has copying width k if there are at most
k occurrences of states in every sequence of siblings in an rhs. More formally, T
has copying width k if, for each rhs r of T , and each sequence s of siblings 3 in r,
only k nodes in s are labeled with some state of T . For instance, the transducer
in Example 7 has copying width 2. Given a natural number k, which we will
leave implicit, we denote by Tbc the class of transducers of copying width k.
The abbreviation “bc” stands for bounded copying. We denote intersections
of these classes by combining the indexes. For instance, Tnd,bc is the class of
non-deleting transducers with bounded copying. When we want to emphasize
that we also allow unbounded copying in a certain application, we write, for
instance, Tnd,uc instead of Tnd.

At this point, one may be tempted to think that Td,bc transformations are
at least as strong as Tnd,uc transformations. However, this is not the case in
general, as the following abstract example shows. For each natural number
n, there exists a transducer in Tnd,uc that transforms the input tree a(b) into
the output tree a(b · · · b), where the a-labeled node in the output has n b-
labeled children. This, however, is not possible with Td,bc transducers. Let k
be the maximum copying width of the Td,bc transducers. Then, after reading
the root symbol of a(b), a transducer in Td,bc can either make up to k copies of
the b-labeled node, or it can delete the b-labeled node and stop computation.
Hence, such Td,bc transducers cannot produce output trees a(b · · · b), where the
a-labeled node has n b-labeled children, for arbitrarily large n.

3.4 The Typechecking Problem

Definition 9 A tree transducer T typechecks with respect to to an input tree
language Sin and an output tree language Sout, if T (t) ∈ Sout for every t ∈ Sin.

3 That is, all nodes in s have the same parent, or all nodes in s have no parent.

13

NTA DTA DTD(NFA) DTD(DFA) DTD(SL)

d,uc exptime exptime exptime exptime exptime

nd,uc exptime exptime pspace pspace conp

nd,bc exptime
in exptime

pspace-hard pspace ptime conp

Table 1
Results of [23] (upper and lower bounds). The top row shows the representation of
the input and output schemas and the left column shows the class of tree trans-
ducer: “d”, “nd”, “uc”, and “bc” stand for “deleting”, “non-deleting”, “unbounded
copying”, and “bounded copying” respectively.

We now define the problem central to this paper.

Definition 10 Given Sin, Sout, and T , the typechecking problem consists in
verifying whether T typechecks with respect to Sin and Sout.

We parameterize the typechecking problem by the kind of tree transducers
and tree languages we allow. Let T be a class of transducers and S be a repre-
sentation of a class of tree languages. Then TC[T ,S] denotes the typechecking
problem where T ∈ T and Sin, Sout ∈ S. Examples of classes of tree languages
are those defined by tree automata or DTDs. Classes of transducers are dis-
cussed in the previous section. The complexity of the problem is measured in
terms of the sum of the sizes of the input and output schemas Sin and Sout

and the transducer T .

Table 1 summarizes the results obtained in [23]. Unless specified otherwise,
all problems are complete for the mentioned complexity classes. In the setting
of [23], typechecking is only tractable when restricting to non-deleting and
bounded copying transducers in the presence of DTDs with DFAs.

Recall that, in this article, we are interested in variants of the typecheck-
ing problem where the input and/or output schema is fixed. We therefore
introduce some notations that are central to the paper. We denote the type-
checking problem where the input schema, the output schema, or both are
fixed by TCi[T ,S], TCo[T ,S], and TCio[T ,S], respectively. The complexity
of these subproblems is measured in terms of the sum of the sizes of the input
and output schemas Sin and Sout, and the transducer T , minus the size of the
fixed schema(s).

4 Main Results

As argued in the Introduction, it makes sense to consider the input and/or
output schema not as part of the input for some scenarios. From a complexity

14

fixed TT NTA DTA DTD(NFA) DTD(DFA) DTD(SL)

in, out, d,uc EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME

in+out d,bc EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME

in nd,uc EXPTIME EXPTIME PSPACE PSPACE in PTIME

nd,bc EXPTIME EXPTIME PSPACE NL in PTIME

out nd,uc EXPTIME EXPTIME PSPACE PSPACE conp

nd,bc EXPTIME EXPTIME PTIME ptime conp

in+out nd,uc EXPTIME EXPTIME NL NL NL

nd,bc EXPTIME EXPTIME NL NL NL

Table 2
Complexities of the typechecking problem in the new setting (upper and lower
bounds). The top row shows the representation of the input and output schemas,
the leftmost column shows which schemas are fixed, and the second column to the
left shows the class of tree transducer: “d”, “nd”, “uc”, and “bc” stand for “delet-
ing”, “non-deleting”, “unbounded copying”, and “bounded copying” respectively.
In the case of deleting transformations, the different possibilities are grouped as all
complexities coincide.

theory point of view, it is important to note here that the input and/or output
alphabet then also becomes fixed. In this article, we revisit the results of [23]
from that perspective.

The results are summarized in Table 2. As some results already follow from
proofs in [23], we printed the results requiring a new proof in bold. The entries
where the complexity was lowered (assuming that the complexity classes in
question are different) are underlined. Again, all problems are complete for
the mentioned complexity classes unless specified otherwise.

We discuss the obtained results: for non-deleting transformations, we get
three new tractable cases: (i) fixed input schema, unbounded copying, and
DTD(SL)s; (ii) fixed output schema, bounded copying and DTD(NFA)s; and,
(iii) fixed input and output, unbounded copying and all DTDs. It is striking,
however, that in the presence of deletion or tree automata (even deterministic
ones) typechecking remains exptime-hard for all scenarios.

Mostly, we only needed to strengthen the lower bound proofs of [23].

15

4.1 Deletion: Fixed Input Schema, Fixed Output Schema, and Fixed Input
and Output Schema

The exptime upper bound for typechecking already follows from [23]. There-
fore, it remains to show the lower bounds for TCio[Td,bc,DTD(DFA)] and
TCio[Td,bc,DTD(SL)], which we do in Theorem 11. In fact, if follows from
the proof that the lower bounds already hold for transducers with copying
width 2.

We require the notion of top-down deterministic binary tree automata in the
proof of Theorem 11. A binary tree automaton (BTA) is a non-deterministic
tree automaton B = (Q, Σ, δ, F) operating on binary trees. These are trees
where every node has zero, one, or two children. We assume that the alphabet
is partitioned in internal labels and leaf labels. When a label a is an internal
label, the regular language δ(q, a) only contains strings of length one or two.
When a is a leaf label, the regular language δ(q, a) only contains the empty
string. A binary tree automaton is top-down deterministic if (i) F is a singleton
and, (ii) for every q, q′ ∈ Q with q 6= q′ and a ∈ Σ, δ(q, a) contains at most
one string. We abbreviate “top-down deterministic binary tree automaton” by
TDBTA.

Theorem 11 (1) TCio[Td,bc, DTD(DFA)] is exptime-complete; and
(2) TCio[Td,bc, DTD(SL)] is exptime-complete.

PROOF. The exptime upper bound follows from Theorem 11 in [23]. We
proceed by proving the lower bounds.

We give a logspace reduction from the intersection emptiness problem of an
arbitrary number of top-down deterministic binary tree automata (TDBTAs)
over the alphabet Σ = {0, 1, 0′, 1′}. The intersection emptiness problem of
TDBTAs over alphabet {0, 1, 0′, 1′} is known to be exptime-hard (cfr. Corol-
lary 23(3) in the Appendix).

For i = 1, . . . , n, let Ai = (Qi, Σ, δi, {starti}) be a TDBTA, with Σ = {0, 1, 0′, 1′}.
Without loss of generality, we can assume that the state sets Qi are pairwise
disjoint. We call 0 and 1 internal labels and 0′ and 1′ leaf labels. In our proof,
we use the markers ‘ℓ’ and ‘r’ to denote that a certain node is a left or a right
child. Formally, define Σℓ := {aℓ | a ∈ Σ} and Σr := {ar | a ∈ Σ}. We use
symbols from Σℓ and Σr for the left and right children of nodes, respectively.

We now define a transducer T and two DTDs din and dout such that
⋂n

i=1 L(Ai) =
∅ if and only if T typechecks with respect to din and dout. In the construction,
we exploit the copying power of transducers to make n copies of the input tree:
one for each Ai. By using deleting states, we can execute each Ai on its copy

16

s

#

#

...

#

t

Fig. 6. Structure of the trees defined by the input schema in the proof of Theorem 11.

of the input tree without producing output. When an Ai does not accept, we
output an error symbol under the root of the output tree. The output DTD
should then only check that an error symbol always appears. A bit of care
needs to be taken, as a bounded copying transducer can not make an arbitrary
number of copies of the input tree in the same rule. The transducer therefore
goes through an initial copying phase where it repeatedly copies part of the
input tree twice, until there are (at least) n copies. The transducer remains in
the copying phase as long as it processes special symbols “#”. The input trees
are therefore of the form as depicted in Figure 6. In addition, the transducer
should verify that the number of #-symbols in the input equals ⌈log n⌉.

The input DTD (din, s), which we will describe next, uses the alphabet Σℓ ∪
Σr ∪{s, #}, and defines all trees of the form as described in Figure 6, where s
and # are alphabet symbols, and every internal node of t (which is depicted in
Figure 6) has one or two children. When a node is an only child, it is labeled
with an element of Σℓ. Otherwise, it is labeled with an element of Σℓ or an
element of Σr if it is a left child or a right child, respectively. In this way, the
transducer knows whether a node is a left or a right child by examining the
label. The root symbol of t is labeled with a symbol from Σℓ. Furthermore, all
internal nodes of t are labeled with labels in {0ℓ, 0r, 1ℓ, 1r} and all leaf nodes
are labeled with labels in {0′ℓ, 0

′
r, 1

′
ℓ, 1

′
r}. As explained above, we will use the

sequence of #-symbols to make a sufficient number of copies of t.

The input DTD (din, s) is defined as follows:

• din(s) = # + 0ℓ + 1ℓ;
• din(#) = # + 0ℓ + 1ℓ;
• for each a ∈ {0ℓ, 1ℓ, 0r, 1r},

din(a) = (0ℓ + 1ℓ + 0′ℓ + 1′ℓ) + (0ℓ + 1ℓ + 0′ℓ + 1′ℓ)(0r + 1r + 0′r + 1′r); and,
• for each a ∈ {0′ℓ, 1

′
ℓ, 0

′
r, 1

′
r}, din(a) = ε.

Obviously, (din, s) can be expressed as a DTD(DFA). It can also be expressed

17

as a DTD(SL), as follows

din(a) =

(

(

(ϕ[0=1
ℓ] ∨ ϕ[1=1

ℓ] ∨ ϕ[(0′ℓ)
=1] ∨ ϕ[(1′ℓ)

=1])
)

⊕
(

(ϕ[0=1
ℓ] ∨ ϕ[1=1

ℓ] ∨ ϕ[(0′ℓ)
=1] ∨ ϕ[(1′ℓ)

=1])

∧ (ϕ[0=1
r] ∨ ϕ[1=1

r] ∨ ϕ[(0′r)
=1] ∨ ϕ[(1′r)

=1])
)

)

∧ s=0 ∧ #=0

for every a ∈ {0ℓ, 1ℓ, 0r, 1r}, where

• ⊕ denotes the “exclusive or”;
• for every i ∈ {ℓ, r} and x ∈ {0i, 1i, 0

′
i, 1

′
i}, ϕ[x=1] denotes the conjunction

(x=1 ∧
∧

y∈{0i,1i,0′i,1
′

i
}\{x}

y=0).

Notice that the size of the SL-formula expressing din(a) is constant.

We construct a tree transducer T = (QT , ΣT , qε
copy, RT). The alphabet of T is

ΣT = Σℓ ∪ Σr ∪ {s, #, error, ok}. The state set QT includes the set {qℓ, qr |
q ∈ Qi, i ∈ {1, . . . , n}}. Furthermore, the transducer will use ⌈log n⌉ special
copying states qj

copy to make at least n copies of the input tree. To define
QT formally, we first introduce the notation D(k), for k = 0, . . . , ⌈log n⌉.
Intuitively, D(k) corresponds to the set of nodes of a complete binary tree of
depth k + 1. For example, D(1) = {ε, 0, 1} and D(2) = {ε, 0, 1, 00, 01, 10, 11}.
The idea is that, if i ∈ D(k) \ D(k − 1), for k > 0, then i represents the
binary encoding of a number in {0, . . . , 2k − 1}. Formally, if k = 0, then
D(k) = {ε}; otherwise, D(k) = D(k − 1) ∪

⋃

j=0,1{ij | i ∈ D(k − 1)}. The
state set QT is then the union of the sets Qℓ = {qℓ | q ∈ Qj, 1 ≤ j ≤ n},
Qr = {qr | q ∈ Qj, 1 ≤ j ≤ n}, the set {qj

copy | j ∈ D(⌈log n⌉)} and the set

{startℓ
j | n + 1 ≤ j ≤ 2⌈log n⌉}. Note that the last set can be empty. It only

contains dummy states translating any input to the empty string.

We next describe the action of the tree transducer T . Roughly, the operation
of T on the input s(#(#(· · ·#(t)))) can be divided in two parts: (i) copying
the tree t a sufficient number of times while reading the #-symbols; and, (ii)
simulating one of the TDBTAs on each copy of t. The tree transducer outputs
the symbol “error” when one of the TDBTAs rejects t, or when the number
of #-symbols in its input is not equal to ⌈log n⌉. Apart from copying the root
symbol s to the output tree, T only writes the symbol “error” to the output.
Hence, the output tree always has a root labeled s which has zero or more
children labeled “error”. The output DTD, which we define later, should then
verify whether the root has at least one “error”-labeled child.

Formally, the transition rules in RT are defined as follows:

18

• (qε
copy, s) → s(q0

copyq
1
copy). This rule puts s as the root symbol of the output

tree.
• (qi

copy, #) → qi0
copyq

i1
copy for i ∈ D(⌈log n⌉−1)−{ε}. These rules copy the tree

t in the input at least n times, provided that there are enough #-symbols.
• (qi

copy, #) → startℓ
k, where i ∈ D(⌈log n⌉) − D(⌈log n⌉ − 1), and i is the

binary representation of k. This rule starts the in-parallel simulation of the
Ai’s. For i = n + 1, . . . , 2⌈log n⌉, startℓ

i is just a dummy state transforming
everything to the empty tree.

• (qi
copy, a) → error for a ∈ Σ and i ∈ D(⌈log n⌉). This rule makes sure that

the output of T is accepted by the output tree automaton if there are not
enough #-symbols in the input.

• (startℓ
k, #) → error for all k = 1, . . . , 2⌈log n⌉. This rule makes sure that the

output of T is accepted by the output tree automaton if there are too much
#-symbols in the input.

• (qℓ, ar) → ε and (qr, aℓ) → ε for all q ∈ Qj , j = 1, . . . , n. This rule ensures
that tree automata states intended for left (respectively right) children are
not applied to right (respectively left) children.

• (qℓ, aℓ) → qℓ
1q

r
2 and (qr, ar) → qℓ

1q
r
2, for every q ∈ Qi, i = 1, . . . , n, such

that δi(q, a) = q1q2, and a is an internal symbol. This rule does the actual
simulation of the tree automata Ai, i = 1, . . . , n.

• (qℓ, aℓ) → qℓ
1 and (qr, ar) → qℓ

1, for every q ∈ Qi, i = 1, . . . , n, such that
δi(q, a) = q1 and a is an internal symbol. This rule does the actual simulation
of the tree automata Ai, i = 1, . . . , n.

• (qℓ, aℓ) → ε and (qr, ar) → ε for every q ∈ Qi, i = 1, . . . , n, such that
δi(q, a) = ε and a is a leaf symbol. This rule simulates accepting computa-
tions of the Ai’s.

• (qℓ, aℓ) → error and (qr, ar) → error for every q ∈ Qi, i = 1, . . . , n, such
that δi(q, a) is undefined. This rule simulates rejecting computations of the
Ai’s.

It is straightforward to verify that, on input s(#(#(· · ·#(t)))), T outputs
the tree s if and only if there are ⌈log n⌉ #-symbols in the input and t ∈
L(A1) ∩ · · · ∩ L(An).

Finally, dout(s) = error error∗, which can easily be defined as a DTD(DFA)
and as a DTD(SL).

It is easy to see that the reduction can be carried out in deterministic logarith-
mic space, that T has copying width 2, and that din and dout do not depend
on A1, . . . , An. 2

19

4.2 Non-deleting: Fixed Input Schema

We turn to the typechecking problem in which we consider the input schema
as fixed. We start by showing that typechecking is in ptime in the case where
we use DTDs with SL-expressions and the tree transducer is non-deleting
(Theorem 13). To this end, we recall a lemma and introduce some necessary
notions that are needed for the proof of Theorem 13.

For an SL-formula φ, we say that two strings w1 and w2 are φ-equivalent
(denoted w1 ≡φ w2) if w1 |= φ if and only if w2 |= φ.

For a ∈ Σ and w ∈ Σ∗, we denote by #a(w) the number of a’s occurring in w.
We recall Lemma 17 from [23]:

Lemma 12 Let φ be an SL-formula and let k be the largest integer occurring
in φ. For every w, w′ ∈ Σ∗, for every a ∈ Σ, if

• #a(w
′) > k when #a(w) > k, and

• #a(w
′) = #a(w), otherwise,

then w ≡φ w′.

For a hedge h and a DTD d, we say that h partly satisfies d if for every
u ∈ Dom(h), labh(u1) · · · labh(un) ∈ L(d(labh(u))) where u has n children.
Note that there is no requirement on the root nodes of the trees in h. Hence,
the term “partly”.

We are now ready to show the first ptime result:

Theorem 13 TCi[Tnd,uc, DTD(SL)] is in ptime.

PROOF. Denote the tree transformation by T = (QT , Σ, q0
T , RT) and the

input and output DTDs by (din, sin) and (dout, sout), respectively. As din is
fixed, we can assume that din is reduced.

A ptime algorithm is given that searches for a counter example. If no counter
example can be found, then it follows that T typechecks with respect to din.
The outline of the typechecking algorithm is as follows:

(1) Compute the set of “reachable pairs” (q, a) for which there exists a tree
t ∈ L(din) and a node u ∈ Dom(t) such that labt(u) = a and T visits u
in state q. That is, we compute all pairs (q, a) such that either
• q = q0

T and a = sin; or
• (q′, a′) is a reachable pair, there is a q-labeled node in rhs(q′, a′), and

there exists a string w1aw2 ∈ din(a
′) for w1, w2 ∈ Σ∗.

20

(qT
0 , sin)

∈ din(a) c

6∈ dout(c)

T

T

b(q, a)

w

Fig. 7. Illustration of the typechecking algorithm in the proof of Theorem 13.

(2) For each such pair (q, a) test whether there exists a string w ∈ din(a) such
that T q(a(w)) does not partly satisfy dout. We call w a counterexample.

The algorithm is successful, if and only if there exists a counterexample.

We illustrate the general operation of the typechecking algorithm in Figure 7.
In this figure, T visits the a-labeled node on the left in state q. Consequently,
T outputs the hedge rhs(q, a), which is illustraded by dotted lines on the right.
The typechecking algorithm searches for a node u in rhs(q, a) (which is labeled
by c in the figure), such that the string of children of u is not in L(dout(c)).

Notice that the typechecking algorithm does not assume that dout is reduced
(recall the definition of a reduced DTD from Section 3.2). We need to show
that the algorithm is correct, that is, there exists a counterexample if and
only if T does not typecheck with respect to din and dout. Clearly, when the
algorithm does not find a counterexample, T typechecks with respect to din

and dout. Conversely, suppose that the algorithm finds a pair (q, a) and a string
w such that T q(a(w)) does not partly satisfy dout. So, since we assumed that
din is reduced, there exists a tree t ∈ L(din) and a node u ∈ Dom(t) such that
labt(u) = a and u is visited by T in state q. Also, there exists a node v in
T q(a(w)), such that the label of u is c and the string of children of u is not in
dout(c). We argue that T (t) 6∈ L(dout). There are two cases:

(i) if L(dout) contains a tree with a c-labeled node, then T (t) 6∈ dout since
T q(a(w)) does not partly satisfy dout; and

(ii) if L(dout) does not contain a tree with a c-labeled node, then T (t) 6∈ dout

since T (t) contains a c-labeled node.

We proceed by showing that the algorithm can be carried out in polynomial

21

time. As the input schema is fixed, step (1) of the algorithm is in polynomial
time. Indeed, we can compute the set of reachable pairs (q, a) in a top-down
manner by a straightforward reachability algorithm.

To show that step (2) of the typechecking algorithm is in polynomial time,
fix a tuple (q, a) that was a reachable pair in step (1) and a node u in
rhs(q, a) with label b. Let z′0q1z

′
1 · · · qnz′n be the concatenation of u’s children,

where all z′0, . . . , z
′
n ∈ HΣ and q1, . . . , qn ∈ QT . Let, for each i, zi = top(z′i).

We now search for a string w ∈ Σ∗ for which w |= din(a), but for which
z0 top(T q1(w)) z1 · · · top(T qn(w)) zn 6|= dout(b). Recall from Section 3.3 that
top(T q(w)) is the homomorphic extension of top(T q(a)) for a ∈ Σ, which is
top(rhs(q, a)) in the case of non-deleting tree transducers.

Denote din(a) by φ. Let {a1, . . . , as} be the different symbols occurring in
φ and let k be the largest integer occurring in φ. According to Lemma 12,
every Σ-string is φ-equivalent to a string of the form w = am1

1 · · ·ams
s with

0 ≤ mi ≤ k +1 for each i = 1, . . . , s. Note that there are (k +1)s such strings,
which is a constant number, as it only depends on the input schema. For the
following, the algorithm considers each such string w.

Fix such a string w such that w |= φ. For each symbol c in dout(b), the number
#c(z0top(T q1(w))z1 · · · top(T qn(w))zn) is equal to the linear sum

kc
1 × #a1

(w) + · · · + kc
ℓ × #aℓ

(w) + kc
ℓ+1 × #aℓ+1

(w) + kc
s × #as

(w) + kc,

where kc = #c(z0 · · · zn) and for each i = 1, . . . , s, we have kc
i = #c(top(T q1(ai))

· · · top(T qn(ai))). We now must test if there exists a string w′ ≡φ w such that
z0top(T q1(w′))z1 · · · top(T qn(w′))zn 6|= dout(b). Let a1, . . . , aℓ be the symbols
that occur at least k + 1 times in w and aℓ+1, . . . , as be the symbols that
occur at most k times in w, respectively. Then, deciding whether w′ exists is
equivalent to finding an integer solution to the variables xa1

, . . . , xas
for the

boolean combination of linear (in)equalities Φ = Φ1 ∧ ¬Φ2, where

• Φ1 states that w′ ≡φ w, that is,

Φ1 =
ℓ
∧

i=1

(xai
> k) ∧

s
∧

j=ℓ+1

(

xaj
= #aj

(w)
)

;

and
• Φ2 states that z0q1(w

′)z1 · · · qn(w′)zn |= dout(b), that is, Φ2 is defined by
replacing every occurrence of c=i or c≥i in dout(b) by the equation

s
∑

j=1

(kc
j × xaj

) + kc = i

22

or by
s
∑

j=1

(kc
j × xaj

) + kc ≥ i,

respectively.

In the above (in)equalities, xai
, 1 ≤ i ≤ s, represents the number of occur-

rences of ai in w′.

Finding a solution for Φ now consists of finding integer values for xa1
, . . . , xas

so that Φ evaluates to true. Corollary 28 in the Appendix shows that we can
decide in ptime whether such a solution for Φ exists. 2

Theorem 14 TCi[Tnd,bc, DTD(DFA)] is nlogspace-complete.

PROOF. In Theorem 19(2), we prove that the problem is nlogspace-hard,
even if both the input and output schemas are fixed. Hence, it remains to
show that the problem is in nlogspace.

Let us denote the tree transformation by T = (QT , Σ, q0
T , RT) and the input

and output DTDs by (din, r) and dout, respectively. We can assume that din is
reduced. 4

The first part of the algorithm is similar to the one in Theorem 13. The
typechecking algorithm can be summarized as follows:

(1) Guess a sequence of pairs (q0, a0), (q1, a1), . . . , (qn, an) in QT × Σ, such
that
• (q0, a0) = (q0

T , r); and
• for every pair (qi, ai), qi+1 occurs in rhs(qi, ai) and ai+1 occurs in some

string in L(din(ai)).
We only need to remember (qn, an) as a result of this step.

(2) Test whether there exists a string w ∈ din(an) such that T q(an(w)) does
not partly satisfy dout.

The algorithm is successful if and only if w exists and, hence, the problem
does not typecheck.

The first step is a straightforward reachability algorithm, which is in nlogspace.
It remains to show that the second step is in nlogspace.

Let (q, a) be the pair (qn, an) computed in step one. We guess a node in
rhs(qn, an), say that it is labeled with b ∈ Σ. Let dout(b) = (Qout, Σ, δout,

4 Reducing din would be ptime-complete otherwise, see Corollary 30 in the Ap-
pendix.

23

{pI}, F) be a DFA and let k be the copying bound of T . Let z′0q1z
′
1 · · · qℓz

′
ℓ be

the concatenation of u’s children, where ℓ ≤ k. Let, for each i, zi = top(z′i).

So we want to check whether there exists a string w such that z0top(T q1(w))z1

· · · top(T qℓ(w))zℓ is not accepted by dout(b). We guess w one symbol at a time
and simulate in parallel ℓ copies of dout(b) and one copy of din(a).

By δ̂ we denote the canonical extension of δ to strings in Σ∗. We start by
guessing states p1, . . . , pℓ of dout(b), where p1 = δ̂out(pI , z0), and keep a copy
of these on tape, to which we refer as p′1, . . . , p

′
ℓ. Next, we keep on guessing

symbols c of w, whereafter we replace each pi by δ̂out(pi, top(T qi(c))). The
input automaton obviously starts in its initial state and is simulated in the
straightforward way.

The machine non-deterministically stops guessing, and checks whether, for
each i = 1, . . . , ℓ − 1, δ̂out(pi, zi) = p′i+1 and δ̂out(pℓ, zℓ) ∈ F . For the input
automaton, it simply checks whether the current state is the final state. If the
latter tests are positive, then the algorithm accepts, otherwise, it rejects.

We only keep 2ℓ + 1 states on tape, which is a constant number, so the algo-
rithm runs in nlogspace. 2

Theorem 15 (1) TCi[Tnd,uc, DTD(DFA)] is pspace-complete; and
(2) TCi[Tnd,bc, DTD(NFA)] is pspace-complete.

PROOF. In [23], it was shown that both problems are in pspace. We proceed
by showing that they are also pspace-hard.

(1) We reduce the intersection emptiness problem of an arbitrary number of de-
terministic finite automata with alphabet {0, 1} to the typechecking problem.
This problem is known to be pspace-hard, as shown in Corollary 23(1) in the
Appendix. Assume given the DFAs M1, . . . , Mn. Our reduction only requires
logarithmic space. We define a transducer T = (QT , {s, 0, 1, #0, . . . , #n}, q

0
T , RT)

and two DTDs din and dout such that T typechecks with respect to din and
dout if and only if

⋂n

i=1 L(Mi) = ∅.

The DTD (din, s) defines trees of depth two, where the string formed by the
children of the root labeled s is an arbitrary string in {0, 1}∗, so din(s) = (0 +
1)∗. The transducer makes n copies of this string, separated by the delimiters
#i: QT = {q, q0

T} and RT contains the rules (q0
T , s) → s(#0q#1q . . .#n−1q#n)

and (q, a) → a, for every a ∈ {0, 1}. Finally, (dout, s) defines a tree of depth
two as follows:

dout(s) = {#0w1#1w2#2 · · ·#n−1wn#n |

∃j ∈ {1, . . . , n} such that Mj does not accept wj}.

24

Clearly, dout(s) can be represented by a DFA whose size is polynomial in
the sizes of the Mi’s. Indeed, the DFA just simulates every Mi on the string
following #i−1, until it encounters #i. It then verifies that at least one Mi

rejects.

It is easy to see that this reduction can be carried out by a deterministic
logspace algorithm.

(2) This is an easy reduction from the universality problem of an NFA N
with alphabet {0, 1}. The latter problem is pspace-hard, as shown in Corol-
lary 23(2) in the Appendix. Again, the input DTD (din, s) defines a tree of
depth two where din(s) = (0 + 1)∗. The tree transducer is the identity trans-
formation. The output DTD dout has as start symbol s and dout(s) = L(N).
Hence, this instance typechecks if and only if {0, 1}∗ ⊆ L(N).

This reduction can be carried out by a deterministic logspace algorithm. 2

4.3 Non-deleting: Fixed Output Schema

Again, upper bounds carry over from [23]. Also, when the output DTD is
a DTD(NFA), we can convert it into an equivalent DTD(DFA) in constant
time. As the ptime typechecking algorithm for TC[Tnd,bc,DTD(DFA)] in [23]
also works when the input DTD is a DTD(NFA), we have that the prob-
lem TCo[Tnd,bc,DTD(NFA)] is in ptime. As the ptime-hardness proof for
TC[Tnd,bc,DTD(DFA)] in [23] uses a fixed output schema, we immediately
obtain the following.

Theorem 16 TCo[Tnd,bc, DTD(NFA)] is ptime-complete.

The lower bound in the presence of tree automata will be discussed in Sec-
tion 4.4. The case requiring some real work is TCo[Tnd,uc, DTD(DFA)].

Theorem 17 TCo[Tnd,uc, DTD(DFA)] is pspace-complete.

PROOF. In [23], it was shown that the problem is in pspace. We proceed
by showing pspace-hardness.

We use a logspace reduction from the corridor tiling problem [9]. Let (T, V,
H, ϑ̄, β̄) be a tiling system, where T = {ϑ1, . . . , ϑk} is the set of tiles, V ⊆
T × T and H ⊆ T × T are the sets of vertical and horizontal constraints
respectively, and ϑ̄ and β̄ are the top and bottom row, respectively. Let n be
the width of ϑ̄ and β̄. The tiling system has a solution if there is an m ∈ N

such that the space m × n (m rows and n columns) can be correctly tiled

25

with the additional requirement that the bottom and top row are β̄ and ϑ̄,
respectively. A tiling can then be seen as a mapping λ : m × n → T . A tiling
λ is correct when all horizontal and vertical constraints are respected. That
is, (λ(k, j), λ(k, j + 1)) ∈ H and (λ(k, j), λ(k + 1, j)) ∈ V .

We define the input DTD din over the alphabet Σ := {(i, ϑj) | j ∈ {1, . . . , k}, i ∈
{1, . . . , n}} ∪ {r}; r is the start symbol. Define

din(r) = #β̄#
(

Σ1 · Σ2 · · ·Σn#
)∗

ϑ̄#,

where we denote by Σi the set {(i, ϑj) | j ∈ {1, . . . , k}}. Here, # functions
as a row separator. For all other alphabet symbols a ∈ Σ, din(a) = ε. So, din

encodes all possible tilings that start and end with the bottom row β̄ and the
top row ϑ̄, respectively.

We now construct a tree transducer B = (QB, Σ, q0
B, RB) and an output DTD

dout such that T has no correct corridor tiling if and only if B typechecks
with respect to din and dout. Intuitively, the transducer and the output DTD
have to work together to determine errors in input tilings. There can only be
two types of error: two tiles do not match horizontally or two tiles do not
match vertically. The main difficulty is that the output DTD is fixed and
can, therefore, not depend on the tiling system. The transducer is constructed
in such a way that it prepares in parallel the verification for all horizontal
and vertical constraints by the output schema. In particular, the transducer
outputs specific symbols from a fixed set independent of the tiling system
allowing the output schema to determine whether an error occurred.

The state set QB is partitioned into two sets, Qhor and Qver:

• Qhor is for the horizontal constraints: for every i ∈ {1, . . . , n−1} and ϑ ∈ T ,
qi,ϑ ∈ Qhor transforms the rows in the tiling such that it is possible to
check that when position i carries a ϑ, position i + 1 carries a ϑ′ such that
(ϑ, ϑ′) ∈ H ; and,

• Qver is for the vertical constraints: for every i ∈ {1, . . . , n} and ϑ ∈ T ,
pi,ϑ ∈ Qver transforms the rows in the tiling such that it is possible to check
that when position i carries a ϑ, the next row carries a ϑ′ on position i such
that (ϑ, ϑ′) ∈ V .

The tree transducer B always starts its transformation with the rule

(q0
B, r) → r(w),

where w is the concatenation of all of the above states, separated by the
delimiter $. The other rules are of the following form:

• Horizontal constraints: for all (j, ϑ) ∈ Σ add the rule (qi,ϑ, (j, ϑ
′)) → α

26

where qi,ϑ ∈ Qhor and

α =

trigger if j = i and ϑ = ϑ′

other if j = i and ϑ 6= ϑ′

ok if j = i + 1 and (ϑ, ϑ′) ∈ H

error if j = i + 1 and (ϑ, ϑ′) 6∈ H

other if j 6= i and j 6= i + 1

Finally, (qi,ϑ, #) → hor.
The intuition is as follows: if the i-th position in a row is labeled with ϑ,

then this position is transformed into trigger. Position i+1 is transformed
to ok when it carries a tile that matches ϑ horizontally. Otherwise, it is
transformed to error. All other symbols are transformed into an other.

On a row, delimited by two hor-symbols, the output DFA rejects if and
only if there is a trigger immediately followed by an error. When there is
no trigger, then position i was not labeled with ϑ. So, the label trigger
acts as a trigger for the output automaton.

• Vertical constraints: for all (j, ϑ) ∈ Σ, add the rule (pi,ϑ, (j, ϑ
′)) → α where

pi,ϑ ∈ Qver and

α =

trigger1 if (j, ϑ′) = (i, ϑ) and (ϑ, ϑ) ∈ V

trigger2 if (j, ϑ′) = (i, ϑ) and (ϑ, ϑ) 6∈ V

ok if j = i, ϑ 6= ϑ′, and (ϑ, ϑ′) ∈ V

error if j = i, ϑ 6= ϑ′, and (ϑ, ϑ′) 6∈ V

other if j 6= i

Finally, (pi,ϑ, #) → ver.
The intuition is as follows: if the i-th position in a row is labeled with

ϑ, then this position is transformed into trigger1 when (ϑ, ϑ) ∈ V and
to trigger2 when (ϑ, ϑ) 6∈ V . Here, both trigger1 and trigger2 act as
a trigger for the output automaton: they mean that position i was labeled
with ϑ. But no trigger1 and trigger2 can occur in the same transformed
row as either (ϑ, ϑ) ∈ V or (ϑ, ϑ) 6∈ V . When position i is labeled with
ϑ′ 6= ϑ, then we transform this position into ok when (ϑ, ϑ′) ∈ V , and in
error when (ϑ, ϑ′) 6∈ V . All other positions are transformed into other.

The output DFA then works as follows. If a position is labeled trigger1

then it rejects if there is an error occurring after the next ver. If a position
is labeled trigger2, then it rejects if there is a trigger2 or an error

occurring after the next ver. Otherwise, it accepts that row.

27

By making use of the delimiters ver and hor, both above described automata
can be combined into one automaton, taking care of the vertical and the hori-
zontal constraints. This automaton resets to its initial state whenever it reads
the delimiter symbol $. Note that the output automaton is defined over the
fixed alphabet {trigger, trigger1, trigger2, error, ok, other, hor, ver, $}.
2

Although the results in [23] were formulated in the context of variable schemas,
the proofs for bounded copying, non-deleting tree transducers with DTD(SL)
and with DTD(DFA) schemas actually used a fixed output schema. We can
therefore sharpen these results as follows.

Theorem 18 (1) TCo[Tnd,bc, DTD(SL)] is conp-complete;
(2) TCo[Tnd,bc, DTD(DFA)] is ptime-complete.

4.4 Non-deleting: Fixed Input and Output Schema

We turn to the case where both input and output schemas are fixed. The
following two theorems give us several new tractable cases.

Theorem 19 (1) TCio[Tnd,bc, DTD(SL)] is nlogspace-complete.
(2) TCio[Tnd,bc, DTD(DFA)] is nlogspace-complete.

PROOF. For both problems, membership in nlogspace follows from Theo-
rem 20. Indeed, every DTD(SL) can be rewritten into an equivalent DTD(NFA)
in constant time as the input and output schemas are fixed.

We proceed by showing nlogspace-hardness. We say that an NFA N =
(QN , Σ, δN , IN , FN) has degree of nondeterminism 2 if (i) IN has at most two
elements and (ii) for every q ∈ QN and a ∈ Σ, the set δN(q, a) has at most
two elements. We give a logspace reduction from the emptiness problem
of an NFA with alphabet {0, 1} and a degree of nondeterminism 2 to the
typechecking problem. According to Lemma 24 in the Appendix, this problem
is nlogspace-hard. Intuitively, the input DTD will define all possible strings
over alphabet {0, 1}. The tree transducer simulates the NFA and outputs
“accept” if a computation branch accepts, and “error” if a computation branch
rejects. The output DTD defines trees where all leaves are labeled with “error”.

More concretely, let N = (QN , {0, 1}, δN , {q0
N}, FN) be an NFA with degree

of nondeterminism 2. The input DTD (din, r) defines all unary trees, where
the unique leaf is labeled with a special marker #. That is, din(r) = din(0) =

28

din(1) = (0+1+#) and din(#) = ε. Note that these languages can be defined
by SL-formulas or DFAs which are sufficiently small for our purpose.

Given a tree t = r(a1(· · · (an(#)) · · ·)), the tree transducer will simulate
every computation of N on the string a1 · · ·an. The tree transducer T =
(QT , {r, #, 0, 1, error, accept}, q0

T , RT) simulates N ’s nondeterminism by copy-
ing the remainder of the input twice in every step. Formally, QT is the union
of {q0

T} and QN , and RT contains the following rules:

• (q0
T , r) → r(q0

N). This rule puts r as the root symbol of the output tree and
starts the simulation of N .

• (qN , a) → a(q1
N , q2

N), where qN ∈ QN , a ∈ {0, 1} and δN (qN , a) = {q1
N , q2

N}.
This rule does the actual simulation of N . By continuing in both states q1

N

and q2
N , we simulate all possible computations of N .

• (qN , a) → error if δN(qN , a) = ∅. If N rejects, we output the symbol “error”.
• (qN , #) → error for qN 6∈ FN ; and
• (qN , #) → accept for qN ∈ FN . These last two rules verify whether N is in

an accepting state after reading the entire input string.

Notice that T outputs the symbol “error” (respectively “accept”) if and only
if a computation branch of N rejects (respectively accepts).

The output of T is always a tree in which only the symbols “error” and
“accept” occur at the leaves. The output DTD then needs to verify that only
the symbol “error” occurs at the leaves. Formally, dout(r) = dout(0) = dout(1) =
{0, 1, error}+ and dout(error) = ε. Again, these languages can be defined by
sufficiently small SL-formulas or DFAs.

It is easy to see that the reduction only requires logarithmic space. 2

Theorem 20 TCio[Tnd,uc, DTD(NFA)] is nlogspace-complete.

PROOF. The nlogspace-hardness of the problem follows from Theorem 19(b),
where it is shown that the problem is already nlogspace-hard when DTD(DFA)s
are used as input and output schema.

We show that the problem is also in nlogspace. Thereto, let T = (QT , Σ, q0
T ,

RT) be the tree transducer, and let (din, r) and dout be the input and output
DTDs, respectively. As both din and dout are fixed, we can assume without
loss of generality that they are reduced. 5 For the same reason, we can also
assume that the NFAs in din and dout are determinized.

5 In general, reducing a DTD(NFA) is ptime-complete (Section 3.2).

29

The first half of the algorithm is similar to the one in Theorem 13. We guess
a sequence of reachable state-label pairs (p0, a0), (p1, a1), . . . , (pn, an) where
n < |QT ||Σ| such that

• (p0, a0) = (q0
T , r); and

• for every pair (pi, ai), pi+1 occurs in rhs(pi, ai) and ai+1 occurs in some string
in L(din(ai)).

Each time we guess a new pair in this sequence, we forget the previous one,
so that we only keep a state, an alphabet symbol, a counter, and the binary
representation of |QT ||Σ| on tape.

For simplicity, we write (pn, an) as (p, a) in the remainder of the proof. We
guess a node u ∈ Dom(rhs(p, a)). Let b = labrhs(p,a)(u) and let z0q1z1 · · · qkzk

be the concatenation of u’s children, where every z0, . . . , zk ∈ Σ∗ and every
q1, . . . , qk ∈ QT , then we want to check whether there exists a string w ∈
din(a) such that z0top(T q1(w))z1 · · · top(T qk(w))zk is not accepted by dout(b).
Recall from Section 3.3 that, for a state q ∈ QT , we denote by top(T q(w))
the homomorphic extension of top(T q(c)) for c ∈ Σ, which is top(rhs(q, c)))
in the case of non-deleting tree transducers. We could do this by guessing w
one symbol at a time and simulating k copies of dout(b) and one copy of din(a)
in parallel, like in the proof of Theorem 14. However, as k is not fixed, the
algorithm would use superlogarithmic space.

So, we need a different approach. To this end, let A = (Qin, Σ, δin, q
0
in, Fin)

and B = (Qout, Σ, δout, q
0
out, Fout) be the DFAs accepting din(a) and dout(b),

respectively. To every q ∈ QT , we associate a function

fq : Qout × Σ → Qout : (p′, c) 7→ δ̂out(p
′, top(T q(c))),

where δ̂out denotes the canonical extension of δout to strings in Σ∗. Note that
there are maximally |Qout|

|Qout||Σ| such functions. Let K be the cardinality
of the set {fq | q ∈ QT}. Hence, K is bounded from above by |Qout|

|Qout||Σ|,
which is a constant (with respect to the input). Let f1, . . . , fK an arbitrary
enumeration of {fq | q ∈ QT}.

The typechecking algorithm continues as follows. We start by writing the
(1+K·|Qout|)-tuple (q0

in, q
′
1, . . . , q

′
|Qout|

, . . . , q′1, . . . , q
′
|Qout|

) on tape, where Qout =

{q′1, . . . , q
′
|Qout|

}. We will refer to this tuple as the tuple p̄ := (p′0, . . . , p
′
K·|Qout|

).
We explain how we update p̄ when guessing w symbol by symbol. Every time
when we guess the next symbol c of w, we overwrite the tuple p̄ by

(

δin(p
′
0, c), f1(p

′
1, c), . . . , f1(p

′
|Qout|, c), . . .

. . . , fK(p′(K−1)·|Qout|+1, c), . . . , fK(p′K·|Qout|, c)
)

.

30

Notice that there are at most |Qin| ·K · |Qout|
2 different (K · |Qout|+1)-tuples of

this form. We nondeterministically determine when we stop guessing symbols
of w.

It now remains to verify whether w was indeed a string such that w ∈ din(a)
and z0top(T q1(w))z1 · · · top(T qk(w))zk 6∈ dout(b). The former condition is easy
to test: we simply have to test whether p′0 ∈ Fin. To test the latter condition, we
read the string z0q1z1 · · · qkzk from left to right while performing the following
tests. We keep a state of dout(b) in memory and refer to it as the “current
state”.

(1) The initial current state is q0
out.

(2) If the current state is p′ and we read zj , then we change the current state

to δ̂out(p
′, zj).

(3) If the current state is p′ and we read qj , then we change the current
state to p′i in p̄, where for i, the following condition holds. Let ℓ, m =
1, . . . , K · |Qout| be the smallest integers such that
• p′ = q′ℓ in Qout, and
• fqj

= fm.
Then i = (m − 1)K + ℓ.

Note that deciding whether p′ = q′ℓ and fqj
= fm can be done determin-

istically in logarithmic space, as the output schema is fixed. Consequently,
i can also be computed in constant time and space.

(4) We stop and accept if the current state is a non-accepting state after
reading zk.

2

Theorem 21 TCio[Tnd,bc, DTA(DFA)] is exptime-complete.

PROOF. The proof is quite analogous to the proof of Theorem 11. As dele-
tion is now disallowed, whereas it was allowed in Theorem 11, we need to
define the rules of the transducer T = (QT , ΣT , qε

copy, RT) differently.

The language defined by the input schema is exaclty the same as in Theo-
rem 11. The transition rules in RT are defined as follows:

• (qε
copy, s) → s(q0

copyq
1
copy);

• (qi
copy, #) → #(qi0

copyq
i1
copy) for i ∈ D(⌈log n⌉ − 1) − {ε};

• (qi
copy, #) → #(startℓ

k), where i ∈ D(⌈log n⌉) − D(⌈log n⌉ − 1), and i is the
binary representation of k;

• (qi
copy, a) → error for a ∈ Σ and i ∈ D(⌈log n⌉);

• (startℓ
k, #) → error for all k = 1, . . . , 2⌈log n⌉;

• (qℓ, ar) → ε and (qr, aℓ) → ε for all q ∈ Qj , j = 1, . . . , n;

31

• (qℓ, aℓ) → aℓ(q
ℓ
1q

r
2) and (qr, ar) → ar(q

ℓ
1q

r
2), for every q ∈ Qi, i = 1, . . . , n,

such that δi(q, a) = q1q2, and a is an internal symbol;
• (qℓ, aℓ) → aℓ(q

ℓ
1) and (qr, ar) → ar(q

ℓ
1), for every q ∈ Qi, i = 1, . . . , n, such

that δi(q, a) = q1 and a is an internal symbol;
• (qℓ, aℓ) → ε and (qr, ar) → ε for every q ∈ Qi, i = 1, . . . , n, such that

δi(q, a) = ε and a is a leaf symbol; and
• (qℓ, aℓ) → error and (qr, ar) → error for every q ∈ Qi, i = 1, . . . , n, such

that δi(q, a) is undefined.

It is straightforward to verify that, on input s(#(#(· · ·#(t)))), T performs
the identity transformation if and only if there are ⌈log n⌉ #-symbols in the
input and t ∈ L(A1)∩ · · · ∩L(An). All other outputs contain at least one leaf
labeled “error”.

Finally, the output tree automaton accepts all trees with at least one leaf that
is labeled “error”. So the only counterexamples for typechecking are those
trees that are accepted by all automata A1, . . . , An.

It is easy to see that the reduction can be carried out in deterministic log-
arithmic space, that T has copying width 2, and that the input and output
schemas do not depend on A1, . . . , An. 2

5 Conclusion

We considered the complexity of typechecking in the presence of fixed input
and/or output schemas. We have settled an open question in [23], namely that
TC[Tnd,bc, DTA] is exptime-complete.

In comparison with the results in [23], fixing input and/or output schemas
only lowers the complexity in the presence of DTDs and when deletion is
disallowed. Here, we see that the complexity is lowered when

(1) the input schema is fixed, in the case of DTD(SL)s;
(2) the input schema is fixed, in the case of DTD(DFA)s;
(3) the output schema is fixed, in the case of DTD(NFA)s; and
(4) both input and output schema are fixed, in all cases.

In all of these cases, the complexity of the typechecking problem is in polyno-
mial time.

It is striking, however, that in many cases, the complexity of typechecking
does not decrease significantly by fixing the input and/or output schema, and
most cases remain intractable. We have to leave the precise complexity (that
is, the ptime-hardness) of TCi[Tnd,uc, DTD(SL)] as an open problem.

32

Acknowledgments

We thank Giorgio Ghelli for raising the question about the complexity of type-
checking in the setting of a fixed output schema. We also thank Joos Heintz for
providing us with a useful reference to facilitate the proof of Proposition 27.

Appendix: Definitions and Basic Results

The purpose of this Appendix is to prove some lemmas that we use in the
body of the paper. We first introduce some notations and definitions needed
for the propositions and proofs further on in this Appendix. We also survey
some complexity bounds on decisions problems concerning automata that are
used throughout the paper.

We show that the complexities of the classical decision problems of string and
tree automata are preserved when the automata operate over fixed alphabets.
We will consider the following decision problems for string automata:

Emptiness: Given an automaton A, is L(A) = ∅?
Universality: Given an automaton A, is L(A) = Σ∗?
Intersection emptiness: Given the automata A1, . . . , An, is L(A1) ∩ · · · ∩

L(An) = ∅?

The corresponding decision problems for tree automata are defined analo-
gously.

We associate to each label a ∈ Σ a unique binary string enc(a) ∈ {0, 1}∗ of
length ⌈log |Σ|⌉. For a string s = a1 · · ·an, enc(s) = enc(a1) · · · enc(an). This
encoding can be extended to string languages in the obvious way.

We show how to extend the encoding “enc” to trees over alphabet {0, 1, 0′, 1′}.
Here, 0 and 1 are internal labels, while 0′ and 1′ are leaf labels. Let enc(a) =
b1 · · · bk for a ∈ Σ. Then we denote by tree-enc(a) the unary tree b1(b2(· · · (bk)),
if a is an internal label, and the unary tree b1(b2(· · · (b

′
k)), otherwise. Then,

the enc-fuction can be extended to trees as follows: for t = a(t1 · · · tn),

enc(t) = tree-enc(a)(enc(t1) · · · enc(tn)).

Note that we abuse notation here. The hedge enc(t1) · · · enc(tn) is intended to
be the child of the leaf in tree-enc(a). The encoding can be extended to tree
languages in the obvious way.

Proposition 22 Let B be a TDBTA. Then there is a TDBTA B′ over the

33

alphabet {0, 1, 0′, 1′} such that L(B′) = enc(L(B)). Moreover, B′ can be con-
structed from B in logspace.

PROOF. Let B = (QB, ΣB, δB, FB) be a TDBTA. Let k := ⌈log |ΣB|⌉.
We define B′ = (QB′ , {0, 1, 0′, 1′}, δB′, FB′). Set QB′ = {qx | q ∈ QB and
x is a prefix of enc(a), where a ∈ ΣB} and FB′ = {qε | q ∈ FB}. To de-
fine the transition function, we introduce some notation. For each a ∈ Σ
and i, j = 1, . . . , ⌈log |ΣB|⌉, denote by a[i : j] the substring of enc(a) from
position i to position j (we abbreviate a[i : i] by a[i]). For each transition
δB(q, a) = q1q2, add the transitions δB′(qε, a[1]) = qa[1], δB′(qa[1], a[2]) =
qa[1:2], . . . , δB′(qa[1:k−1], a[k]) = q1

εq
2
ε . Other transitions are defined analogously.

Clearly, B′ is a TDBTA, L(B′) = enc(L(B)), and B′ can be constructed from
B in logspace. 2

It is straightforward to show that Proposition 22 also holds for NFAs and DFAs
(the proofs are analogous). It is immediate from Proposition 22, that lower
bounds of decision problems for automata over arbitrary alphabets [16,30,32]
carry over to automata working over fixed alphabets. Hence, we obtain the
following corollary to Proposition 22:

Corollary 23 Over the alphabet {0, 1}, the following statements hold:

(1) Intersection emptiness of an arbitrary number of DFAs is pspace-hard [16].
(2) Universality of NFAs is pspace-hard [32].

Over the alphabet {0, 1, 0′, 1′}, the following statement holds:

(3) Intersection emptiness of an arbitrary number of TDBTAs is exptime-
hard [30].

Lemma 24 now immediately follows from nlogspace-hardness of the reach-
ability problem on graphs with out-degree 2 [15].

Lemma 24 The emptiness problem for an NFA with alphabet {0, 1} degree of
nondeterminism 2 is nlogspace-hard.

We now aim at proving Proposition 27, which states that we can find integer
solutions to arbitrary Boolean combinations of linear (in)equalities in poly-
nomial time, when the number of variables is fixed. To this end, we use a
well-known result by Ferrante and Rackoff.

First, we need some definitions. We define logical formulas with variables
x1, x2, . . . and linear equations with factors in Q. A term is an expression of the
form a1/b1, a1/b1x1 + · · ·+ an/bnxn, or a1/b1x1 + · · ·+ an−1/bn−1xn−1 + an/bn

34

where ai, bi ∈ N for i = 1, . . . , n. An atomic formula is either the string
“true”, the string “false”, or a formula of the form ϑ1 = ϑ2, ϑ1 < ϑ2,
or ϑ1 > ϑ2. A formula is built up from atomic formulas using conjunc-
tion, disjunction, negation, and the symbol ∃ in the usual manner. Formu-
las are interpreted in the obvious manner over Q. For instance, the formula
¬∃x1, x2 (x1 < x2)∧¬

(

∃x3 (x1 < x3 ∧ x3 < x2)
)

states that for every two dif-
ferent rational numbers, there exists a third rational number that lies strictly
between them.

The size of a formula Φ is the sum of the number of brackets, Boolean connec-
tives, the sizes of the variables, and the sizes of all rational constants occurring
in Φ. Here, we assume that all rational constants are written as a/b, where a
and b are integers, written in binary notation. We assume that variables are
written as xi, where i is written in binary notation.

Lemma 25 (Lemma 1 in [13]) Let Φ(x1, . . . , xn) be a quantifier-free for-
mula. Then there exists a ptime procedure for obtaining another quantifier-
free formula, Φ′(x1, . . . , xn−1), such that

Φ′(x1, . . . , xn−1) is equivalent to ∃xnΦ(x1, . . . , xn).

The following proposition is implicit in the work by Ferrante and Rackoff [13].
A full proof can be found as the proof of Proposition 3.4 in [21].

Proposition 26 Let Φ(x1, . . . , xn) be a quantifier-free formula. If n is fixed,
then satisfiability of Φ over Q can be decided in ptime. Moreover, if Φ is
satisfiable, we can find (v1, . . . , vn) ∈ Qn such that Φ(v1, . . . , vn) is true in
polynomial time.

The following proposition is a generalization of a well-known theorem by
Lenstra which states that there exists a polynomial time algorithm to find
an integer solution for a conjunction of linear (in)equalities with rational fac-
tors and a fixed number of variables [18].

Proposition 27 There exists a ptime algorithm that decides whether a Boolean
combination of linear (in)equalities with rational factors and a fixed number
of variables has an integer solution.

PROOF. Note that we cannot simply put the Boolean combination into
disjunctive normal form, as this would lead to an exponential increase of its
size.

Let Φ(x1, . . . , xn) be a Boolean combination of formulas ϕ1, . . . , ϕm with vari-
ables x1, . . . , xn that range over Z. Here, n is a constant integer greater than

35

zero. Without loss of generality, we can assume that every ϕi is of the form

ki,1 × x1 + · · · + ki,n × xn + ki ≥ 0,

where ki, ki,1, . . . , ki,n ∈ Q.

We describe a ptime procedure for finding a solution for x1, . . . , xn, that is,
for finding values v1, . . . , vn ∈ Z such that Φ(v1, . . . , vn) evaluates to true.

First, we introduce some notation and terminology. For every i = 1, . . . , m, we
denote by ϕ′

i the formula ki,1 × x1 + · · ·+ ki,n × xn + ki = 0. In the following,
we freely identify ϕ′

i with the hyperplane it defines in Rn. For an n-tuple
y = (y1, . . . , yn) ∈ Qn, we denote by ϕ′

i(y) the rational number ki,1×y1 + · · ·+
ki,n × yn + ki.

Given a set of hyperplanes H in Rn, we say that C ⊆ Rn is a cell of H when

(i) for every hyperplane ϕ′
i in H , and for every pair of points y, z ∈ C, we

have that ϕ′
i(y) θ 0 if and only if ϕ′

i(z) θ 0, where, θ denotes “<”, “>”,
or “=”; and

(ii) there exists no C ′) C with property (i).

Let H be the set of hyperplanes {ϕ′
i | 1 ≤ i ≤ m}.

We now describe the ptime algorithm. The algorithm iterates over the follow-
ing steps:

(1) Compute (v′
1, . . . , v

′
n) ∈ Qn such that Φ(v′

1, . . . , v
′
n) is true. 6 If no such

(v′
1, . . . , v

′
n) exists, the algorithm rejects.

(2) For every ϕ′
i ∈ H , let θi ∈ {<, >, =} be the relation such that

ki,1 × v′
1 + · · · + ki,n × v′

n + ki θi 0.

For every i = 1, . . . , m, let ϕ′′
i = ki,1 ×x1 + · · ·+ ki,n ×xn + ki θi 0. So, for

every i = 1, . . . , m, ϕ′′
i defines the half-space or hyperplane that contains

the point (v′
1, . . . , v

′
n).

Let Φ′(x1, . . . , xn) be the conjunction

∧

1≤i≤n

ϕ′′
i .

Notice that the points satisfying Φ′(x1, . . . , xn) are precisely the points in
the cell C of H that contains (v′

1, . . . , v
′
n).

(3) Solve the integer programming problem for Φ′(x1, . . . , xn). That is, find a
(v1, . . . , vn) ∈ Zn such that Φ′(v1, . . . , vn) evaluates to true.

6 Note that we abuse notation here, as the variables in Φ range over Z and not Q.

36

(4) If (v1, . . . , vn) ∈ Zn exists, then write (v1, . . . , vn) to the output and accept.
(5) If (v1, . . . , vn) ∈ Zn does not exist, then overwrite Φ(x1, . . . , xn) with

Φ′′(x1, . . . , xn) = Φ(x1, . . . , xn) ∧ ¬Φ′(x1, . . . , xn)

and go back to step (1).

We show that the algorithm is correct. Clearly, if the algorithm accepts, Φ has
a solution. Conversely, suppose that Φ has a solution. Hence, the algorithm
computes a value (v′

1, . . . , v
′
n) ∈ Qn in step (1) of its first iteration. It follows

from the following two observations that the algorithm accepts:

(i) If the algorithm computes (v′
1, . . . , v

′
n) ∈ Qn in step (1), and the cell C

of H containing (v′
1, . . . , v

′
n) also contains a point in Zn, then step (3)

finds a solution (v1, . . . , vn) ∈ Zn; and,
(ii) If the algorithm computes (v′

1, . . . , v
′
n) ∈ Qn in step (1), and the cell C of

H containing (v′
1, . . . , v

′
n) does not contain a point in Zn, then step (3)

does not find a solution. By construction of Φ′′ in step (5), the solutions
to the formula Φ′′ are the solutions of Φ, minus the points in C. As C
did not contain a solution, we have that Φ has a solution if and only if
Φ′′ has a solution. Moreover, there exists no (v′′

1 , . . . , v
′′
n) ∈ C such that

Φ′′(v′′
1 , . . . , v

′′
n) evaluates to true.

To show that the algorithm can be implemented to run in polynomial time,
we first argue that there are at most a polynomial number of iterations. This
follows from the observation in step (2) that the points satisfying Φ′(x1, . . . , xn)
are precisely all the points in a cell C of H . Indeed, when we do not find a
solution to the problem in step (3), we adapt Φ to exclude all the points in cell
C in step (5). Hence, in the following iteration, step (1) cannot find a solution
in cell C anymore. It follows that the number of iterations is bounded by the
number of cells in H , which is Θ(mn) (see, e.g. [7], or Theorem 1.3 in [11] for
a more recent reference).

Finally, we argue that every step of the algorithm can be computed in ptime.

Step (1) can be solved by the quantifier elimination method of Ferrante and
Rackoff (Lemma 25). Proposition 26 states that we can find (v′

1, . . . , v
′
n) in

polynomial time.

Step (2) is easily to be seen to be in ptime: we only have to evaluate every
ϕ′

i once on (v′
1, . . . , v

′
n).

Step (3) can be executed in ptime by Lenstra’s algorithm for integer linear
programming with a fixed number of variables [18].

Step (4) is in ptime (trivial).

37

Step (5) replaces Φ(x1, . . . , xn) by the formula Φ(x1, . . . , xn)∧¬Φ′(x1, . . . , xn).
As the size of Φ′(x1, . . . , xn) is bounded by n plus the sum of the sizes of ϕ′′

i

for i = 1, . . . , n, the formula Φ only grows by a linear term in each iteration.
As the number of iterations is bounded by a polynomial, the maximum size
of Φ is also bounded by a polynomial.

It follows that the algoritm is correct, and can be implemented to run in
polynomial time. 2

Corollary 28 There exists a ptime algorithm that decides whether a Boolean
combination of linear (in)equalities with rational factors and a fixed number
of variables has a solution of positive integers.

PROOF. Given a Boolean combination Φ(x1, . . . , xn) of linear (in)equalities
with rational factors, we simply apply the algorithm of Proposition 27 to the
formula

Φ′(x1, . . . , xn) = Φ(x1, . . . , xn) ∧
∧

1≤i≤n

xi ≥ 0.

2

In the following proposition, we treat the emptiness problem for DTDs: given
a DTD d, is L(d) = ∅? Note that L(d) can be empty even when d is not. For
instance, the trivial grammar a → a generates no finite trees.

Proposition 29 The emptiness problem is (1) ptime-complete for DTD(NFA)
and DTD(DFA), and (2) conp-complete for DTD(SL).

PROOF. (1) The upper bound follows from a reduction to the emptiness
problem for NTA(NFA)s, which is in ptime (cf. Theorem 19(1) in [23])

For the lower bound, we reduce from path systems [10], which is known to
be ptime-complete. path systems is the decision problem defined as follows:
given a finite set of propositions P , a set A ⊆ P of axioms, a set R ⊆ P×P×P
of inference rules and some p ∈ P , is p provable from A using R? Here, (i)
every proposition in A is provable from A using R and, (ii) if (p1, p2, p3) ∈ R
and if p1 and p2 are provable from A using R, then p3 is also provable from A
using R.

In our reduction, we construct a DTD (d, p) such that (d, p) is not empty if and
only if p is provable. Concretely, for every (a, b, c) ∈ R, we add the string ab
to d(c); for every a ∈ A, d(a) = {ε}. Clearly, (d, p) satisfies the requirements.

38

(2) We provide an np algorithm to check whether a DTD(SL) (d, r) defines
a non-empty language. Intuitively, the algorithm computes the set S = {a ∈
Σ | L((d, a)) 6= ∅} in an iterative manner and accepts when r ∈ S.

Let k be the largest integer occurring in any SL-formula in d. Initially, S is
empty.

The iterative step is as follows. Guess a sequence of different symbols b1, . . . , bm

in S. Then guess a vector (v1, . . . , vm) ∈ {0, . . . , k+1}m, where k is the largest
integer occurring in any SL-formula in d. Intuitively, the vector (v1, . . . , vm)
represents the string bv1

1 · · · bvm
m . From Lemma 12 it follows that any SL-formula

in d is satisfiable if and only if it is satisfiable by a string of the form au1

1 · · ·aun
n ,

where Σ = {a1, . . . , an}, and for all i = 1, . . . , n, ui ∈ {0, . . . , k + 1}. Now add
to S each a ∈ Σ for which bv1

1 · · · bvm
m |= d(a). Note that this condition can

be checked in ptime. Repeat the iterative step at most |Σ| times and accept
when r ∈ S.

The conp-lowerbound follows from an easy reduction of non-satisfiability.
Let φ be a propositional formula with variables x1, . . . , xn. Let Σ be the set
{a1, . . . , an}. Let (d, r) be the DTD where d(r) = φ′, where φ′ is the formula
φ in which every xi is replaced by a=1

i . Hence, (d, r) defines the empty tree
language if and only if φ is unsatisfiable. 2

Reducing a grammar is the act of finding an equivalent reduced grammar.

Corollary 30 Reducing a DTD(NFA) is ptime-complete; and reducing a
DTD(SL) is np-complete.

PROOF. We first show the upper bounds. Let (d, s) be a DTD(NFA) or
DTD(SL) over alphabet Σ. In both cases, the algorithm performs the following
steps for each a ∈ Σ:

(i) Test whether L((d, a)) 6= ∅. If this is not the case, remove a from the
definition of the DTD.

(ii) Test whether a is reachable from s. That is, test whether there is a
sequence of Σ-symbols a1, . . . , an such that
• a = s and an = a; and
• for every i = 2, . . . , n, there exists a string w1aiw2 ∈ d(ai−1), for

w1, w2 ∈ Σ∗.
If this is not the case, remove a from the definition of the DTD.

Removing a symbol a from the definition of the DTD is done as follows. In
the case of SL, every atom a≥i and a=i is replaced by true when i = 0 and
false otherwise. In the case of NFAs, every transition mentioning a is removed.

39

Further, the definition of d(a) is removed and a is deleted from the alphabet
of the DTD.

In the case of a DTD(NFA), step (i) is in ptime, and step (ii) is in nlogspace.
In the case of a DTD(SL), both tests (i) and (ii) are in np.

For the lower bound, we argue that

(1) if there exists an nlogspace-algorithm for reducing a DTD(NFA), then
emptiness of a DTD(NFA) is in nlogspace; and,

(2) if there exists a ptime-algorithm for reducing a DTD(SL), then emptiness
of a DTD(SL) is in ptime.

Statements (1) and (2) are easy to show: one only has to observe that an
emptiness test of a DTD can be obtained by reducing the DTD and verifying
whether the alphabet of the DTD still contains the start symbol. 2

References

[1] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking XML views
of relational databases. ACM Transactions on Computational Logic, 4(3):315–
354, 2003.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values:
Typechecking revisited. Journal of Computer and System Sciences, 66(4):688–
727, 2003.

[3] A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of XML
documents. ACM Transactions on Database Systems, 29(4):710–751, 2004.

[4] V. Benzaken, A. Frisch, and G. Castagna. CDuce: an XML-centric general-
purpose language. In Proceedings of the 8th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2003), pages 51–63. ACM Press,
2003.

[5] G. J. Bex, S. Maneth, and F. Neven. A formal model for an expressive fragment
of XSLT. Information Systems, 27(1):21–39, 2002.

[6] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular
hedge languages over unranked alphabets: Version 1, april 3, 2001. Technical
Report HKUST-TCSC-2001-0, The Hongkong University of Science and
Technology, 2001.

[7] R. Buck. Partition of space. American Mathematical Monthly, 50(9):541–544,
1943.

[8] P. Buneman, M. Fernandez, and D. Suciu. UnQl: a query language and algebra
for semistructured data based on structural recursion. The VLDB Journal,
9(1):76–110, 2000.

40

[9] B. S. Chlebus. Domino-tiling games. Journal of Computer and System Sciences,
32(3):374–392, 1986.

[10] S. A. Cook. An observation on time-storage trade-off. Journal of Computer
and System Sciences, 9(3):308–316, 1974.

[11] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
1987.

[12] J. Engelfriet and S. Maneth. A comparison of pebble tree transducers with
macro tree transducers. Acta Informatica, 39:613–698, 2003.

[13] J. Ferrante and C. Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM Journal on Computing, 4(1):69–76, 1975.

[14] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing
language. ACM Transactions on Internet Technology (TOIT), 3(2):117–148,
2003.

[15] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, A. R.
Meyer, N. Nivat, M. S. Paterson, and D. Perrin, editors, Handbook of Theoretical
Computer Science, volume A, chapter 2, pages 67–161. North-Holland, 1990.

[16] D. Kozen. Lower bounds for natural proof systems. In Proceedings 18th Annual
Symposium on Foundations of Computer Science (FOCS 1977), pages 254–266.
IEEE, 1977.

[17] D. Lee, M. Mani, and M. Murata. Reasoning about XML schema languages
using formal language theory. Technical report, IBM Almaden Research Center,
2000. Log# 95071.

[18] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983.

[19] S. Maneth and F. Neven. Structured document transformations based on XSL.
In R. Connor and A. Mendelzon, editors, Research Issues in Structured and
Semistructured Database Programming (DBPL 1999), volume 1949 of Lecture
Notes in Computer Science, pages 79–96. Springer, 2000.

[20] S. Maneth, T. Perst, A. Berlea, and H. Seidl. XML type checking with
macro tree transducers. In Proceedings of the 24th Symposium on Principles of
Database Systems (PODS 2005), pages 283–294. ACM Press, 2005.

[21] W. Martens. Static Analysis of XML Transformation and Schema Languages.
PhD thesis, Hasselt University, 2006.

[22] W. Martens and F. Neven. Frontiers of tractability for typechecking simple
XML transformations. In Proceedings of the 23d Symposium on Principles of
Database Systems (PODS 2004), pages 23–34. ACM Press, 2004.

[23] W. Martens and F. Neven. On the complexity of typechecking top-down XML
transformations. Theoretical Computer Science, 336(1):153–180, 2005.

41

[24] W. Martens and F. Neven. Frontiers of tractability for typechecking simple
XML transformations. Journal of Computer and System Sciences, 73(3):362–
390, 2007.

[25] T. Milo and D. Suciu. Type inference for queries on semistructured data. In
Proceedings of the Eighteenth Symposium on Principles of Database Systems
(PODS 1999), pages 215–226. ACM Press, 1999.

[26] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. Journal
of Computer and System Sciences, 66(1):66–97, 2003.

[27] F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3):39–
46, 2002.

[28] F. Neven and T. Schwentick. XML schemas without order. Unpublished
manuscript, 1999.

[29] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In
Proceedings of the 19th Symposium on Principles of Database Systems (PODS
2000), pages 35–46, New York, 2000. ACM Press.

[30] H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing
Letters, 52(2):57–60, 1994.

[31] C.M. Sperberg-McQueen and H. Thompson. XML Schema.
http://www.w3.org/XML/Schema, 2005.

[32] L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time:
Preliminary report. In Conference Record of Fifth Annual ACM Symposium on
Theory of Computing (STOC 1973), pages 1–9, New York, 1973. ACM Press.

[33] D. Suciu. Typechecking for semistructured data. In Proceedings of the 8th
Workshop on Data Bases and Programming Languages (DBPL 2001), pages
1–20, Berlin, 2001. Springer.

[34] D. Suciu. The XML typechecking problem. SIGMOD Record, 31(1):89–96,
2002.

[35] A. Tozawa. Towards static type checking for XSLT. In Proceedings of the ACM
Symposium on Document Engineering (DOCENG 2001), pages 18–27, 2001.

42

