
Optimizing Conjunctive Queries over Trees

using Schema Information⋆

Henrik Björklund, Wim Martens⋆⋆, and Thomas Schwentick

Technical University of Dortmund

Abstract. We study the containment, satisfiability, and validity prob-
lems for conjunctive queries over trees with respect to a schema. We
show that conjunctive query containment and validity are 2EXPTIME-
complete w.r.t. a schema (DTD or Relax NG). Furthermore, we show
that satisfiability for conjunctive queries w.r.t. a schema can be decided
in NP. The problem is NP-hard already for queries using only one kind of
axis. Finally, we consider conjunctive queries that can test for equalities
and inequalities of data values. Here, satisfiability and validity are decid-
able, but containment is undecidable, even without schema information.
On the other hand, containment w.r.t. a schema becomes decidable again
if the “larger” query is not allowed to use both equalities and inequalities.

1 Introduction

In the context of relational databases, select-project-join queries are the ones
most commonly used in practice. These queries are also known in database
theory as conjunctive queries. The containment problem for conjunctive queries
P and Q asks whether Q returns (at least) all answers of P . Ever since the
seminal paper of Chandra and Merlin [5], conjunctive query containment has
been a pivotal research topic; it is the most intensely researched form of query
optimization in database theory. Moreover, the conjunctive query containment
problem is essentially the same as the conjunctive query evaluation problem [5],
and the Constraint Satisfaction Problem (CSP) in Artificial Intelligence [13].

The more recent rise of semi-structured data and XML initiated the inves-
tigation of conjunctive queries over trees [11]. As in the relational case, con-
junctive queries over trees provide a very clean and natural querying formalism.
XPath and (non-recursive) XQuery queries can both be naturally translated into
conjunctive queries. However, as pointed out by Gottlob et al. [11], their appli-
cations are not at all limited to XML; they are also used for Web information
extraction, as queries in computational linguistics, dominance constraints, and
in higher-order unification.

As a matter of fact, containment for queries on tree-structured data was pre-
viously mainly studied for fragments of XPath 1.0. The investigations therefore
concentrated on acyclic conjunctive queries (see, e.g., [16, 17]).

⋆ This work was supported by the DFG Grant SCHW678/3-1.
⋆⋆ Supported by a grant from the Nordrhein Westfälische Akademie der Wissenschaften.

In contrast to the relational setting, for conjunctive queries over trees, evalu-
ation is not the same problem as containment. In relational databases, contain-
ment P ⊆ Q holds if an only if there is a homomorphism from the canonical
database of Q to the canonical database of P . Over trees, the existence of such a
homomorphism is a sufficient, but not a necessary condition for containment [2].

Conjunctive query containment over trees is therefore investigated directly
in [2], but was also treated more implicitly in the form of XPath 2.0 static
analysis in, e.g., [12, 14, 21]. We elaborate on the relation with these papers
below. The results in [2] were encouraging, as the complexities (compared with
acyclic queries) did not increase too much: they remained inside ΠP

2 .

The present paper extends our previous work [2] in the sense that we now
take schema information into account, and that we consider queries that can test
for equality and inequality of data values. In this framework, we study the com-
plexities of the validity, satisfiability, and containment problems. Whereas our
previous work outlined a quite complete picture of conjunctive query contain-
ment without schemas, one has to admit that, in practice, schema information
is highly relevant. In XML, schema information is available for most documents,
and the chances of being able to optimize queries are much better when it is
taken into account. On the other hand, as we will see in this paper, there is also
a tradeoff: the complexity of conjunctive query containment over trees is much
higher with schema information than without.

Our work can be summarized as follows. First, we study conjunctive queries
that cannot compare data values. Our main technical result here is that the prac-
tically most relevant problem, conjunctive query containment w.r.t. a DTD, is
already 2EXPTIME-hard for queries using only the Child and Child+ axes.1 This
result is quite surprising when one compares it to the known results for XPath
1.0 containment. For XPath 1.0, adding DTD information to the problem usu-
ally “only” increases the complexity from coNP [16] to (at most) EXPTIME [17,
15]. Here, however, the complexity immediately jumps from ΠP

2 to 2EXPTIME
when DTDs are taken into consideration. In particular, the problem can prov-
ably not be solved in polynomial space in general. On the other hand, it remains
in 2EXPTIME even when conjunctive queries can use all axes and the much
more expressive Relax NG schemas are considered. In contrast, the satisfiability
problem for even the most general conjunctive queries w.r.t. Relax NG schemas
is in NP. Unfortunately the satisfiability problem is also already NP-hard for
very simple cases using only DTD information.

Finally, we turn to the containment problem for queries that can compare
data values for equality (∼) and inequality (6∼). When data values are involved,
static analysis problems are generally known to become undecidable very quickly.
We show that conjunctive query containment is no exception: already without
schema information, it is undecidable. However, the good news is that even
very slight restrictions of this most general case become decidable, even without
increasing the complexity over the setting without data values.

1 Actually, we show hardness already for the validity problem.

Boolean versus n-ary queries The conjunctive queries in our paper are boolean
queries, i.e., they evaluate either to true or false on a tree. Our complexity
results also carry over to containment for conjunctive queries that return an
n-ary relation when evaluated on a tree.

Related work We discuss the relation of our paper to some of the above mentioned
work. Most relevant to us are the papers by ten Cate and Lutz [21], by David [8]
(which evolved independently from ours), and by Lakshmanan et al. [14]. The
connection with Hidders’ work [12] is explained more elaborately in [2]. Hidders
considers XPath 2.0 satisfiability, but does not take schema information into
account. Ten Cate and Lutz study query containment for expressive fragments
of XPath 2.0, which is closely related to our conjunctive queries. They also
take schema information into account (at least for DTDs and XML Schema
Definitions) and get 2EXPTIME-completeness, but their queries have negation,
disjunction, and union while conjunctive queries do not.

The precise relation between our conjunctive queries and XPath 2.0 is not
entirely obvious. Conjunctive queries are at least as expressive as the XPath 2.0
fragment that consists of Core XPath 1.0 without union, disjunction or negation,
but augmented with the XPath 2.0 path intersection operator (see [21]). This
implies that our upper bound proofs also apply to this XPath 2.0 fragment. On
the other hand, such XPath expressions are syntactically constrained and cannot
use path intersection arbitrarily. Our lower bound proofs can, however, also be
adapted to these XPath 2.0 expressions. In this light, our results significantly
strengthen the lower bound proof of Theorem 20 in [21] when DTD information
is considered, since we do not make use of negation or disjunction.2

David studies the complexity of satisfiability for Boolean combinations of
data tree patterns with respect to DTDs [8]. Different fragments are investigated,
and the complexity results range from NP to undecidable. This formalism is on
the surface quite similar to CQs with data value predicates, but there are some
decisive differences. First, the data tree patterns are always tree-shaped, like
XPath queries without path intersection. Second, the semantics used in [8] is
injective, i.e., two variables cannot be assigned the same node, unlike the one for
CQs. This means that boolean combinations of data tree patterns are in general
more expressive but exponentially less succinct than CQs.

Lakshmanan et al. study satisfiability, with and without schema information,
of tree pattern queries, where the tree patterns are also equipped with a node
identity operator and can compare data values. In particular, they claim (The-
orem 3.2 in [14]) that query satisfiability for queries with structural constraints,
Value Based Constraints (VBCs) and no wildcards is in PTIME. However, it is
NP-complete.3 The results of the paper do not really overlap with our results on
satisfiability, since they only consider a limited, non-recursive, form of DTDs.

2 Without DTD information, ten Cate and Lutz still have 2EXPTIME-completeness
due to the presence of negation, but conjunctive query containment is ΠP

2 -complete.
3 Here, structural constraints include node identities and VBCs allow comparison of

data values to constants. One of our NP-hardness proofs can be easily adapted to
this case. However, we do not conclude PTIME = NP.

Furthermore, there is a large amount of work on static analysis for XPath
1.0 (see, e.g., [1, 10, 15–17,22]). XPath 1.0 relates to our conjunctive queries in a
similar way as XPath 2.0, except that XPath 1.0 does not have a path intersection
operator. In other words, complexity lower bounds for XPath 1.0 sometimes carry
over to conjunctive queries. We indicate this in the paper whenever relevant.

Due to space constraints, most proofs have been omitted and will appear in
the full version of the paper.

2 Preliminaries

2.1 Trees

By Σ we always denote a finite alphabet. The trees we consider are rooted,
ordered, finite, labeled, unranked trees, which are directed from the root down-
wards. That is, we consider finite trees in which nodes can have arbitrarily many
children, which are ordered from left to right. We view a tree t as a relational
structure over a finite number of unary labeling relations a(·), for a ∈ Σ, and
binary relations Child(·, ·) and NextSibling(·, ·). Here, a(u) expresses that u is a
node with label a, and Child(u, v) (respectively, NextSibling(u, v)) expresses that
v is a child (respectively, the right sibling) of u.

The reason that we can restrict ourselves to a finite set of labels is that an
XML schema defines the set of labels allowed in a tree. In the rare cases where we
consider trees without schema information, we also consider the set of possible
labels to be infinite.

In addition to Child and NextSibling, we use their transitive closures (denoted
Child+ and NextSibling+) and their transitive and reflexive closures (denoted
Child∗ and NextSibling∗). We also use the Following-relation, which is inspired
by XPath [6] and defined as

Following(u, v) = ∃x∃yChild∗(x, u) ∧ NextSibling+(x, y) ∧ Child∗(y, v).

We refer to the binary relations above as axes. We denote the set of nodes of a
tree t by Nodes(t). For a node u, we denote by labt(u) the unique a such that
a(u) holds in t. We often omit t from this notation when t is clear from the
context. By root(t) we denote the root node of t.

2.2 Conjunctive Queries

Let X = {x, y, z, . . . } be a set of variables. A conjunctive query (CQ) over
alphabet Σ is a positive existential first-order formula without disjunction over
a finite set of unary predicates a(x) where each a ∈ Σ, and the binary predicates
Child , Child+, Child∗, NextSibling, NextSibling+, NextSibling∗, and Following. In
this paper, we will mainly focus on Boolean satisfaction of conjunctive queries.
We will therefore consider conjunctive queries without free variables, and we
also consider the constants true and false to be CQs. As our conjunctive queries
do not contain free variables, we sometimes omit the existential quantifiers to

simplify notation. For a conjunctive query Q, we denote the set of variables
appearing in Q by Var(Q). We use CQ(R1, . . . , Rk) or CQ(R) (where R =
{R1, . . . , Rk}) to denote the fragment of CQs that uses only the unary alphabet
predicates and the binary predicates R1, . . . , Rk. We use the terminology on
valuations of a query from Gottlob et al. [11]. That is, let Q be a CQ, and t a
tree. A valuation of Q on t is a total function θ : Var(Q) → Nodes(t). A valuation
is a satisfaction if it satisfies the query, that is, if every atom of Q is satisfied
by the assignment. A tree t models Q (t |= Q) if there is a satisfaction of Q on
t. The language L(Q) of Q is the set of all trees that model Q.4 We denote the
complement of L(Q) by L(Q).

We sometimes refer to a query as confluent. Intuitively, this means that the
atoms of the query, interpreted as directed edges, merge at some point, i.e., the
graph they form is not a directed forest. More formally, query Q is confluent if
there are three distinct variables x, y, z ∈ Var(Q) and binary predicates R1 and
R2 such that R1(x, z) and R2(y, z) are both atoms of Q.

2.3 Schemas

We abstract from Document Type Definitions (DTDs) as follows:

Definition 1. A Document Type Definition (DTD) over Σ is a triple D =
(Alpha(D), Rules(D), start(D)) where Alpha(D) = Σ, start(D) ∈ Σ is the start
symbol and Rules(D) is a set of rules of the form a → R, where a ∈ Σ and R is
a regular expression over Σ. Here, no two rules have the same left-hand-side.

A tree t satisfies D if (i) labt(root(t)) = start(D) and, (ii) for every u ∈ Nodes(t)
with label a and n children u1, . . . , un from left to right, there is a rule a → R
in Rules(D) such that labt(u1) · · · labt(un) ∈ L(R). By L(D) we denote the set
of trees satisfying D.

We abstract from Relax NG schemas [7] by unranked tree automata, which
are formally defined as follows:

Definition 2. A nondeterministic (unranked) tree automaton (NTA) over Σ is
a quadruple A = (States(A), Alpha(A), Rules(A), Final(A)), where Alpha(A) =
Σ, States(A) is a finite set of states, Final(A) ⊆ States(A) is the set of final
states, and Rules(A) is a set of transition rules of the form (q, a) → L, where
q ∈ States(A), a ∈ Alpha(A), and L is a regular string language over States(A).

For simplicity, we denote the regular languages L in A’s rules by regular expres-
sions. For our complexity results, it doesn’t matter whether the languages L are
represented by regular expressions or nondeterministic string automata.

A run of A on a tree t is a labeling r : Nodes(t) → States(A) such that,
for every u ∈ Nodes(t) with label a and children u1, . . . , un from left to right,

4 Notice that, as stated in the introduction, we assume that trees only take labels
from a finite alphabet Σ. Hence, for a conjunctive query Q, L(Q) also consists of
trees over alphabet Σ. In the rare cases where we consider trees without schema
information, we state this explicitly.

there exists a rule (q, a) → L such that r(u) = q and r(u1) · · · r(un) ∈ L. Note
that, when u has no children, the criterion reduces to ε ∈ L, where ε denotes the
empty string. A run is accepting if the root is labeled with an accepting state,
that is, r(root(t)) ∈ Final(A). A tree t is accepted if there is an accepting run of
A on t. The set of all accepted trees is denoted by L(A) and is called a regular
tree language. We denote the complement of L(A) by L(A). In the remainder of
the paper, we sometimes view the run r of an NTA on t as a tree over States(A),
obtained from t by relabeling each node u with the state r(u).

From now on, we use the word “schema” to refer to DTDs or NTAs.

2.4 Our Problems of Interest

Definition 3. – Containment w.r.t. a schema: Given two CQs P and Q, and
a schema S, is L(P) ∩ L(S) ⊆ L(Q)?

– Validity w.r.t. a schema: Given a CQ Q and a schema S, is L(S) ⊆ L(Q)?
– Satisfiability w.r.t. a schema: Given CQ Q and schema S, is L(Q)∩L(S) 6= ∅?

All of the above problems are in a sense instances of the containment problem.
That is, validity of Q is testing whether L(true) ⊆ L(Q) w.r.t. S, and satisfia-
bility for Q is testing whether L(Q) 6⊆ L(false) w.r.t. S.

3 Validity and Containment

3.1 Complexity Upper Bounds

We start the technical part of the paper by settling the upper bound for the
containment problem. This is achieved through a standard translation of CQs
into NTAs.

Lemma 4. Let Q be a CQ. There exists an NTA A such that L(A) = L(Q) and
A can be computed from Q in exponential time.

It is now easy to derive the following theorem. We note that Theorem 5 is not
new. The 2EXPTIME upper bound is obtained by composing the exponential
translation of [11] from CQs to Core XPath and the polynomial time translation
of [21] from Core XPath expressions to two-way alternating tree automata. The
result now follows as emptiness testing of two-way alternating tree automata is
in EXPTIME.

Theorem 5. Containment of CQs w.r.t. an NTA is in 2EXPTIME.

3.2 Complexity Lower Bounds

In this section, we prove the following result.

Theorem 6. Validity of CQ(Child,Child+) w.r.t. a tree automaton is 2EXPTIME-
complete.

The proof of the above theorem is long and rather technical. We sketch it’s most
interesting parts below.

The upper bound in Theorem 6 follows from Theorem 5. We show the cor-
responding lower bound by reduction from the word problem for alternating
exponential space bounded Turing machines, which is 2EXPTIME-hard [4].

An alternating Turing machine (ATM) [4] is a tuple M = (Q, Σ, Γ, δ, q0)
where Q = Q∀⊎Q∃⊎{qa}⊎{qr} is a finite set of states partitioned into universal
states from Q∀, existential states from Q∃, an accepting state qa, and a rejecting
state qr. The (finite) input and tape alphabets are Σ and Γ , respectively. We
assume that the tape alphabet contains a special blank symbol “ ”. The initial
state of M is q0 ∈ Q. The transition relation δ is a subset of (Q×Γ)× (Q×Γ ×
{L, R, S}). The letters L, R, and S denote the directions left, right, and stay in
which the tape head is moved.

A computation tree for an ATM M is a tree labelled by configurations (tape
content, reading head position, and internal state) of M such that (1) if node
v is labelled by an existential configuration, then v has one child, labelled by
one of the possible successor configurations, (2) if v is labelled by a universal
configuration, then v has one child for each possible successor configuration, (3)
the root is labelled by an initial configuration, and (4) all leaves are labelled
by accepting or rejecting configurations. A computation tree is accepting if it is
finite and all leaves are labelled by accepting configurations.

The overall idea of our proof is as follows. Given ATM M and a word w of
length n we construct, in polynomial time, (1) an ATM Mw which accepts the
empty word if and only if M accepts w and (2) an NTA ACT that checks most
important properties of (suitably encoded) computation trees of Mw, except their
consistency w.r.t. the transition relation of Mw. The consistency is tested by the
query QCT that we define. To be precise, QCT is satisfied by a tree t in L(ACT)
if and only if the transition relation of Mw is not respected by t. This means
that QCT is valid w.r.t. ACT , iff there does not exist a consistent, accepting
computation tree for Mw. Since 2EXPTIME is closed under complementation,
we conclude that validity of CQs with respect to NTAs is 2EXPTIME-hard.

Encoding Computation Trees. The encoding enc(t) of a possible computation
tree t of Mw is illustrated in Fig. 1(a) and obtained from t by replacing each
node u of t with a tree tu, where

– root(tu) is labeled CT ;
– the leftmost child of root(tu) is labeled r (and is the root of the tree encoding

the actual configuration at u); and
– for each child ui of u, root(tu) has a subtree enc(t/ui) where t/ui denotes

the subtree of t rooted at ui.

Encoding configurations. The most crucial part of the reduction is to use the
query to detect when the transition relation of Mw is violated. To be able to do
this, the query must be able to navigate from a node representing tape cell i in

CT

r CT

r

CT

r

(a) A part of an encoded configuration tree. The CT -
labeled nodes define the structure of the actual config-
uration tree of Mw, while the subtrees with root label r
encode the actual configurations of Mw.

s

s p

0

1

s

(b) A skeleton node
which is the left child
of its parent, with its
two skeleton node chil-
dren and its navigation
gadget.

Fig. 1. The encoded computation tree.

one configuration tree to the node representing cell i in a successor configuration.
To this end, we encode configurations as follows.

As we can assume w.l.o.g. that Mw never uses more than 2n tape cells, we
can encode configurations into the leaves of binary trees of height n, where each
leaf represents a tape cell. A configuration tree is obtained from a full binary
tree b of height n as follows. The root gets label r and the other nodes label s.
The s-labeled nodes are called skeleton nodes. To each skeleton node v we attach
a little gadget indicating whether v is a left or a right child in b. More precisely,
we attach a path of length 3 labeled with p, 0, 1, respectively, to left children and
a path labeled with p, 1, 0 to right children. Each leaf skeleton node (one that
has no skeleton node children) is further provided with the relevant information
about the tape cell it represents.

Thus, left and right children can be distinguished by the distance (1 or 2) of
their 1-labelled gadget node from their p-labelled gadget node. More precisely, a
skeleton node v at level i of a configuration tree and a skeleton node u at level i
of a successor configuration tree are both left or both right children, if the nodes
v1 and u1 with label 1 in their respective gadgets have a common ancestor which
has distance i + 4 from v1 and i + 5 from u1.

Comparing configurations. Below, we construct a query SameCell(t1, tt) which
is true for two leaf skeleton nodes if and only if they belong to successive config-
uration trees and represent the same tape cell. In order to do this, we first define
successively more complicated subqueries. The first one states that two nodes
r1 and r2 are roots of two successive configuration trees, i.e., configuration trees
such that the second encodes a successor configuration of the first.

Succ(r1, r2) ≡ ∃s1, s2 : r(r1) ∧ r(r2) ∧ CT (s1) ∧ CT (s2)

∧ Child(s1, r1) ∧ Child(s2, r2) ∧ Child(s1, s2)

Next, we define a query Φi(x, y) to state that x and y belong to successive
encoded configuration trees and are both at level i > 0 of their respective encoded
configuration tree. Here, Childi(x, y) abbreviates the query stating that y can
be reached from x by following the Child -axis i times.

Φi(x, y) ≡ ∃r1, r2 : s(x) ∧ s(y) ∧ Succ(r1, r2) ∧Childi(r1, x) ∧ Childi(r2, y)

Now we can express that x and y fulfil Φi and, additionally, that they are either
both left children of their parents, or both right children.

Ψi(x, y) ≡ ∃px, py, tx, ty, z : Φi(x, y) ∧ p(px) ∧ p(py) ∧ 1(tx) ∧ 1(ty)

∧Child(x, px) ∧Child(y, py) ∧Child+(px, tx) ∧ Child+(py, ty)

∧Childi+4(z, tx) ∧ Childi+5(z, ty)

Using the above queries, we can now express that s1 and s2 are leaf skeleton
nodes in successive configuration trees representing the same tape cell. Recall
that n is the depth of the encoded configuration trees.

SameCell(s1, s2) ≡

∃x1, . . . , xn−1, y1, . . . , yn−1 :
∧

1≤i<n−1

(Child(xi, xi+1) ∧ Child(yi, yi+1))

∧ Child(xn−1, s1) ∧ Child(yn−1, s2) ∧ Ψn(s1, s2) ∧
∧

1≤i≤n−1

Ψi(xi, yi)

DTDs. Actually, the 2EXPTIME lower bound from Theorem 6 can even be
strengthened to the case where the schema is just a DTD instead of a tree
automaton.

4 Satisfiability

4.1 Complexity Upper Bounds

In this section, we show that testing satisfiability for CQs with respect to a
nondeterministic tree automaton is in NP. The idea is a kind of small model
property for such queries. We start with the following lemma. The proof is by a
standard pumping argument.

Lemma 7. There is a polynomial p such that if a CQ Q is satisfiable with respect
to an NTA A, then there is a tree t ∈ L(Q)∩L(A) and a satisfaction θ of Q on
t such that for any variables x, y ∈ Var(Q), the length of the path from θ(x) to
θ(y) is at most p(|A|, |Q|).

Lemma 7 gives us the main machinery to prove the general NP upper bound
on satisfiability:

Theorem 8. Satisfiability of CQs with respect to an NTA is in NP.

4.2 Complexity Lower Bounds

We show that our upper bound for satisfiability w.r.t. a schema is tight, in quite
a strong sense. In particular, when considering a DTD as schema, satisfiability
is NP-hard for queries using only a single axis, no matter which axis this is.

For the NP lower bounds, we will reduce from the Shortest Common

Supersequence problem; or the Shortest Common Superstring problem,
both of which are known to be NP-complete [19, 9]. The Shortest Common Su-

persequence (respectively, Shortest Common Superstring) problem asks,
given a set of strings S, and an integer k, whether there exists a string of length
at most k which is a supersequence (respectively, superstring) of each string in
S. Here, s is a supersequence of s0 if s0 can by obtained by deleting symbols
from s, and s is a superstring of s0 if s0 can be obtained by deleting a prefix
and a suffix of s.

Theorem 9. Let Axis be an any element of {Child, Child+, Child∗, NextSibling,
NextSibling+, NextSibling∗, Following}. Then Satisfiability of CQ(Axis) w.r.t. a
DTD is NP-hard.

5 Queries with Data Values

A data tree is a tree in which each node u, in addition to its label lab(u), carries
a data value from a countably infinite data domain ∆ (see also [3]).5 We write
u ∼ v if two nodes in a data tree have the same data value. Conjunctive queries
over data trees can, in addition to the usual predicates, use the binary predicates
∼ and 6∼ with the obvious interpretation. We adopt our notation to denote CQ
fragments for data values as follows: CQ(∼), CQ(6∼), and CQ(∼, 6∼) denote the
CQs that use only data equality, only data inequality, and both, respectively,
and in which all axes are allowed. For Q ∈ CQ(∼, 6∼), L(Q) is the set of all data
trees t such that there exists a satisfaction of Q on t. Schemas do not constrain
data values in any way, i.e., the set of data trees L(A) defined by an NTA A is
defined precisely as in Section 2.3, but with “tree” replaced by “data tree”.

Our problems of interest for queries with data values are the same problems
as defined in Section 2.4, but with the new definition of L(Q). We first show
that data values do not change the complexity of the satisfiability and validity
problems.

Theorem 10. Satisfiability of CQs(∼, 6∼) w.r.t. an NTA is NP-complete.

The proofs of Theorems 8 and 9 straightforwardly carry over to data trees.
The following result follows from Theorem 12, which is strictly stronger.

Theorem 11. Validity of CQ(∼, 6∼) w.r.t. an NTA is 2EXPTIME-complete.

Next, we consider containment w.r.t. a schema. We write QC(X |Y) for the
problem of determining whether L(P) ∩ L(A) ⊆ L(Q) for a query P ∈ CQ(X),

5 We assume ∆ to contain all the data values we use in our proofs and examples.

X \ Y ∼ 6∼ ∼, 6∼

∼ 2EXPTIME 2EXPTIME 2EXPTIME

6∼ 2EXPTIME 2EXPTIME undecidable

∼, 6∼ 2EXPTIME 2EXPTIME undecidable

Table 1. Decidability for QC(X|Y).

a query Q ∈ CQ(Y) and an NTA A. E.g., QC(∼ | ∼, 6∼) is about containment
of queries with data equalities in queries with data equalities and inequalities.

It turns out that the consideration of data values does not change the com-
plexity of the query containment problem for queries P, Q, unless P is allowed
to use data inequalities and Q to use equalities and inequalities. In the latter
case the problem is undecidable (Theorem 15). We summarize our results for
QC(X |Y) in Table 1.

Theorem 12. Each of QC(∼, 6∼ | ∼), QC(∼, 6∼ | 6∼), QC(∼ | ∼, 6∼), w.r.t. an
NTA is 2EXPTIME-complete.

Hence, ∼ and 6∼ do no increase the complexity of query containment as long as
they do not co-occur in Q. We show next, that the picture changes dramatically
if they do co-occur and P uses 6∼.

Theorem 13. Validity of a disjunction of CQ(∼, 6∼) w.r.t. an NTA is undecid-
able.

With a little extra work, Theorem 13 can be extended to the following.

Theorem 14. QC(6∼ | ∼, 6∼) is undecidable.

Actually, it turns out that if both queries can use ∼ and 6∼, the schema
automaton from Theorem 14 can be avoided.

Theorem 15. QC(∼, 6∼ | ∼, 6∼) is undecidable, even without a schema.

6 Conclusion

We studied the query containment and the validity problem for conjunctive
queries over trees (1) relative to a schema and (2) taking into account data
values. It turned out that in the presence of a schema the complexity of the
problem drastically increases. Thus, even though the query language does not
have neither negation nor disjunction, it shares the bad complexity (2EXPTIME)
of the language in [21].

Not surprisingly, with equalities and inequalities on data values the contain-
ment problem even becomes undecidable. Nevertheless, a slight restriction on
the occurrence of inequalities yields a decidable problem.

Although conjunctive queries are a very natural query language, future re-
search should identify tractable fragments, in particular with other restrictions

than acyclicity. We found it interesting to observe that, from the lower bound
proof of Theorem 6, we can conclude that there does not exist an exponential-size
tree automaton recognizing the complement language of a conjunctive query.

Corollary 16. In general, there does not exist an exponential-size nondeter-
ministic tree automaton recognizing L(Q), where Q is a CQ(Child,Child+).

References

1. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
J. ACM, 55(2), 2007.

2. H. Björklund, W. Martens, and T. Schwentick. Conjunctive query containment
over trees. In DBPL, pages 66–80, 2007.

3. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data trees and XML reasoning. In PODS, pages 10–19, 2006.

4. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

5. A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In STOC, pages 77–90, 1977.

6. J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. Technical
report, World Wide Web Consortium, 1999. http://www.w3.org/TR/xpath/.

7. J. Clark and M. Murata. Relax NG specification. http://www.relaxng.org/spec-
20011203.html, December 2001.

8. C. David. Complexity of data tree patterns over XML documents. In MFCS, 2008.
To appear.

9. J. Gallant, D. Maier, and J. A. Storer. On finding minimal length superstrings.
JCSS, 20(1):50–58, 1980.

10. F. Geerts and W. Fan. Satisfiability of XPath queries with sibling axes. In DBPL,
pages 122–137, 2005.

11. G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. J. ACM,
53(2):238–272, 2006.

12. J. Hidders. Satisfiability of XPath expressions. In DBPL, pages 21–36, 2003.
13. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint

satisfaction. JCSS, 61(2):302–332, 2000.
14. L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao. On testing satisfiability

of tree pattern queries. In VLDB, pages 120–131, 2004.
15. M. Marx. XPath with conditional axis relations. In EDBT, pages 477–494, 2004.
16. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.

J. ACM, 51(1):2–45, 2004.
17. F. Neven and T. Schwentick. On the complexity of XPath containment in the

presence of disjunction, DTDs, and variables. LMCS, 2(3), 2006.
18. E.L. Post. A variant of a recursively unsolvable problem. Bull. AMS, 52(4):264–

268, 1946.
19. K.J. Räihä and E. Ukkonen. The shortest common supersequence problem over

binary alphabet is NP-complete. TCS, 16(2):187–198, 1981.
20. M. Takahashi. Generalizations of regular sets and their application to a study of

context-free languages. Inf. Control, 27(1):1–36, 1975.
21. B. ten Cate and C. Lutz. The complexity of query containment in expressive

fragments of XPath 2.0. In PODS, pages 73–82, 2007.
22. P. T. Wood. Containment for XPath fragments under DTD constraints. In ICDT,

2003. Full version, obtained through personal communication.

a

b c

e

dx1 x2 x3

a

b c

e

dx1 x2 x3

X2X1 X3

Fig. 2. How to reduce from n-ary queries to 0-ary queries.

A Boolean versus N-ary Queries

In our definition section, we consider conjunctive queries without free variables. This
means that we only look at whether a tree models the query or not, and not at the
whole set of satisfactions. One can also consider n-ary conjunctive queries, i.e., CQs
with n free variables, returning a n-ary relation when evaluated on a tree. For two
n-ary queries P and Q, P is contained in Q if, for every tree t, the relation returned
by P is a subset of the relation returned by Q.

First, notice that, for testing whether a query is satisfiable or not, it does not matter
whether a query is Boolean or n-ary. So all our results on satisfiability carry over to
n-ary queries.

Second, all our other results concern conjunctive queries that can use the Child -
axis. Using a technique of Miklau and Suciu [16], one can reduce containment for such
n-ary queries to containment of Boolean queries. For instance, consider the left query
P (x1, x2, x3) in Figure 2. By introducing, for each free variable xi, a new variable x′

i

and adding the atoms Child(xi, x
′
i)∧Xi(x

′
i) to the query, where Xi is a new label, the

query P ′, depicted on the right of Figure 2, is obtained. It is now easy to see that, for
two queries P (x) and Q(x)6 with n free variables, P is contained in Q if and only if
L(P ′) ⊆ L(Q′), where P ′ and Q′. Indeed, the proof is analogous to the one in [16]. For
satisfiability, it is of course immediate that the complexities are the same for 0-ary and
n-ary queries.

One can generalize this reasoning to incorporate schemas. Such schemas would,
e.g., allow the labels Xi as leaf child of every node.

B Conjunctive Queries versus XPath 2.0

Actually, it is technically not difficult to write the queries of our lower bound proofs
as XPath 2.0 queries adhering to the grammar

locpath ::= ‘/’ locpath | locpath ‘/’ locpath | locstep
locpath ∩ locpath

locstep ::= axis ‘::’ ntst ‘[’ bexpr ‘]’ . . . ‘[’ bexpr ‘]’
bexpr ::= bexpr ‘and’ bexpr | locpath.
axis ::= ‘self’ | ‘child’ | ‘parent’ | ‘descendant’ |

‘descendant-or-self’ | ‘ancestor’ |
‘ancestor-or-self’ | ‘following’ |
‘following-sibling’ | ‘preceding’ |
‘preceding-sibling’.

where “locpath” is the start

production and “ntst” denotes Σ-symbols labeling document nodes or the star ‘∗’

6 We can assume w.l.o.g. that the free variables are the same in P and Q.

that matches all tags (“node tests”). All operators come from Core XPath 1.0, except
for the path intersection operator ‘∩’ which is from XPath 2.0. The semantics of the
path intersection operator can be found in [21]. Essentially, a locpath returns a binary
relation on a tree, and path intersection returns the intersection of two binary relations.

The most challenging query is the query QCT from the proof of Theorem 6. Recall
that QCT is graphically presented in Figure 5 in Appendix C.2, which significantly
helps for understanding the XPath 2.0 query.

QCT ≡
n

\

i=0

Φi

We define the queries used in QCT :

Φ0 = 1/parentn+k+3:: ∗ /childn+k+4::1

For 1 ≤ i ≤ n, we define Φi as

Φi = 1/ancestor::f/parent::t/parent::s/

(Ψ1
i ∩ Ψ2

i)/

child::t/child::m/descendant::1

where Ψ1
i is defined as

Ψ1
i = ./child::p/descendant::1/parenti+4:: ∗ /

childi+5::1/ancestor::p/parent::s

and Ψ2
i is defined as

Ψ2
i = ./parenti::r/parent::CT/

child::CT/child::r/childi::s

The XPath 2.0 version of query QCT can also be adapted accordingly for the proof
of Theorem 19, using predicate expressions.

C Proofs of Section 3

C.1 Complexity Upper Bounds

Proof of Lemma 4: Let Q be a CQ. There exists an NTA A such that L(A) = L(Q)
and A can be computed in exponential time from Q.

Proof. Essentially, when reading a tree, A guesses the positions where the variables
of Q should be placed for a satisfaction of the query and checks whether the correct
relations hold between the guessed positions.

As Child+, NextSibling+, and Following can easily be expressed by constant-size for-
mulas only using Child, Child∗, NextSibling, and NextSibling∗, we only need to consider
the latter four axes in this proof.

Intuitively, a state of A is of the form (Xa, Xh,Xd), where Xa, Xh, and Xd are
subsets of Var(Q) such that

– Xa is the set of variables that A guesses to be placed on the ancestors of the current
node,

– Xh is the set of variables that A guesses to be placed on the current node, and
– Xd ⊆ Var(Q) is the set of variables that A guesses to be placed on descendants of

the current node.

As A guesses a valuation of Q, we have that a variable of Q can never be placed on a
node u and on a descendant of u at the same time. Hence, for each state (Xa,Xh,Xd),
the pairwise intersections of Xa, Xh, and Xd are empty.

In order to define A formally, we need to specify States(A), Final(A), and Rules(A).
We define these components next:

States(A): The state set of A is the maximal subset of 2Var(Q)×2Var(Q)×2Var(Q) such
that the following conditions hold: For each (Xa,Xh,Xd) ∈ States(A),

(S1) the pairwise intersections of Xa, Xh, and Xd are empty,
(S2) for each x, y ∈ Xh, Q does not contain atoms of the form a(x) and b(y) with

a 6= b,
(S3) for each x ∈ Xh and each y ∈ Var(Q) such that Child(y, x) is an atom in Q,

y ∈ Xa, and
(S4) for each x ∈ Xh and each y ∈ Var(Q) such that Child∗(y, x) is an atom in Q,

y ∈ Xh ∪Xa.
Final(A): A state (Xa,Xh,Xd) of A is in Final(A) if and only if

(F1) Xa is empty; and
(F2) Xh and Xd partition Var(Q), i.e., Var(Q) = Xh ⊎Xd.

Rules(A): contains all rules of the form

ρ =
`

(Xa, Xh,Xd), a
´

→ L, (†)

where
(R1) for each x ∈ Xh, Q does not contain an atom of the form b(x) with b 6= a;
(R2) for every string (X1

a ,X
1
h,X

1
d) · · · (Xn

a ,X
n
h ,X

n
d) ∈ L, the following holds:

(a) Xd = X1
h ⊎ · · · ⊎Xn

h ⊎X1
d ⊎ · · · ⊎Xn

d ;
(b) if x ∈ Xh and Q contains an atom Child(x, y) then there is an i = 1, . . . , n

with y ∈ Xi
h;

(c) for each i = 1, . . . , n, Xi
a = Xa ∪Xh; and

(d) for each i = 1, . . . , n, if x ∈ Xi
h and Q contains an atom

– NextSibling(x, y), then i < n and y ∈ Xi+1
h ;

– NextSibling∗(x, y), then there exists a j, i ≤ j ≤ n such that y ∈ Xj
h.

In order to complete the proof of the lemma, we need to prove that

(1) A can be constructed from Q in exponential time; and
(2) L(A) = L(Q).

(1) It is clear that States(A) and Final(A) can be computed in time exponential in
|Q|. For Rules(A), we prove that we can compute an non-deterministic finite string au-
tomaton (NFA) N that accepts, for every (Xa,Xh,Xd) ∈ States(A) and a ∈ Alpha(A),
the language L in the rule

`

(Xa,Xh,Xd), a
´

→ L.

As N only reads symbols from States(A), we don’t need to check anymore that (S1)–
(S4) hold. Furthermore, (R1) also does not need to be checked by N . This needs to be

checked by the algorithm that constructs A, when deciding whether or not to define a
transition rule of the form (†). Hence, we only have to enforce (R2.a)–(R2.d).

We next describe N ’s accepting condition and the information that N needs to
remember when reading a string. As N only needs to maintain a polynomial amount
of information at the same time, it should be clear that N needs only an exponentially
large set of states. A state of N consists of (X∪

h ,X
∪
d , Yns, Yns∗), where the compo-

nents are defined as follows. When reading a prefix (X1
a,X

1
h,X

1
d) · · · (Xk

a ,X
k
h ,X

k
d) of

(X1
a ,X

1
h,X

1
d) · · · (Xn

a , X
n
h , X

n
d),

– X∪
h := X1

h ∪ · · · ∪Xk
h ,

– X∪
d := X1

d ∪ · · · ∪Xk
d ,

– Yns := {y | x ∈ Xk
h and NextSibling(x, y) occurs in Q},

– Yns∗ := {y | ∃1 ≤ i ≤ k, x ∈ Xi
h, y 6∈ Xi

h ∪ · · · ∪Xk
h and NextSibling∗(x, y) occurs

in Q}.

When reading symbol (Xk+1
a , Xk+1

h ,Xk+1
d), N checks whether

– Xk+1
h ∩ (X∪

h ∪X∪
d) = ∅, to partially ensure (R2.a);

– Xk+1
d ∩ (X∪

h ∪X∪
d) = ∅, to partially ensure (R2.a);

– Xk+1
a = Xa ∪Xh, to ensure (R2.c); and

– Yns ⊆ Xk+1
h , to ensure (R2.d)’s NextSibling-constraint.

and it changes its state to (X ′∪
h ,X

′∪
d , Y

′
ns, Y

′
ns∗) as follows:

– X ′∪
h = X∪

h ∪Xk+1
h ;

– X ′∪
d = X∪

d ∪Xk+1
d ;

– Y ′
ns = {y | x ∈ Xk+1

h and NextSibling(x, y) occurs in Q};
– Y ′

ns∗ = (Yns∗ −Xk+1
h)∪{y | x ∈ Xk+1

h , y 6∈ Xk+1
h , and NextSibling∗(x, y) occurs in

Q}.

Finally, N accepts if

– Xd = X∪
h ∪ X∪

d , to ensure (R2.a), together with the above conditions on the
transitions;

– for each x ∈ Xh such that Child(x, y) occurs in Q, x ∈ X∪
h , to ensure (R2.b);

– Yns = ∅, to ensure (R2.d)’s NextSibling constraints; and
– Yns∗ ⊆ Xk

h , to ensure (R2.d)’s NextSibling∗ constraint.

(2) It can be proved that N recognizes L by a simple induction on the depth of a tree.
�

Proof of Theorem 5 Containment of CQs w.r.t. an NTA is in 2EXPTIME.

Proof. We reduce the containment problem to testing intersection emptiness of three
NTAs, whose sizes are at most doubly exponential in the size of the input. The re-
sult then immediately follows, as intersection emptiness testing for three NTAs is in
PTIME. Let A be the schema NTA and let P and Q be the queries. According to
Lemma 4, we can compute AP and AQ such that L(AP) = L(P) and L(AQ) = L(Q)
in exponential time. It is well-known that the complement NTA AQ of AQ can be
computed in exponential time from AQ (which is already exponentially large). Hence,
the containment problem reduces to testing whether L(A)∩L(AP)∩L(AQ) = ∅, where
each of these three NTAs can be computed in doubly exponential time. �

C.2 Complexity Lower Bounds

We will reduce from the acceptance problem of an exponential space alternating Turing
Machine.

Alternating Turing Machines. An alternating Turing machine (ATM) [4] is a tuple
M = (Q,Σ, Γ, δ, q0) where Q = Q∀⊎Q∃⊎{qa}⊎{qr} is a finite set of states partitioned
into universal states from Q∀, existential states from Q∃, an accepting state qa, and a
rejecting state qr. The (finite) input and tape alphabets are Σ and Γ , respectively. We
assume that the tape alphabet contains a special blank symbol “ ”. The initial state
of M is q0 ∈ Q. The transition relation δ is a subset of (Q× Γ)× (Q× Γ × {L,R, S}).
The letters L, R, and S denote the directions left, right, and stay in which the tape
head is moved.

A configuration of M is a string w1qw2 where w1, w2 ∈ Γ ∗ and q ∈ Q. Here,
w1qw2 denotes that M ’s work tape contains the word w1w2, followed by blanks, that
its tape head points to the first symbol of w2, and that M is in state q. The successor
configurations of w1qw2 are defined analogously as for standard Turing Machines. When
q = qa or q = qr, we say that w1qw2 is a halting configuration. We can assume w.l.o.g.
that each halting configuration has no successor configurations, and that each non-
halting configuration has precisely two different successor configurations. Furthermore,
we can assume w.l.o.g. that each halting configuration is of the form qw1w2, i.e., upon
halting M moves its tape head entirely to the left.

A computation tree of M on an input word w is a (possibly infinite) tree t labeled
with configurations of M , such that t’s root bears the label q0w and, for each node u
labeled with w1qw2,

– if q ∈ Q∃, then u has only one child v and v is labeled with a successor configuration
of w1qw2,

– if q ∈ Q∀, u has two children and, for each successor configuration w′
1q

′w′
2 of

w1qw2, u has a child v labeled with w′
1q

′w′
2, and

– if q ∈ {qa, qr}, then u is a leaf.

A computation tree is accepting if all its branches are finite and each leaf is labeled
with a configuration in state qa. The language L(M) accepted by M is the set of words
w for which there exists an accepting computation tree of M on w.

An ATM is said to be normalized if each universal step only affects the state of
the machine, and additionally, the machine always goes from a universal state to an
existential, or vice versa. To be more precise, if q ∈ Q∃ (resp., q ∈ Q∀) and a ∈ Γ , then
{p | ((q, a), (p, b,D)) ∈ δ} ⊆ Q∀ ∪ {qa, qr} (resp., ⊆ Q∃ ∪ {qa, qr}). Moreover, if q ∈ Q∀

and ((q, a), (p, b,D)) ∈ δ, then b = a and D = S. Any ATM can easily be reduced in
polynomial time to a normalized ATM that accepts the same language. Thus, in the
sequel, we assume that all ATMs are normalized. There is a (normalized) exponential
space bounded ATM whose word problem is 2EXPTIME-hard [4].

In our reduction, we will actually work with an ATM without input. In order to
do this, given an ATM M whose word problem is 2EXPTIME-complete, and an input
word w, we first construct an ATM Mw that, when given the empty word as input,
works in space exponential in |w| and accepts if and only if M accepts w. This is
achieved by letting Mw start by writing w on its work tape and return to the first tape
position. After this, it simulates M .

Let M be a normalized exponentially space bounded ATM and w ∈ Σ∗ an input
for M of length n. Let Mw = (Q,Σ, Γ, δ, q0) be constructed from M and w as described

above. We may assume that the non-blank portion of the tape of the computation of
Mw on the empty word ε is never longer than 2n.

Goal of the Proof. The goal of our proof is to construct, in polynomial time, a tree
automaton ACT , and a conjunctive query QCT such that QCT is valid w.r.t. ACT if
and only if Mw does not have an accepting computation tree. As 2EXPTIME is closed
under complement, this shows that CQ validity w.r.t. an NTA is 2EXPTIME-hard.

Intuitively, ACT will accept trees that encode possible computation trees for Mw .
That is, ACT checks whether its input is such an encoded computation tree and that
the configurations of Mw are correctly encoded, but will not check consistency w.r.t.
the transition relation of Mw, i.e., the relation between successive configurations. This
will be taken care of by QCT . More precisely, QCT will match in a tree accepted by
ACT exactly when a successive configuration does not respect the transition relation
of Mw. Thus, QCT is valid w.r.t. ACT if every finite computation tree with correctly
encoded configurations contains a violation w.r.t. the transition relation of Mw, i.e.,
there is no accepting computation tree for Mw.

The Encoding

Encoding Computation Trees. Possible computation trees of Mw will be encoded
as illustrated in Figure 1(a). More formally, let t be a computation tree of Mw . The
encoded computation tree enc(t) is obtained from t by replacing each node u with a
tree tu, where

– the root(tu) is labeled CT ;

– the leftmost child of root(tu) is labeled r (and will be the “root” of an encoding of
the configuration at u); and

– for each child ui of u, root(tu) has a subtree enc(t/ui) where t/ui denotes the
subtree of t rooted at ui.

Hence, Figure 1(a) shows a fragment of an encoded computation tree representing a
universal configuration (left), and its two successor configurations (right). We know
that the CT -labeled node on top represents a universal configuration, because it has
two CT -labeled children.

Encoding Configurations. We first encode a configuration of Mw as a sequence of 2n

configuration cells, and we will discuss later how we encode this sequence of configura-
tion cells as a tree. A configuration cell contains the content of a tape cell of Mw , plus
some additional information. In particular, the set of configuration cells is partitioned
into three types:

– The set BCells of basic cells is equal to Γ . These cells represent tape cells that
are not currently visited by the tape head, and also weren’t visited in the last
configuration.

– The set CCells of current tape-head cells is equal to Γ × δ. These cells represent
tape cells that are currently visited by the tape head. The letter from Γ represents
the cell content, while the transition from δ represents the transition by which Mw

arrived in the current configuration.

– The set PCells of previous tape-head cells is equal to Γ × (Q × Γ). These cells
represent tape cells that were visited by the tape head in the last configuration,
but aren’t in the current one. The letter from Γ represents the current cell content,
while the pair from Q× Γ represent the cell content and the machine state in the
last configuration.

Let C1 and C2 be two sequences of 2n configuration cells. We will argue how a few
simple constraints can ensure that C2 encodes a valid successor configuration of C1.
To this end, think of C2 lying on top of C1 in the obvious manner (i.e., the leftmost
configuration cell of C2 lying on top of the leftmost configuration cell of C1, etc.). We
divide the set of constraints into two: a set of horizontal constraints ensuring consis-
tency inside C1 and inside C2, and a set of vertical constraints ensuring consistency
between C1 and C2.

The set H(Mw) of horizontal constraints enforce the following rules:

(H1) The only cells allowed to the left of a cell (a, ((q1, b), (q2, c, R))) ∈ CCells are cells
(c, (q1, b)) ∈ PCells.

(H2) The only cells allowed to the right of a cell (a, ((q1, b), (q2, c, L))) ∈ CCells are
cells (c, (q1, b)) ∈ PCells.

(H3) The only cell allowed to the right of cell ∈ Γ is .

The set V (Mw) of vertical constraints enforce the following rules.

(V1) On top of a cell a ∈ BCells, the only allowed cells are a itself and any (a, ((q1, b), (q2, c,m))) ∈
CCells such that m ∈ {L,R}. That is, Mw just moved to the current position
from the left or from the right. The current position is not overwritten.

(V2) On top of a cell (a, ((q1, b), (q2, c,m))) ∈ CCells, the only allowed cells are
– any (d, (q2, a)) ∈ PCells and
– any (d, ((q2, a), (q3, d,m

′))) ∈ CCells, if m′ = S.
(V3) On top of a cell (a, (q, b)) ∈ PCells, the only allowed cells are

– a ∈ BCells, and
– any (a, ((q1, b), (q2, c,m))) ∈ CCells such that m ∈ {L,R}.

Figure 3 shows an example of a valid transition from C1 to C2 w.r.t. the horizontal
and vertical constraints.

The following is now easy to see:

Observation 17. If C1 is a valid encoding of a configuration, then C2 is a valid encoding
of a successor configuration of C1 if and only if all conditions (H1–H3,V1–V3) are
fulfilled.

Encoding Configurations as Trees. We now describe how the configurations of Mw

will be encoded as trees, thereby filling in the remaining structure of the empty r-rooted
trees in Figure 1(a).

Notice that there are a polynomial number of possible configuration cells for Mw ,
say k. In this section, we associate a fixed number i in {1, . . . , k} to each configuration
cell, and we refer to it as configuration cell i.

Each sequence of 2n configuration cells will be represented by a full binary tree
of height n, in which each leaf represents a configuration cell. For technical reasons,
the configuration cells will not be represented by labels, but rather by cell gadgets.
Also, each node except the root will be equipped with a navigation gadget that signals
whether the node is the left or right child of its parent.

PCells CCells

CCells BCells

a b

c b

(p, c) ((p, c), (p′, a,R))

((q, e), (p, c, S))

Fig. 3. A representation of a Turing machine transition. The transition used is t =
((p, c), (p′, a,R)), i.e., the machine is in state p, reads symbol c, writes an a, and moves
to the right. The configuration cell encoding the head originally was (the upper left cell)
“remembers” the previous state and tape symbol, so that the horizontal constraints
can verify that the transition t was actually allowed from the previous configuration.

s

s p

0

1

s

(a) A skeleton node which
is the left child of its parent,
with its two skeleton node
children and its navigation
gadget.

c

m

0

1

0

0

f

0

1

0

1
(b) A cell gadget encoding configuration cell 2
in a system with 4 possible configuration cells,
where configuration cells number 2 and 4 are not
allowed on top of configuration cell 2.

Fig. 4. Gadgets for the CQ validity proof.

More formally, an encoded configuration tree is obtained as follows. We start with
a full binary tree of height n. The root gets label r and the other nodes label s. The
s-labeled nodes are called skeleton nodes. A navigation gadget is a path (i.e., unary
tree) consisting of three nodes. Its root has label p, and the two other nodes 0 and
1, respectively. In an i-gadget, for i ∈ {0, 1}, the node with label i sits above the one
with label 1 − i on the path. A skeleton node v which is the left child of its parent is
equipped with a 0-gadget (by making v the parent of the p-labeled node in the gadget),
while a right child skeleton node gets a 1-gadget; see Figure 4(a).

Each leaf skeleton node (one that has no skeleton node children) is equipped with
a configuration cell gadget, which is defined as follows. Recall that the configuration
cells for Mw are numbered from 1 to k. We describe the gadget for configuration cell
i. The root of the gadget has label c (for cell) and has two children, labeled m (for
me) and f (for forbidden), respectively. Under the m-labeled node a path of length k
is attached. On this path, all nodes have label 0, except the i-th node from the top,
which has label 1. Under the f -labeled node, there is also a path of length k. Here,
each jth node from the top where (i, j) ∈ V (Mw) has label 0 while all the positions j

where (i, j) 6∈ V (Mw) have label 1; see Figure 4(b). This concludes the description of
an encoded configuration tree.

The Reduction

The Automaton Definition. The schema is represented by a nondeterministic tree
automaton ACT . The automaton should accept a tree t if and only if it satisfies the
following properties. For technical reasons, we need t to start at the root with a path
of length k to the first CT -labeled node. All nodes on this path have label I and each
of them has exactly one child.

1. The subtree rooted at the highest CT -labeled node is a strategy tree. This involves
the following steps.
(a) Each CT -labeled node has exactly one child that is labeled r (i.e., the root of

an encoded configuration tree).
(b) Only configuration cell gadgets that correctly encode configuration cells and

vertical constraints of V (Mw) appear.
(c) Each encoded configuration tree is complete and has the correct height.
(d) Each skeleton node has a correctly assigned navigation gadget.

2. The CT -labeled nodes on even depth either have zero or two CT -labeled children;
the CT -labeled nodes on odd depth either have zero or one CT -labeled child. This
reflects the alternating universal and existential moves of Turing Machine Mw.

3. For each CT -labeled node representing a universal configuration, the two child CT -
labeled nodes represent two encoded configuration trees with two different CCells
configuration cells.

4. All horizontal constraints from H(Mw) are satisfied.
5. The highest encoded configuration tree has the start configuration cell (, ((q0,), (q0, , S)))

as its leftmost configuration cell. Recall that q0 is Mw’s start state, and that Mw’s
computation starts with an empty tape. This verifies that the computation tree
starts with the correct initial configuration of Mw.

6. Each CT -labeled node without CT -labeled node children has a tree attached to it
that encodes a final configuration, i.e., its leftmost configuration cell is of the form
(a, ((q1, b), (q2, c,M))) ∈ CCells with q2 = qa. Recall that qa is the accepting state
of Mw and that, upon accepting, Mw moves its tape head entirely to the left. This
verifies that each path in the strategy tree leads to an accepting configuration of
Mw.

To construct ACT , we construct an automaton for each of the above properties, and
use the standard construction for accepting their intersection. It is not hard to see
that each property can be checked by a tree automaton whose size is polynomial in
the size of the description of Mw — one can essentially hard code each property into
an automaton. We briefly describe the automaton A3 for checking Property 3, as it is
technically the most difficult one.

If we think of A3 as a bottom up automaton, it starts by reading the configuration
cell gadgets, and assigns states to their roots; if a gadget represents a configuration
cell θ in CCells, A3 remembers the configuration cell in its state, i.e., it enters a state
qθ . Otherwise, it assigns a neutral state s. When going up to the root of each encoded
configuration tree, A3 simply propagates the state qθ upwards and checks that the
encoded configuration subtree does not contain a second θ′ ∈ CCells. When A3 is at the
root of an encoded configuration subtree, it propagates qθ up to the CT -labeled parent.

In the next transition, when going from two CT -labeled children to a CT -labeled
parent (see also Fig. 1(a)), it tests whether it visited the two CT -labeled children
in two different states qθ 6= qθ′ , i.e., whether the attached encoded configuration trees
contained different configuration cells θ 6= θ′ from CCells. Together with the automaton
for Property 2 which checks that CT -labeled nodes with one and two CT -labeled node
children alternate correctly, this ensures Property 3.

The query. We first define a formula that states that two nodes r1 and r2 are roots of
two successive encoded configuration trees, i.e., encoded configuration trees such that
the second encodes the successor configuration of the first.

Succ(r1, r2) ≡ ∃s1, s2 : r(r1) ∧ r(r2) ∧ CT (s1) ∧ CT (s2)

∧ Child(s1, r1) ∧ Child(s2, r2) ∧ Child(s1, s2)

Next, we define a formula to state that two nodes, x and y, belong to successive encoded
configuration trees and are both at level i > 0 of their respective encoded configuration
tree. Here, Childi(x, y) abbreviates the formula stating that y can be reached from x
by following the Child -axis i times.

Φi(x, y) ≡ ∃r1, r2 : s(x) ∧ s(y) ∧ Succ(r1, r2) ∧ Childi(r1, x) ∧ Childi(r2, y)

Now we can express that x and y have the property Φi and, additionally, that they are
either both left children of their parents, or both right children.

Ψi(x, y) ≡ ∃px, py, tx, ty, z : Φi(x, y) ∧ p(px) ∧ p(py) ∧ 1(tx) ∧ 1(ty)

∧Child(x, px) ∧ Child(y, py) ∧ Child+(px, tx) ∧ Child+(py, ty)

∧Childi+4(z, tx) ∧ Childi+5(z, ty)

With the help of the above predicates, we can now express that two leaf skeleton nodes
belong to successive encoded configuration trees and that they correspond to the same
position in the configurations. Recall that n is the depth of the encoded configuration
trees.

SameCell(s1, s2) ≡

∃x1, . . . , xn−1, y1, . . . , yn−1 :
^

1≤i<n−1

(Child(xi, xi+1) ∧ Child(yi, yi+1))

∧ Child(xn−1, s1) ∧ Child(yn−1, s2) ∧ Ψn(s1, s2) ∧
^

1≤i≤n−1

Ψi(xi, yi)

Finally, we are ready to define our query QCT for the Turing Machine Mw, which states
that somewhere, a vertical constraint of V (Mw) is violated. Recall that k is the number
of configuration cells in CT .

QCT ≡ ∃s1, s2, t1, t2, f1,m2, p1, p2, z : SameCell(s1, s2) ∧ Child(s1, t1) ∧ Child(s2, t2)

∧ f(f1) ∧m(m2) ∧ 1(p1) ∧ 1(p2)

∧ Child(t1, f1) ∧ Child(t2,m2) ∧ Child+(f1, p1) ∧ Child+(m2, p2)

∧ Childn+k+3(z, p1) ∧ Childn+k+4(z, p2)

For a graphical representation of QCT , see Figure 5.

∗

∗

CT

r CT

r

s

p s

1 p

CT 1

r CT

r

s

c p s

f 1 p c

∗ 1 m

1 1

ch
ild

1

child 1

chi
ld

1+
4

child 1+
5

ch
ild

n

child n

child
n+4

child n+5

child
n+k+3 child n+k+4

(x1)

(px)

(tx)

(r1)

(s1)

(r2)

(s2)

(y1)

(py)

(ty)

(p1)

(z)

(xn)

(t1)

(f1)
(tx)

(px)

(r1)

(s1)

(r2)

(s2)

(yn)

(py)

(ty)

(t2)

(m2)

(p2)

(z)

(z)

Fig. 5. Graphical representation of QCT from the proof of Theorem 6. The small labels
between braces denote the variable names used in the proof.

C.3 The Lower Bound for DTDs

The main technical observation one has to make is stated in Lemma 18, which was
probably first published in [20].

Let A be an NTA. We define the annotated tree language of A to be the set of trees
in L(A) that are annotated by their accepting runs. More formally, the annotated tree
language of A is the set of trees t over Alpha(A) × States(A) where

– πAlpha(A)(t) ∈ L(A) and
– πStates(A)(t) is an accepting run of A on πAlpha(A)(t).

Here, πAlpha(A)(t) denotes the projection of t on Alph(A), that is, πAlpha(A)(t) is ob-
tained from t by relabeling each label (a, q) to a. (Similarly, πStates(A)(t) relabels each
(a, q) to q.)

Lemma 18 ([20]). Given an NTA A, there exists a DTD DA recognizing the anno-
tated tree language of A. Moreover, DA can be constructed in quadratic time.

Theorem 19. Validity of CQ(Child,Child+) w.r.t. a DTD is 2EXPTIME-complete.

Proof (Sketch). We describe the changes that have to be made to the proof of Theo-
rem 6. Let DACT

be the DTD accepting the annotated tree language of ACT . Hence,
DACT

defines trees over Alpha(ACT) × States(ACT). For our reduction, we cannot
simply use the set of annotated trees of ACT , as this would require disjunction over
alphabet symbols in the definition of the conjunctive query QCT . Hence, the schema
DTD DCT is obtained from DACT

by replacing each rule of the form (a, q) → L(a,q)

where a ∈ {CT , r, s, p, 1, c,m, f} with (a, q) → L(a,q) · a. Hence, we change L(DCT)
such that, in each of its trees, each (a, q)-labeled node gets an a-labeled child.

It remains to describe how QCT changes: here, we simply need to replace each atom
of the form a(x) (where a ∈ {CT , r, s, p, 1, t,m, f}) with Child(x, y)∧ a(y). The rest of
the proof carries through. �

D Proofs of Section 4

Proof of Lemma 7: There is a polynomial p such that if a CQ Q is satisfiable with
respect to an NTA A, then there is a tree t ∈ L(Q) ∩ L(A) and a satisfaction θ of Q
on t such that for any variables x, y ∈ Var(Q), the length of the path from θ(x) to θ(y)
is at most p(|A|, |Q|).

Proof. Let t be a tree such that t |= Q and t ∈ L(A), let θ be a satisfaction of Q on
t, let T = {θ(x) | x ∈ Var(Q)}, and let r be an accepting run of A on t. Furthermore,
let S be the set of nodes that are least common ancestors of some subset of T of size
at least 2. Suppose that there are two nodes u, v ∈ T ∪ S such that u is an ancestor
of v, there are no nodes in T ∪ S on the path ρ from u to v, and the length of ρ is
more than |States(A)| · |Σ| + 1. Then there are two distinct nodes w 6= u and w′ 6= v
on ρ such that w is an ancestor of w′, r(w) = r(w′), and labt(w) = labt(w′). Let t′

be the tree obtained from t by replacing the subtree rooted at w with the one rooted
at w′. Clearly, r restricted to t′ is still an accepting run of A, and θ, restricted to t′ is
still a satisfaction of Q. This process can be repeated until no nodes u, v ∈ T ∪ S can
be found that satisfy the above condition. When this is achieved, the distance, for any
x, y ∈ Var(Q), between θ(x) and θ(y), is at most 1+ |Var(P)| · (|Σ| · |States(A)|+1). �

Proof of Theorem 8. Satisfiability of CQs with respect to an NTA is in NP.

Proof. We can assume w.l.o.g. that A is reduced, i.e., each state of A can be used in an
accepting run.7 We know from Lemma 7 that if a query Q is satisfiable with respect
to an NTA A, then there is a tree t ∈ L(A) and a satisfaction θ of Q on t such that
for any x, y ∈ Var(Q), the distance between θ(x) and θ(y) is small (polynomial). This
means that if Q is satisfiable with respect to A, then the NP algorithm can guess a
polynomial size connected subset t′ of nodes of t and a valuation θ of Q on t′. The
algorithm also guesses what states an accepting run r of A on t would assign to the
nodes in t′. It then verifies that θ is a satisfaction of Q (in polynomial time), and that t′

can be extended to a tree in L(A) such that the states assigned to nodes are consistent
with the transitions of A. The last check is done as follows. For each node v of t′ with
label a and it’s assigned state q, let v1, . . . , vn be the children of v in t′, with labels
a1, . . . , an and assigned states q1, . . . , qn, respectively. As A is reduced we only need to
test whether there exist transition rules (qi, ai) → Li in A for each 1 ≤ i ≤ n, and that
there exist z0, . . . , zn ∈ States(A)∗ such that there is a transition rule (q, a) → L in A
with z0q1z1 · · · zn−1qnzn ∈ L. This last test can be performed in polynomial time by a
sequence of n reachability tests on the automaton representing L. �

D.1 Complexity Lower Bounds

For some axes, the result is already known:8

Theorem 20 (Wood [22]). Let A be any element of {Child, Child+, Child∗}. Then
Satisfiability for XPath expressions using only axis A w.r.t. a DTD is NP-hard.

The proof relies on the following Lemma:

Lemma 21 (Wood [22]). The following problem is NP-hard. Given a (deterministic)
regular expression R over alphabet Σ, does L(R) contain a string that contains each
Σ-symbol?

Proof. We reduce from Vertex Cover. Recall that for Vertex Cover we are given
a graph G = (V,E) and a positive integer k ≤ |V |, and ask whether there is a subset
V ′ ⊆ V such that |V ′| ≤ k and, for each edge (u, v) ∈ E, at least on of u and v
belongs to V ′. Let G = (V,E) and k be an arbitrary instance of Vertex Cover. We
will construct a (deterministic) regular expression R over a finite alphabet Σ such that
there is a string in L(R) containing each Σ-symbol if and only if G has a vertex cover
of size k or less.

Let V = {v1, . . . , vn} and E = {e1, . . . , em}. For each 1 ≤ i ≤ n, let Ei =
{ei,1, . . . , ei,mi

}, where mi is the degree of vi (i.e., the number of edges incident to
vi. The alphabet Σ is given by E ⊎ {#}, where each ei ∈ E, 1 ≤ i ≤ m, is viewed as a
distinct symbol. Let S be the regular expression

e1,1 · · · e1,mi
+ · · · + en,1 · · · en,mn .

7 Transforming an NTA to a reduced NTA is in polynomial time.
8 To the best of our knowledge, the full is unpublished. For the convenience of the

referees, we provide Wood’s proof, which he kindly provided in personal communi-
cation.

Then R = (S#)k−1S, that is, k concatenated occurrences of expression S, separated
by #-symbols.

Let V ′ = {vj1 , . . . , vjk
} be a vertex cover of size k. We find a string w ∈ L(R) by

selecting the jith alternation of S for 1 ≤ i ≤ k. So w is

ej1,1 · · · ej1,mj1
· · ·#ejk,1 · · · ejk,mjk

.

Since V ′ is a vertex cover for G, w must include every edge in E and hence every
symbol in Σ.

Let w ∈ L(R) be a string which includes every symbol in Σ. String w must be of the
form w = w1#w2# · · ·#wk, where each wi, 1 ≤ i ≤ k, is one of the n strings in L(S).
Assume that wi corresponds to the jith alternation in S, that is, wi = eji,1 · · · eji,mji

,
1 ≤ i ≤ k. Recall that the jith alternation in S corresponds to the set of edges
adjacent to vertex vji

. Let V ′ = {vj1 , . . . , vjk
}. Since w contains all symbols in Σ, and

the symbols in Σ − {#} correspond to edges in E, V ′ must be a vertex cover for G,
and |V ′| ≤ k.

It may be that the regular expressions in this construction are not deterministic.
However, the only situation in which the regular expression cannot be rearranged so
that it is deterministic is when there are two nodes which are adjacent to each other
and nothing else. In this case, the problem is trivial if there are no other nodes. If
there are other nodes, then the graph is disconnected in which case the problem can
be decomposed. If we assume that the graph is connected then the regular expression
can always be made deterministic. �

Given Lemma 21, the rest is easy:

Proof ((of Theorem 20)). By reduction from the problem in Lemma 21. Given a regular
expression R over Σ, the DTD accepts all trees of depth 2 in which the children of the
root form a string in L(R), and the XPath expression tests whether each Σ-symbol
occurs below the root. �

Proof of Theorem 9. Let Axis be an any element of {Child, Child+, Child∗, NextSibling,
NextSibling+, NextSibling∗, Following}. Then Satisfiability of CQ(Axis) w.r.t. a DTD
is NP-hard.

Proof. Three cases are immediate from the stronger result in Theorem 20. We provide
a proof for every Axis in {NextSibling, NextSibling+, NextSibling∗, Following}. For
NextSibling, we reduce from Shortest Common Superstring, and for all other axes,
we reduce from Shortest Common Supersequence. Thereto, let S and k be an input
of Shortest Common Superstring (resp., Shortest Common Supersequence).
We first provide the proofs for Axis in {NextSibling,NextSibling+, Following}, and then
explain how these can be adapted for NextSibling∗. The DTD d for the former three
cases has only one rule, namely

r → (a1 + · · · + an)k,

where Σ = {a1, . . . , an}. That is, the DTD defines trees of depth 2, in which the
root has precisely k children. Let S = {b11 · · · b

n1

1 , . . . , b1m · · · bnm
m }. Then the query Q is

defined as shown in Figure 6. Here, each arrow denotes Axis. It is easy to see that Q is
satisfiable w.r.t. d if and only if Shortest Common Superstring (resp., Shortest

Common Supersequence) has a solution for S and k if Axis is NextSibling (resp.,
Axis is NextSibling+ or Following).

b11 b21 · · · bn1

1

...
...

b1m b2m · · · bnm
m

Fig. 6. Gadget for the proof of Theorem 9.

If Axis is NextSibling∗, we adjust the DTD to

r → ((a1 + · · · + an)#)k,

where # does not appear in any string in S. The query Q is adapted so that, likewise,
between every pair of Σ-symbols, the symbol # must occur. �

E Proofs of Section 5

We first recall some elementary definitions about data words and data trees [3].

Definition 22. – A data word w = w1 · · ·wn is a finite sequence over Σ ×∆, i.e.,
each wi is of the form (ai, di) with ai ∈ Σ and di ∈ ∆. We denote ai by lab(wi).

– A data tree t over Σ has a set of nodes, where every node v has a label lab(v) ∈ Σ
and a data value in ∆.
For a data word w = w1 · · ·wn we refer to {1, . . . , n} as the positions of w. Here,

each position i corresponds to the pair wi consisting of a label and a data value.

The proofs of the upper bounds make use of the following transformations be-
tween data trees over alphabet Σ and (non-data) trees over the alphabet Σn =
Σ × {d1, . . . , dn, ∗}, for n ∈ N.

The set of (non-data) trees over Σn is denoted T (Σn). We first define functions f6∼
and f∼, mapping trees from T (Σn) to data trees. Given a tree t ∈ T (Σn), function f6∼
relabels t and adds data values so as to ensure the following conditions.

1. If labt(v) = (a, di), for a ∈ Σ and i ∈ {1, . . . , n}, then node v of f6∼(t) has label a
and data value di.

2. If labt(v) = (a, ∗), for a ∈ Σ, then node v of f6∼(t) has label a and a unique data
value, i.e., a data value that does not appear anywhere else in f6∼(t).

Function f∼, is defined similarly, but all nodes with label (a, ∗) in t get the same data
value dn+1.

Lemma 23. Given a query Q in CQ(∼, 6∼), one can construct NTAs A∼
Q and A 6∼

Q in
exponential time such that for each Σn-tree t it holds

(a) t ∈ L(A∼
Q) iff f∼(t) ∈ L(Q), and

(b) t ∈ L(A 6∼
Q) iff f6∼(t) ∈ L(Q).

Proof. The proof is an extension of the proof of Lemma 4, and we use the notation and
definitions from that proof. We prove (23 (b)). The proof for (23 (a)) is very similar.

Given Q ∈ CQ(∼, 6∼), we construct an NTA A over Σn such that t ∈ L(A) iff
f6∼(t) ∈ L(Q). A state of A has the form (Xa,Xh,Xd, F), where Xa,Xh,Xd are as
in the proof of Lemma 4, and F : Var(Q) → {d1, . . . , dn, ∗} is a function. Formally,
(Xa,Xh,Xd, F) ∈ States(A) if (Xa,Xh, Xd) fulfill the conditions (S1)–(S4) in the proof
of Lemma 4 and additionally

1. if x ∼ y is an atom of Q, then F (x) = F (y) and, if F (x) = ∗, then either both x
and y belong to Xh, or none of them do, and

2. if x 6∼ y is an atom of Q, then F (x) 6= F (y) or F (x) = F (y) = ∗ and not both of
x and y belong to Xh.

A state (Xa,Xh,Xd, F) is accepting if (Xa,Xh,Xd) satisfy conditions (F1)–(F2)
in the proof of Lemma 4.

Rules(A): contains all rules of the form

ρ =
`

(Xa,Xh,Xd, F), (a, λ)
´

→ L, (†)

where
(R’1) for each x ∈ Xh, F (x) = λ and Q does not contain an atom of the form b(x)

with b 6= a;
(R’2) for each (X1

a ,X
1
h,X

1
d , F

1) · · · (Xm
a ,X

m
h , X

m
d , F

m) ∈ L, we have F 1 = · · · =
Fm = F ; and

(R’3) (R2) from the proof of Lemma 4 is satisfied.

For the same reasons as in the proof of Lemma 4, automaton A can be computed
in exponential time. The function F increases the state space with a factor of at most
|Var(q)|n.

We show that L(A) = {t ∈ T (Σn) | f6∼(t) |= Q}. For the inclusion from left to
right, take t ∈ L(A). Consider the valuation θ of Q on t induced by a run of A on t
by setting θ(x) = v if the run assigned state (Xa,Xh,Xd, F) to v, with x ∈ Xh. The
proof of Lemma 4 immediately implies that this valuation is a satisfaction of Q′ on
f6∼(t), where Q′ is obtained from Q by removing the ∼-atoms. We claim that θ is also
a satisfaction of Q on f6∼(t). Indeed, if x ∼ y is a literal of Q, then, for every state used
in the run of A on t, F (x) = F (y) = λ. If λ = di, for some i ∈ {1, . . . , n} then θ(x)
and θ(y) in t both have di as the second component of their label. Thus θ(x) and θ(y)
in f6∼(t) have the same data value di. If λ = ∗, then θ(x) = θ(y) and we also have that
θ(x) and θ(y) in f6∼(t) have the same data value. Analogously for literals of the form
x 6∼ y. Hence, f6∼(t) |= Q.

For the inclusion from right to left, take a t ∈ T (Σn) such that f6∼(t) |= Q. Let θ be
a satisfaction of Q on f6∼(t). For each x ∈ Var(Q), let H(x) be the second component
of the label of θ(x) in t. If x ∼ y is a literal of Q, then H(x) = H(y) since θ(x) and θ(y)
have the same data value in f6∼(t). If H(x) = H(y) = ∗ then we must have θ(x) = θ(y),
since there is no other node in f6∼(t) that has the same data value as θ(x). Analogously
for literals x 6∼ y.

This means that there is an accepting run r of A on t, such that if r(v) =
(Xa,Xh,Xd, F), then F = H and, for each x ∈ Var(Q), x ∈ Xh if and only if θ(x) = v.
Keeping in mind that the definition of H ensures that the necessary states are available,
the proof of Lemma 4 guarantees the existence of such a run. �

We next show that if Q ∈ CQ(∼)∪CQ(6∼) the containment test only needs to consider
very particular trees.

Let P be a query with variables from {x1, . . . , xn} and let td be a data tree matching
P with satisfaction θ. Then we write gn(td, θ) for the Σn-tree resulting from td as
follows.

– If labtd(v) = a and v = θ(xi), for some i, then v gets label (a, dj) where j is
minimal with θ(xj) ∼ v.

– Otherwise, v gets label (a, ∗) if labtd(v) = a.

Lemma 24. Let P,Q ∈ CQ(∼, 6∼) and td be a data tree such that td |= P with satis-
faction θ but td 6|= Q. Then the following hold.

(a) f∼(gn(td, θ)) |= P and f6∼(gn(td, θ)) |= P .
(b) If Q ∈ CQ(∼) then f6∼(gn(td, θ)) 6|= Q.
(c) If Q ∈ CQ(6∼) then f∼(gn(td, θ)) 6|= Q.

Proof. Let P,Q, td, θ as stated. It is straightforward that θ is a match of P for both
f∼(gn(td, θ)) and f6∼(gn(td, θ)).

Let us assume Q ∈ CQ(∼). We show (b) by proving that f6∼(gn(td, θ)) |= Q
would imply td |= Q, a contradiction. But this easily follows from the fact that td
and f6∼(gn(td, θ)) only differ on their data values and ∼ on f6∼(gn(td, θ)) is actually
a refinement of ∼ on td. The proof of (c) similarly uses the fact that ∼ on td is a
refinement of ∼ on f∼(gn(td, θ)). �

Proof of Theorem 12. Each of QC(∼, 6∼ | ∼), QC(∼, 6∼ | 6∼), QC(∼ | ∼, 6∼),w.r.t.
an NTA is 2EXPTIME-complete.

Proof. Hardness is immediate from Theorem 6.
For the upper bound on QC(∼, 6∼ | ∼) we observe that from Lemma 24 (a) and (b)

it follows that if td is a counterexample to the containment of P in Q w.r.t. an NTA A
then f6∼(gn(td, θ)) is a counterexample as well. The upper bound then easily follows by
combining A 6∼

P and A 6∼
Q as defined in Lemma 23 with the NTA which accepts a Σn-tree

t iff its Σ-projection is accepted by A.
The upper bound on QC(∼, 6∼ | 6∼) follows similarly from Lemma 24 (a) and (c).
For the upper bound on QC(∼ | ∼, 6∼) it suffices to observe, that if Q uses 6∼ but

P does not, then P ⊆ Q holds iff L(A) = ∅ because in this case trees in which all data
values are the same never match Q. �

Lemma 25. Given P,Q1, . . . , Qk ∈ CQ(∼, 6∼), and an NTA A, queries P ′, Q′ ∈ CQ(∼
, 6∼) and an NTA A′ can be computed in polynomial time such that L(P) ∩ L(A) ⊆
L(Q1) ∪ · · · ∪ L(Qk) iff L(P ′) ∩ L(A′) ⊆ L(Q′).

Proof. This proof is an adaptation of a proof from [16]. Given CQs Q1, . . . , Qk and
automaton A, we construct CQs P ′, Q′, and NTA A′ such that P ′ ⊆ Q′ w.r.t. A′ if
and only if P ⊆ Q1 ∨ · · · ∨Qk w.r.t. A.

Figure 7 describes a number of query gadgets that we will need in the reduction.
The double lines have an extended meaning here; e.g., the double line from T ′ to Q1

means that we have a Child+(x, y) from the variable x carrying T ′ to every variable in
the copy of Q1. The arrows between the T ′-labeled nodes in GQ indicate NextSibling
predicates. The gadget GQi

is parameterized by i. Figure 8 shows how copies of the
gadgets are put together to form queries P ′ and Q′. Each copy of a gadget is unique, i.e.,
for each new copy, the variables are renamed. The automaton A′ checks the following
properties.

1. There are exactly 2k − 1 nodes with label S and 2k − 1 nodes with label T .
2. There are exactly k · 2(k − 1) + 1 nodes with label T ′.
3. The root has label R and has exactly one child. This child has label S.
4. Each S-labeled node, except one, has one S-labeled child.

Q1 Q2 Qk

T ′ T ′ T ′

T

T ′

T

P

T ′

T

Qi

GQ GP GQi

Fig. 7. Gadgets used in the proof of Lemma 25.

P ′ Q′

R

S

GQ

S

GQ S

GP S

GQ

S

GQ

k
−

1
tim

es

k
−

1
tim

es

R

S

GQ1 S

GQ2

S

GQk

Fig. 8. Queries P ′ and Q′ from the proof of Lemma 25.

5. Each S-labeled node has exactly one child labeled T .
6. Each T -labeled node has exactly k children, each labeled T ′, except the T -labeled

node that is child of the kth S-labeled node, counted from the root. This node has
exactly one child, labeled T ′. We call this the distinguished T -labeled node.

7. Each T ′-labeled node has exactly one child.
8. The tree rooted at the grandchild of the distinguished T -labeled node is accepted

by A.

Assume that P ⊆ Q1 ∨ · · · ∨ Qk w.r.t. A. Consider a tree t ∈ L(P ′) ∩ L(A′). Let
s1, . . . , sk, . . . , s2k−1 be the S-labeled nodes of t, ordered by increasing distance from
the root. For j ∈ {1, . . . , 2k − 1}, let tj be the tree rooted in the T -labeled child of
sj . For each j ∈ {1, . . . , 2k − 1} − {k}, we note that since GQ matches in the subtree
rooted at the T -labeled child of sj , so does GQi

, for every i ∈ {1, . . . , k}.
Query GP must match in tk. Since tk only has one T -labeled node, any such match-

ing must assign the topmost variable of GP to the root of tk. This means that P must
match in the tree t′k, rooted in the sole grandchild of the root of tk. Since A must
accept t′k, we conclude that Q1 ∨ · · · ∨Qk matches in t′k, i.e., there is an i ∈ {1, . . . , k}
such that Qi matches in t′k. This, in turn, means that GQi

matches in tk.
We can now construct a matching of Q in t. The gadgets GQ1

, . . . , GQi−1
match

in tk−i+1, . . . , tk−1, respectively, GQi
matches in tk, and GQi+1

, . . . , GQk
match in

tk+1, . . . t2k−i, respectively.
Assume, on the other hand, that P 6⊆ Q1 ∨ · · · ∨ Qk w.r.t. A. Let p be a tree in

(L(P)∩L(A))−L(Q1∨· · ·∨Qk). Let t be a tree in L(P ′)∩L(A′), and define tk and t′k
as above. Replace t′k by p in t. The resulting tree tp still belongs to L(P ′)∩L(A′), since
p is accepted by A and P matches in p. But since no Qi, for i ∈ {1, . . . , k} matches in
p, there is no matching of Q′ in tp. Thus P ′ 6⊆ Q′ w.r.t. A′. �

Proof of Theorem 13. Validity of a disjunction of CQs with data values w.r.t. an
NTA is undecidable.

Proof. Our proof, inspired by a proof from [17], is by reduction from Post’s Corre-
spondence Problem (PCP), which is known to be undecidable [18]. An instance of PCP
over alphabet Σ is a sequence (w1, u1), . . . , (wn, un) of pairs, where wi, ui ∈ Σ+, for
i ∈ {1, . . . , n}. An instance has a solution if there exists an m ∈ N and i1, . . . , im ∈
{1, . . . , n} such that wi1 . . . wim = ui1 . . . uim .

Given an instance R = (w1, u1), . . . , (wn, un) of PCP, we will construct a query Q
that is a disjunction of CQs, and an NTA A such that Q is valid with respect to A if
and only if R has no solution.

First, we define the labels to be used by the query. These are the following disjoint
sets:

– the root label r and the separator label #;
– the set I = {I1, . . . , In} of index labels; and
– the set Σ.

Let Γ = {r,#} ⊎ I ⊎Σ.
The automaton A only accepts unary trees, such that the labels of the tree, read

from root to leaf, form a word in the language of the regular expression

r ·
`

(I1 · w1) + · · · + (In · wn)
´+

· # ·
`

(I1 · u1) + · · · + (In · un)
´+

· #.

Thus, all data trees accepted by A can actually be seen as data strings, i.e., strings
where each position carries a label and a data value. In order to simplify the terminology
in the rest of the proof, we will therefore use standard terminology for strings to
reason about these unary trees. The queries we construct will be stated as tree queries,
but can be read as queries over strings by interpreting Child as the next position
predicate and Child+, Child∗as the transitive and transitive and reflexive closure of
Child , respectively.

If R has a solution, then there is a string rw#u# that is accepted by A such that
w|Σ = u|Σ and w|I = u|I . Here, for data string w = w1 · · ·wm and X ⊆ Γ , w|X

denotes the Γ -string obtained from lab(w1) · · · lab(wm)9 by deleting all positions in
Γ −X. Hence, only the labels in X remain.

The intuition behind our proof is as follows. We encode possible solutions to the
PCP by data strings rw#u# such that

(ENC1): no data value appears more than twice,

(ENC2): the length of w|I matches the length of u|I and the length of w|Σ matches
the length of u|Σ ,

(ENC3): two positions with label in I have the same data value iff they correspond
to the same position in w|I and u|I ,

(ENC4): two positions with label in Σ have the same data value iff they correspond
to the same position in w|Σ and u|Σ , and

(ENC5): the two occurrences of # have the same data value.

If a data string satisfies the above requirements, we say that it is a good encoding.
Now, we construct our query Q such that it matches every string accepted by A that
is either (i) a bad encoding or (ii) a good encoding, but does not encode a solution to
the PCP problem (i.e., either w|Σ 6= u|Σ or w|I 6= u|I). Hence, if Q is valid w.r.t. A,
then no good encoding presents a solution to the PCP problem.

We are now ready to start defining the sub-queries of query Q. (ENC1) and (ENC5)
can be easily enforced by

φ1 ≡ ∃x, y, z Child+(x, y) ∧ Child+(y, z) ∧ x ∼ y ∧ y ∼ z

φ2 ≡ ∃x, y #(x) ∧ #(y) ∧ Child+(x, y) ∧ x 6∼ y

For convenience, we define the binary help-query θ(x, y) that says10 that x is in the
first half of the string and y in the second.

θ(x, y) ≡ ∃x′, x′′, y′ : #(x′) ∧ #(x′′) ∧ #(y′)

∧Child+(x, x′) ∧ Child+(x′, x′′) ∧ Child+(y′, y)

Our next query, φ3, is satisfied by a string accepted by A iff the second position of the
string and the first position after the first appearance of # have different data values.
Notice that these positions necessarily have labels from I .

φ3 ≡ ∃x1, x2, y1, y2 : r(x1) ∧ #(y1) ∧ Child(x1, x2) ∧ Child(y1, y2) ∧ x2 6∼ y2

9 Cfr. Definition 22, p.27.
10 We are asking readers wondering why we express this property in this awkward

fashion for patience until the proof of Theorem 14.

For each pair (a, b) ∈ Γ such that a 6= b we define

φa,b ≡ ∃x, y : a(x) ∧ b(y) ∧ x ∼ y

In order for none of these queries to be satisfied by a string accepted by A, each pair
of positions that have the same data value must also have the same label.

For each i ∈ {1, . . . , n}, let mi = |wi| and m′
i = |ui|, and define

ψi ≡ ∃x1, x2, y1, y2 : θ(x1, y1) ∧ Ii(x1) ∧ Childmi+1(x1, x2)

∧Childm′

i+1(y1, y2) ∧ x1 ∼ y1 ∧ x2 6∼ y2.

Thus, ψi makes sure that if two I-positions have the same data value the same holds
for their I-successors.

If A accepts a string rw#u#, and none of the formulas φi, φa,b or ψi is satisfied,
then w|I = u|I .

It remains to define queries such that if none of them matches a string rw#u#
accepted by A, then w|Σ = u|Σ . First, we make sure that the first letters in w|Σ and
u|Σ have the same data value:

χ1 ≡ ∃x1, x2, x3, y1, y2, y3 : r(x1) ∧ #(y1) ∧ Child(x1, x2) ∧ Child(x2, x3)

∧Child(y1, y2) ∧ Child(y2, y3) ∧ x3 6∼ y3

Next, we ensure that if positions x1 and y1, taken from the first and the second half
of the string, respectively, have labels from Σ and the same data value, and their
successors also have labels from Σ, then the successors have the same data value.
Thus, for each ordered tuple (a, b, c) ∈ Σ3, we define

χ1
a,b,c ≡ ∃x1, x2, y1, y2 : θ(x1, y1) ∧ a(x1) ∧ b(x2) ∧ c(y2) ∧ Child(x1, x2)

∧Child(y1, y2) ∧ x1 ∼ y1 ∧ x2 6∼ y2

We must, however, also allow for the cases that x1 or y1, or both of them, are followed
by a node with a label from I . Thus, for every (a, b, c) from Σ and every Ii, Ij from I ,
we get

χ2
a,b,c,i ≡ ∃x1, x2, x3, y1, y2 : θ(x1, y1) ∧ a(x1) ∧ b(x3) ∧ c(y2) ∧ Ii(x2) ∧ Child(x1, x2)

∧Child(x2, x3) ∧ Child(y1, y2) ∧ x1 ∼ y1 ∧ x3 6∼ y2

χ3
a,b,c,i ≡ ∃x1, x2, y1, y2, y3 : θ(x1, y1) ∧ a(x1) ∧ b(x2) ∧ c(y3) ∧ Ii(y2) ∧ Child(x1, x2)

∧Child(y1, y2) ∧ Child(y2, y3) ∧ x1 ∼ y1 ∧ x2 6∼ y3

χ4
a,b,c,i,j ≡ ∃x1, x2, x3, y1, y2, y3 : θ(x1, y1) ∧ a(x1) ∧ b(x3) ∧ c(y3) ∧ Ii(x2) ∧ Ij(y2)

∧Child(x1, x2) ∧ Child(x2, x3) ∧ Child(y1, y2) ∧ Child(y2, y3)

∧x1 ∼ y1 ∧ x3 6∼ y3.

Our query Q is the disjunction of all the CQs defined above.
We now have to show that L(A) − L(Q) 6= ∅ if and only if R has a solution.
For the if-direction, let i1, . . . , im be a solution for R. Let w = Ii1 ·wi1 . . . Iim ·wim

and u = Ii1 · ui1 . . . Iim · uim . Let s be a data string with label sequence rw#u# such
that (ENC1)–(ENC5) hold for s. Clearly, s is accepted by A. We have to show that
none of the disjuncts of Q is satisfied by s.

– Queries φ1 and φ2 are not fulfilled by construction.

– Query φ3 is not satisfied by s, since the second position of s and the position after
the first # correspond to the same position in w|I = u|I and thus have the same
data value.

– None of the queries φa,b, for a, b ∈ Γ , with a 6= b are satisfied, since any two
positions in s that have the same data value also have the same label, due to the
fact that w|Σ = u|Σ and w|I = u|I .

– None of the queries ψi, for i ∈ {1, . . . , n} are satisfied for the following reason. If
position x1 has label Ii, θ(x1, y1), and x1 ∼ y1, then y1 also has label Ii, and x1, y1
correspond to the same position in w|I = u|I . If we go |wi|+ 1 steps forward from
x1 and |ui| + 1 steps forward from y1, we come to a pair x2, y2 of positions such
that either x2 and y2 correspond to the same position in w|I = u|I , or they both
have label # (they are the first and second #-labeled position, respectively). In
either case, x2 and y2 have the same data value.

– Query χ1 is not satisfied because the third position of s and the second position
after the first occurrence of # correspond to the same position in w|Σ = u|Σ and
thus have the same data value.

– None of the queries χ1
a,b,c, for a, b, c ∈ Σ, are satisfied, for the following reason. If

θ(x1, y1), a(x1), and x1 ∼ y1, then x1 and y1 correspond to the same position in
w|Σ = u|Σ . Thus a(y1). If the children x2 and y2 of x1 and y1 have labels from Σ,
then x2 and y2 correspond to the same position in w|Σ = u|Σ . Thus they have the
same data value.

– None of the queries χ2
a,b,c,i, χ

3
a,b,c,i, and χ4

a,b,c,i,j are satisfied, for very similar
reasons.

Thus we can conclude that s ∈ L(A) − L(Q).
For the only-if-direction, assume that data string s belongs to L(A) − L(Q). We

show that s encodes a solution to R. Since s is accepted by A, we know that its
label sequence has the form rw#u#, with w ∈ [(I1 · w1) + · · · + (In · wn)]+ and
u ∈ [(I1 ·u1) + · · ·+ (In · un)]+. So, both w and u are non-empty strings. Furthermore,
φ1 and φ2 ensure (ENC1) and (ENC5). We need to show that w|I = u|I and w|Σ = u|Σ .

Let w|I = w1
|I . . . w

mw

|I and u|I = u1
|I . . . u

mu

|I . Since φ3 is not satisfied by s, we

know that the positions corresponding to w1
|I and u1

|I have the same data value. Since
none of the formulas φa,b is satisfied, this also means that they must have the same
label. Thus w1

|I = u1
|I . Assume, for 1 ≤ k < min(mw, mu), that wk

|I = uk
|I and that

the two positions of s corresponding to wk
|I and uk

|I have the same data value. Since

none of the formulas ψi are satisfied, the positions of s corresponding to wk+1
|I and

uk+1
|I

also have the same data value. Thus, since none of the formulas φa,b is satisfied,

wk+1
|I = uk+1

|I . We also have to prove that mw = mu. Suppose this is not the case.

W.l.o.g., we can assume that mw < mu. We know that wmw

|I = umw

|I . Since none of
the formulas ψi is satisfied, the node corresponding to the first # in rw#u# and the
node corresponding to umw+1

|I in s must have the same data value. Since none of the

formulas φa,b is satisfied, we must have umw+1
|I = #, which is a contradiction. Thus we

can conclude that w|I = u|I . With an analogous induction, using the χ-queries instead
of ψi, we can show that w|Σ = u|Σ . �

Proof of Theorem 14 QC(6∼ | ∼, 6∼) is undecidable.

Proof. We modify the proof of Theorem 13 and combine it with Lemma 25. In other
words, given an instance R of PCP , we construct query Q that is a disjunction of CQs

b

b b

b

b b

b

(a)

x

z3

z1 z2 y

z3

z1 z2 z

∼

∼

(b)

x x′

y

(c)

b

b

b

b

z3

x, y, z z2

z1

(d)

Fig. 9. Trees and queries used in the proof of Theorem 14.

and an automaton A such that Q is valid w.r.t. A iff R has no solution. We can view
the constructed problem as a containment problem by setting P = true and asking
whether L(P) ∩ L(A) ⊆ L(Q). To remove the disjunction in Q, we use Lemma 25. If
we do this straightforwardly, we would obtain CQs P ′, Q′ and an NTA A′ such that
L(P ′)∩L(A′) ⊆ L(Q′) iff R has no solution. Since the construction of P ′ in Lemma 25
uses copies of the disjuncts of Q, we would not, however, be sure that P ′ doesn’t use
6∼, even though P clearly doesn’t. Luckily, it turns out that a slight modification of the
construction in the proof of Theorem 13 allows us to in turn adapt the construction of
the proof of Lemma 25 such that ∼-atoms in P ′ are avoided.

In other words, from Q and A in the proof of Theorem 13, we construct queries
P6∼, Q∼, 6∼, and NTA A′ such that Q is valid w.r.t. A iff L(P6∼) ∩ L(A′) ⊆ L(Q∼, 6∼).

We first describe how we modify the encoding of solution candidates for R from
the proof of Theorem 13. We modify the unary trees used in that proof as follows.
Each node gets a new extra leftmost child. The new nodes get their label from their
parent node. The “old” nodes all get a new “blank” label (see Figure 9(a)). Clearly,
the automaton A can be adapted to take care of this new shape of trees.

Now, we change the disjunction Q into a new query Q′, which is also a dis-
junction of conjunctive queries. In each disjunct Qi of Q we first add a conjunct
blank(z) for each variable z, stopping the original variables from binding to the newly
added extra children. Afterwards, each atomic formula a(x), for a ∈ Γ is replaced by
∃x′Child(x, x′) ∧ a(x′), where x′ is a fresh variable. I.e., the new nodes can only be
matched with variables in the new sub-formulas for a(x). As a last change, we replace
the adapted φ1 in Q′, i.e., we replace Child+(x, y) by

∃z1, z2, z3 : Child+(x, z1) ∧ Following(z1, z2) ∧ Child(z3, z2) ∧ Child(z3, y),

and Child+(y, z) by the same kind of gadget. The resulting query is depicted in Fig-
ure 9(b) and is called φ′

1. On the intended trees resulting from a path by the above
encoding (Fig. 9(a)) this does not change the semantics.

The NTA A′ and the queryQ∼, 6∼ are obtained from applying the proof of Lemma 25
to the adapted automaton A and to the query Q′.

We still need to define P∼. Thereto, let P ′ be the query that would be obtained from
applying the proof of Lemma 25 to Q′ = Q′

1 ∨ · · · ∨Q′
m and A. From the construction

of Lemma 25, we have that P ′ contains several occurrences of the gadget GQ′ , which
can contain data equalities. We will change GQ′ to G6∼

Q′ ∈ CQ(6∼) such that, for each

i ≤ m, G6∼
Q′ ⊆ Q′

i. Hence, we replace sub-queries Q′
j in GQ′ containing ∼-atoms by

sub-queries Q 6∼
j without ∼-atoms (but possibly with 6∼-atoms) such that the inclusion

property is preserved. The main idea for achieving this is as follows: We make sure
that, if x ∼ y is an atom of Q′

i, then, for every tree in t ∈ L(Q 6∼
i), there is a satisfaction

θ of Q′
i on t such that θ(x) = θ(y).

For example, if Q′
j is one of the φa,b-formulas from Theorem 13, then

Q 6∼
j ≡ ∃x, y, y′ : Child(x, y) ∧ Child(x, y′) ∧ a(y) ∧ b(y′)

In any tree satisfying Q 6∼
j , the variables x, y from Q′

j can bind to the same node, while
this is impossible in a tree accepted by the updated A.

If Q′
j is some ψi we set

Q 6∼
j ≡ ∃x1, x2, y2 : θ(x1, x1)∧Ii(x1)∧Childmi+1(x1, x2)∧Childm′

i+1(x1, y2)∧x2 6∼ y2.

Note that θ(x1, x1) can be satisfied by strings containing the symbol # three times.
The χ-formulas can be handled similarly.

Concerning the sub-query φ1 of Q′ we have used a little trick, by changing the sub-
query in Q′ before we defined the corresponding part of GQ′ . The corresponding sub-
queryQ 6∼

j inG6∼
Q′ is defined as φ 6∼

1 ≡ ∃x, y, x′ : blank(x)∧Child+(x, y)∧NextSibling(x, x′)
(Fig. 9(c)). Note that if some v matches x in a satisfaction of this formula then it also
matches x, y, and z in φ′

1 (i.e., Q′
j). Indeed, consider the tree in Figure 9(d), which is

a tree satisfying φ 6∼
1 . If we match x of φ′

1 onto the left child of the root, we can also
match y and z of φ′

1 onto the left child of the root. The variable assignments matching
φ′

1 to the tree are depicted in Figure 9(d). This concludes the definition of P6∼.

We now have thatQ is valid w.r.t. A iff L(P6∼)∩L(A′) ⊆ L(Q∼, 6∼). Validity of unions
of CQs with ∼ and 6∼ can thus be reduced to QC(6∼ | ∼, 6∼) and we can conclude that
the latter is undecidable. �

E.1 Containment without Schema Information

The following proofs concern containment without schema information. As, in Sec-
tion 2.2, we only defined the semantics of Conjunctive Queries w.r.t. trees using a
finite labeling alphabet, we need to extend this definition here to trees where the la-
beling alphabet is not necessarily fixed in advance.

That is, Σinf is now a fixed but countably infinite set of labels. A Σinf-tree t is
a relational structure, as before, over a finite number of unary labeling relations a(·),
binary relations Child(·, ·), and NextSibling(·, ·). Here, we now have that each a ∈ Σinf.

Conjunctive queries over Σinf-trees are defined completely analogously to conjunc-
tive queries over Σ-trees.

For schema-less containment, we need a new Lemma in spirit of Lemma 25.

Lemma 26. Given CQ(∼, 6∼) over Σinf-trees P,Q1, . . . , Qk, the problem of determin-
ing whether L(P) ⊆ L(Q1) ∪ · · · ∪ L(Qk) w.r.t. A is polynomial time reducible to
containment for CQ(∼, 6∼) over Σinf-trees P

′ and Q′.

Proof. The proof is analogous to the proof of Lemma 3 in [16] (and quite similar to
the proof of Lemma 25). �

In the next theorem, we consider containment over Σinf-trees.

Proof of Theorem 15: Containment for CQ(∼, 6∼) is undecidable, even without a
schema.

Proof. The proof builds on the proof of Theorem 13. Given an instance (w1, u1), . . . , (wn, un)
of PCP, we construct queries P and Q, where P is a CQ(∼, 6∼) and Q is a disjunction
of CQ(∼, 6∼), such that P ⊆ Q if and only if (w1, u1), . . . , (wn, un) has no solution.

We can assume that the strings w1, u1, . . . , wn, un are Σ-strings. As before, we
define Γ = {r,#} ⊎ I ⊎Σ.

In the absence of an NTA, there are two additional aspects that we have to use the
queries to take care of:

(1) The structure of any possible counterexample, i.e., it should be a string matching
the regular expression

r · [(I1 · w1) + · · · + (In · wn)]+ · # · [(I1 · u1) + · · · + (In · un)]+ · #.

(2) Since we no longer have a finite predetermined set Σ of possible node labels, we
cannot, as in the proof of Theorem 13 ensure that two nodes have the same label
by using a disjunction over all pairs of non-equal labels. Thus we have to use data
values to encode labels.

We first describe how to achieve (1). The query P is simple:

P ≡ ∃x, x1, y, y1, z : r(x) ∧ #(y) ∧ #(z)

∧Child(x, x1) ∧ Child+(x1, y) ∧ Child(y, y1) ∧ Child+(y1, z).

As in the proof of Theorem 13, we use the query Q to

– capture bad encodings of possible solutions for the PCP and
– find mistakes in all good encodings of possible solutions for the PCP.

To make sure that a counter example does not branch, we add the following query as
a disjunct to Q.

∃x, y : NextSibling(x, y)

To ensure that only the first position has label r we also add

∃x, y : Child(x, y) ∧ r(y).

For every i ∈ {1, . . . , n} we must make sure that Ii is followed by wi (if in the first half
of the solution string) followed by Ij (for some j) or #. To this end, we write one query
for every possible deviation from this pattern. I.e., for every string s in Γ |wi| − {wi}
we write a query that matches the pattern Ii · s, and for every a ∈ Σ, we write a query
that matches the pattern Ii · wi · a.

Next, we describe how to achieve (2). Assume that i1, . . . , im is a solution to
(w1, u1), . . . , (wn, un), and consider the data string

S = rIi1wi1 . . . Iimwim#Ii1ui1 . . . Iimuim#

annotated with data values as in the proof of Theorem 13. Construct a new string,
S′, that encodes the solution in a slightly more involved way. The first position of S′

has label r and the same data value as the first position in S. We describe how we

encode a position j > 1 of S in S′. Let k = ⌈log2 |Γ |⌉. Let num : Γ → {1, . . . , |Γ |}
be an injective function that assigns a unique number to each symbol in Γ . We will
actually use a sequence j1, . . . , jk+2 of positions in S′ to encode j. The first position,
j1, in this sequence has the same data value as the first position of S′ (labeled r)
and is called a marker position, as it marks the start of an encoding of a position j
of S. The marker positions of S′ will be the only positions that has the same data
value as the first position of S′. The second position, j2, is called a data position, and
carries the same data value as position j in S. This data value will serve two purposes.
First, it will be used just as the data value of position j in S was used in the proof
of Theorem 13. Second, it will function as a reference point for positions j3, . . . , jk.
More precisely, we will interpret the data values of the positions j3, . . . , jk as a binary
encoding of a Γ -symbol. That is, if position jℓ, for ℓ ∈ {3, . . . , k+2} has the same data
value as j2, we will interpret this as a 1-bit. If the two data values are different, we
will interpret this as a 0-bit. Let a ∈ Γ be the label of position j in S. Then the actual
data values for j3, . . . , jk+2 in S′ are chosen in such a way that the binary string they
encode represents num(a). Since it may be the case that ⌈log2 |Γ |⌉ > log2 |Γ | we must
make sure that the the bit strings of length k that do not represent a symbol in Γ do
not appear in a counter example. This is easily achieved by, for each such bit string,
adding a disjunct to Q that matches it.

To ensure that only marker positions have the same data values as the first position
in S′, we add disjuncts to Q that match if one of the following conditions is not satisfied
(i.e., we want to ensure that the following three properties hold).

1. The second position in S′ has the same data value as the first position in S′.

2. If x is not the first position of S′ but has the same data value as the first position
of S′, then position x+ k + 2 has the same data value as x.

3. If x is not the the first position of S′ but has the same data value as the first
position of S′, then, for each j ∈ {1, . . . , k+ 1}, position x+ j has a different data
value than x.

It is easy to see that we can encode the negation of each of these properties with a
disjunction of conjunctive queries. For instance, for case 3 this would be the disjunction
of the formulas

∃x, y, xj : NotFirst(x) ∧ First(y) ∧ x ∼ y ∧ Childj(x, xj) ∧ x ∼ xj

for each j ∈ {1, . . . , k + 1}, where First(y) and NotFirst(x) are predicates that are
satisfied on the first position (resp., not the first position) of S′. Predicate First is a
CQ that tests whether y is labeled r, and predicate NotFirst tests whether x has an
ancestor.

We can now, for every a ∈ Γ , define the predicate a′(x) that will be true of position
x if x is the marker position of a sequence that encodes a. This predicate simply checks
that x has the same data value as the first position and that the bit-string encoded
below x represents num(a). Also, we can define ∼′, which is true of two positions x, y
if both are marker positions and the data values of the two data positions following
them are the same. Predicate 6∼′ is defined symmetrically.

We now simply replace all occurrences of ∼ in Q by ∼′, 6∼ by 6∼′, a ∈ Γ by a′, and
Child by Childk+2. �

F Proofs of Section 6

Proof of Corollary 16: In general, there does not exist an exponential-size nondeter-
ministic tree automaton recognizing L(Q), where Q is a CQ(Child,Child+).

Proof. Towards a contradiction, assume that, for every conjunctive query Q, there
exists an exponential-size NTA AQ for L(Q). This means that, if there is a coun-
terexample for the containment problem P ⊆ Q w.r.t. NTA A, there always exists
a counterexample of exponential depth. However, this would imply, according to the
proof of Theorem 6, every EXPSPACE alternating Turing Machine has an accepting
computation tree of at most exponential depth, which is a contradiction. �

G Further Remarks

#

a (val = b11) · · · a (val = b1m) a

a (val = b21) · · · a (val = b2m) a

...
...

...

a (val = bn1

1) · · · a (val = bnm
m) a

#

k
tim

es

Fig. 10. Query Q for the proof of Lemma 27.

Lemma 27. Query satisfiability for queries with structural constraints, Value Based
Constraints (VBCs) and no wildcards is NP-hard.

Proof. This follows from an easy adaptation of the proof of Lemma 9. That is, we
reduce from Shortest Common Supersequence. Thereto, let S and k be an input of
Shortest Common Superstring (resp., Shortest Common Supersequence). Let
S = {b11 · · · b

n1

1 , . . . , b1m · · · bnm
m }. Then the query Q is defined as shown in Figure 10.

Here, each single arrow denotes the Child -axis, and each double arrow denotes the
Child+-axis. The confluency in the bottom #-labeled node is obtained via structural
constraints, which allow to identify nodes (see [14]). All nodes, apart from the two
#-labeled nodes bear the alphabet label a. Finally, the val = x equations denote the
value-based constraints — they say that the value at the current node must be equal
to x.

It is easy to see that Q is satisfiable if and only if Shortest Common Superse-

quence has a solution for S and k. The idea is that the common supersequence for
S must be formed in the data values for the a-labeled nodes at the right hand side of
Figure 10. �

