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Abstract

Typechecking consists of statically verifying whether the output of an XML trans-
formation is always conform to an output type for documents satisfying a given
input type. We focus on complete algorithms which always produce the correct
answer. We consider top-down XML transformations incorporating XPath expres-
sions and abstract document types by grammars and tree automata. By restricting
schema languages and transformations, we identify several practical settings for
which typechecking can be done in polynomial time. Moreover, the resulting frame-
work provides a rather complete picture as we show that most scenarios can not be
enlarged without rendering the typechecking problem intractable. So, the present
research sheds light on when to use fast complete algorithms and when to reside to
sound but incomplete ones.
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1 Introduction

In a typical XML data exchange scenario on the web, a user community cre-
ates a common schema and agrees on producing only XML data conforming
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to that schema. This raises the issue of typechecking: verifying at compile time
that every XML document which is the result of a specified query or docu-
ment transformation applied to a valid input document, satisfies the output
schema [35,36].

The main goal of this paper is to determine relevant scenarios for which type-
checking becomes tractable. Additionally, we also want to identify the frontier
where these scenarios become intractable. Previous research has shown that
the latter frontier of intractability is easily reached [2,21,27]. We therefore
focus on simple but practical XML transformations where only little restruc-
turing is needed, like for instance in filtering of documents. Transformations
that can for example be expressed by structural recursion [6] or by a top-
down fragment of XSLT [4]. We abstract such transformations by unranked
tree transducers [19,21]. As types we adopt the usual Document Type Defini-
tions (DTDs) and their robust extension of regular tree languages [18,27] or,
equivalently, specialized DTDs [30,31]. The latter can serve as a formal model
for XML Schema [33].

In earlier work, we identified three sources of complexity for the typechecking
problem in the above setting: non-determinism in the regular expressions in
the output DTD, the ability of the transformation to make arbitrary copies of
subtrees, and the capability to delete (rather than rename or replace) nodes
of the input document [21]. In fact, the only ptime typechecking instance we
obtained, was by disallowing all three parameters. As the latter scenario is
overly restrictive, especially since it excludes every form of deletion, we inves-
tigate in this paper larger and more flexible classes for which the complexity
of the typechecking problem remains in ptime. As illustrated by Example 10,
deletion of an arbitrary number of interior nodes is quite typical for filtering
transformations. Indeed, many simple transformations select specific parts of
the input while ignoring the non-interesting ones.

In the present work, we investigate settings of the typechecking problem im-
posing the same restrictions on input and output schemas. In this respect, we
first investigate deletion in the setting where DTDs use deterministic finite
automata (DFAs) to define right-hand sides of rules and transducers can only
make a bounded number of copies of nodes in the input tree. By proving a
general lemma which quantifies the combined effect of copying and deletion on
the complexity of typechecking, we derive conditions under which typecheck-
ing becomes tractable. In particular, these conditions allow arbitrary deletion
when no copying occurs (like in Example 10), but at the same time permit
limited copying for those rules that only delete in a limited fashion. This re-
sult is relevant in practice as in common filtering transformations arbitrary
deletion almost never occurs together with copying.

We then show that the present setting cannot be enlarged without increas-
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ing the complexity. In particular, we show that combining a slight relaxation
of the limited deletion restriction with copying the input only twice makes
typechecking intractable. Finally, we briefly examine tree automata to define
schemas and show that in the case of deterministic tree automata, no copying
but arbitrary deletion, we get a ptime algorithm.

As an alternative to deletion, one can skip nodes in the input tree by adding
XPath expressions to the transformation language. In the case where DTDs
use DFAs, we obtain a tractable fragment by translating the transformation
language to transducers without XPath expressions. As XPath containment in
the presence of DTDs [29,40] can easily be reduced to the typechecking prob-
lem, lower bounds establishing intractability readily follow for XPath frag-
ments containing filters and disjunction.

The first ptime results still rely on a uniform bound on the number of copies
a rule of the transducer can make. Although this number will always be fairly
small in practice, it would still be more elegant to have an algorithm which
is tractable for any transducer in a specific class. Thereto, we have to restrict
the schema languages. In fact, we show that only for very weak DTDs, those
where all regular expressions are concatenations of symbols a and a+ (which
we call RE+ expressions), typechecking becomes tractable, and that obvious
extensions of such expressions make the problem at least conp-hard. So, the
price for arbitrary deletion and copying is very high.

Finally, we address how to generate counterexamples when an instance fails
to typecheck and consider a slight adaptation of the typechecking problem: al-
most always typechecking. The latter problem was first discussed by Engelfriet
and Maneth [16] and asks whether there exist only a finite number of coun-
terexample trees for a given instance. We argue that the ptime algorithms in
Section 3 can also be used for almost always typechecking.

Complete vs. Incomplete. Our work studies sound and complete typecheck-
ing algorithms, an approach that should be contrasted with the work on gen-
eral purpose XML programming languages like XDuce [15] and CDuce [10], for
instance, where the main objective is fast and sound but sometimes incomplete
typechecking. So, sometimes transformations are typesafe but are rejected by
the typechecker. As we only consider very simple and by no means Turing-
complete transformations, it makes sense to ask for complete algorithms. In
fact, the present paper sheds light on precisely when we can get fast complete
algorithms and when we should start looking for incomplete ones.

Related Work. The research on typechecking XML transformations is initi-
ated by Milo, Suciu, and Vianu [27]. They obtained the decidability for type-
checking of transformations realized by k-pebble transducers via a reduction
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to satisfiability of monadic second-order logic. Unfortunately, in this general
setting, the latter non-elementary algorithm cannot be improved [27]. Inter-
estingly, typechecking of k-pebble transducers has recently been related to
typechecking of compositions of macro tree transducers [16]. Alon et al. [1,2]
investigated typechecking in the presence of data values and show that the
problem quickly turns undecidable. A problem related to typechecking is type
inference [26,30]. This problem consists in constructing a tight output schema,
given an input schema and a transformation. Of course, solving the type infer-
ence problem implies a solution for the typechecking problem: check contain-
ment of the inferred schema into the given one. However, characterizing output
languages of transformations is quite hard [30]. The transducers considered in
the present paper are restricted versions of the ones studied by Maneth and
Neven [19]. They already obtained a non-elementary upper bound on the com-
plexity of typechecking (due to the use of monadic second-order logic in the
definition of the transducers). Tozawa considered typechecking with respect
to tree automata for a fragment of top-down XSLT [37]. His framework is
more general but he only obtains a double exponential time algorithm. It is
not clear whether that upper bound can be improved. In [22], we reconsid-
ered the typechecking scenarios of [21] and investigated the complexity in the
presence of a fixed input and/or output schema. However, the complexity of
typechecking did not lower very much. In particular, typechecking remained
intractable in all settings allowing deletion or using tree automata.

Organization. The remainder of the paper is organized as follows. In Sec-
tion 2, we provide the necessary definitions and illustrate them with some
examples. In Section 3, we consider deleting transducers. In Section 4, we
study the addition of XPath to skip nodes in the input. In Section 5, we dis-
cuss DTDs with RE+ expressions. In Section 6, we present some observations
on generating counterexamples and almost always typechecking. We conclude
in Section 7. For readability, complete proofs are sometimes moved to the
Appendix.

2 Preliminaries

In this section we provide the necessary background on trees, automata, and
tree transducers. We define the typechecking problem and discuss copying and
deletion. In the following, Σ always denotes a finite alphabet.

By N we denote the set of natural numbers. A string w = a1 · · ·an is a finite
sequence of Σ-symbols. The set of positions, or the domain, of w is Dom(w) =
{1, . . . , n}. The length of w, denoted by |w|, is the number of symbols occurring
in it. The label ai of position i in w is denoted by labw(i). The size of a set S

4



is denoted by |S|.

As usual, a nondeterministic finite automaton (NFA) over Σ is a tuple N =
(Q, Σ, δ, I, F ) where Q is a finite set of states, δ : Q×Σ → 2Q is the transition
function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. A run ρ of N on a string w ∈ Σ∗ is a mapping from Dom(w) to Q
such that ρ(1) ∈ δ(q, labw(1)) for q ∈ I, and for i = 1, . . . , |w| − 1, ρ(i + 1) ∈
δ(ρ(i), labw(i + 1)). A run is accepting if ρ(|w|) ∈ F . A string is accepted if
there is an accepting run. The language accepted by N is denoted by L(N).
The size of N is defined as |Q| + |Σ| +

∑

q∈Q,a∈Σ |δ(q, a)|.

A deterministic finite automaton (DFA) is an NFA where (i) I is a singleton
and (ii) |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ.

2.1 Trees and Hedges

The set of unranked Σ-trees, denoted by TΣ, is the smallest set of strings over
Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ TΣ

∗,
a(w) is in TΣ. So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where
each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to
a root labeled a. We write a rather than a(). Note that there is no a priori
bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. For every t ∈ TΣ, the set of tree-nodes of t, denoted by DomT (t), is
the set defined as follows:

(i) if t = ε, then DomT (t) = ∅; and,
(ii) if t = a(t1 · · · tn), where each ti ∈ TΣ, then DomT (t) = {ε} ∪

⋃n
i=1{iu |

u ∈ DomT (ti)}.

Observe that the n child nodes of a node u are always u1, . . . , un, from left to
right. The label of a node u in the tree t = a(t1 · · · tn), denoted by labt

T (u), is
defined as follows:

(i) if u = ε, then labt
T (u) = a; and,

(ii) if u = iu′, then labt
T (u) = labti

T (u′).

We define the depth of a tree t, denoted by depth(t), as follows: if t = ε, then
depth(t) = 0; and if t = a(t1 · · · tn), then depth(t) = max{depth(ti) | 1 ≤ i ≤
n} + 1. The depth of a node u = i1 · · · in ∈ DomT (t) is n + 1, where every
i1, . . . , in ∈ N. Hence, a tree t only consisting of a root has depth one, and the
root node itself has depth one in t. In the sequel, whenever we say tree, we
always mean Σ-tree. A tree language is a set of trees.
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A hedge is a finite sequence of trees. Hence, the set of hedges, denoted by HΣ,
equals T ∗

Σ . For every hedge h ∈ HΣ, the set of hedge-nodes of h, denoted by
DomH(h), is the subset of N

∗ defined as follows:

(i) if h = ε, then DomH(h) = ∅; and,
(ii) if h = t1 · · · tn and each ti ∈ TΣ, then DomH(h) =

⋃n
i=1{iu | u ∈

DomT (ti)}.

The label of a node u = iu′ in the hedge h = t1 · · · tn, denoted by labh
H(u),

is defined as labh
H(u) = labti

T (u′). Note that the set of hedge-nodes of a hedge
consisting of one tree is different from the set of tree-nodes of this tree. For
instance, a hedge consisting of one tree can have {1, 11, 12} as its set of hedge-
nodes, whereas the set of tree-nodes of the tree occurring in this hedge is
{ε, 1, 2}. The depth of the hedge h = t1 · · · tn, denoted by depth(h), is defined
as max{depth(ti) | i = 1, . . . , n}. For a hedge h = t1 · · · tn, we denote by
top(h) the string obtained by concatenating the root symbols of all tis, that
is, labt1

H(1) · · · labtn
H (n). The depth of a node u = iv in the hedge h = t1 · · · tn

is the depth of v in ti.

In the sequel we adopt the following convention: we use t, t1, t2, . . . to denote
trees and h, h1, h2, . . . to denote hedges. Hence, when we write h = t1 · · · tn
we tacitly assume that all ti’s are trees. We denote DomT and DomH simply
by Dom, and we denote labT and labH by lab when it is understood from the
context whether we are working with trees or hedges.

2.2 DTDs and Tree Automata

We use extended context-free grammars and tree automata to abstract from
DTDs and the various proposals for XML schemas. Further, we parameter-
ize the definition of DTDs by a class of representations M of regular string
languages like, for example, the class of DFAs, NFAs, or regular expressions.
For M ∈ M, we denote by L(M) the set of strings accepted by M . We then
abstract DTDs as follows.

Definition 1 Let M be a class of representations of regular string languages
over Σ. A DTD is a tuple (d, sd) where d is a function that maps Σ-symbols
to elements of M and sd ∈ Σ is the start symbol.

For convenience of notation, we denote (d, sd) by d and leave the start sym-
bol sd implicit whenever this cannot give rise to confusion. A tree t satis-
fies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n children,
labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of trees satis-
fying d.
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We denote by DTD(M) the class of DTDs where the regular string languages
are represented by elements of M. The size of a DTD is the sum of the sizes
of the elements of M used to represent the function d.

We recall the definition of non-deterministic tree automata from [5]. We refer
the unfamiliar reader to [28] for a gentle introduction. Notice that we use tree
automata on unranked trees, rather than the traditional tree automata.

Definition 2 A nondeterministic tree automaton (NTA) is a 4-tuple B =
(Q, Σ, δ, F ), where Q is a finite set of states, F ⊆ Q is the set of final states,
and δ : Q×Σ → 2Q∗

is a function such that δ(q, a) is a regular string language
over Q for every a ∈ Σ and q ∈ Q.

A run of B on a tree t is a labeling λ : Dom(t) → Q such that, for every
v ∈ Dom(t) with n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that,
when v has no children, the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is
accepting if the root is labeled with an accepting state, that is, λ(ε) ∈ F . A
tree is accepted if there is an accepting run. The set of all accepted trees is
denoted by L(B) and is called a regular tree language.

A tree automaton is bottom-up deterministic if, for all q, q′ ∈ Q with q 6= q′

and a ∈ Σ we have that δ(q, a)∩ δ(q′, a) = ∅. We denote the set of bottom-up
deterministic NTAs by DTA. A tree automaton is complete when, for every
a ∈ Σ,

⋃

q∈Q δ(q, a) = Q∗. We denote the set of bottom-up deterministic
complete tree automata by DTAc.

Like for DTDs, we parameterize NTAs by the formalism used to represent
the regular languages in the transition functions δ(q, a). So, for a class of
representations of regular languages M, we denote by NTA(M) the class
of NTAs where all transition functions are represented by elements of M.
The size of an automaton B is then |Q| + |Σ| +

∑

q∈Q,a∈Σ |δ(q, a)|. Here, by
|δ(q, a)| we denote the size of the automaton accepting δ(q, a). Unless explicitly
specified otherwise, δ(q, a) is always represented by an NFA.

We mention some basic results about decision problems for tree automata.
The emptiness problem for NTAs asks, given an NTA B, whether L(B) = ∅.
The proofs of the following results are in Appendix A.

Lemma 3 The emptiness problem is ptime-complete for DTAc(DFA).

The finiteness problem for an NTA B asks whether L(B) is a finite set.

Proposition 4 (1) Finiteness of NTA(NFA) is in ptime.
(2) Emptiness of NTA(NFA) is in ptime.
(3) For a NTA(NFA) N , we can generate a description of some tree t ∈ L(N)

in ptime.
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2.3 Transducers

We adhere to transducers as a formal model for simple transformations corre-
sponding to structural recursion [6] and a fragment of top-down XSLT. Like
in [27], the abstraction focuses on structure rather than on content. We next
define the tree transducers used in this paper. To simplify notation, we re-
strict to one alphabet. That is, we consider transductions mapping Σ-trees to
Σ-trees. 1

For a set Q, denote by HΣ(Q) (respectively TΣ(Q)) the set of Σ-hedges (re-
spectively trees) where leaf nodes are labeled with elements from Σ∪Q instead
of only Σ.

Definition 5 A tree transducer is a tuple T = (Q, Σ, q0, R), where Q is a
finite set of states, Σ is the input and output alphabet, q0 ∈ Q is the initial
state, and R is a finite set of rules of the form (q, a) → h, where a ∈ Σ, q ∈ Q,
and h ∈ HΣ(Q). When q = q0, h is restricted to TΣ(Q) \ Q. Transducers are
required to be deterministic: for every pair (q, a) there is at most one rule in
R.

The restriction on rules with the initial state ensures that the output is always
a tree rather than a hedge.

The translation defined by a tree transducer T = (Q, Σ, q0, R) on a tree t
in state q, denoted by T q(t), is inductively defined as follows: if t = ε then
T q(t) := ε; if t = a(t1 · · · tn) and there is a rule (q, a) → h ∈ R then T q(t) is
obtained from h by replacing every node u in h labeled with state p by the
hedge T p(t1) · · ·T

p(tn). Note that such nodes u can only occur at leaves. So, h
is only extended downwards. If there is no rule (q, a) → h ∈ R then T q(t) := ε.
Finally, the transformation of t by T , denoted by T (t), is defined as T q0

(t),
interpreted as a tree.

For a ∈ Σ, q ∈ Q and (q, a) → h ∈ R, we denote h by rhs(q, a). If q and
a are not important, we say that h is an rhs. The size of T is |Q| + |Σ| +
∑

q∈Q,a∈Σ |rhs(q, a)|, where |rhs(q, a)| denotes the number of nodes in rhs(q, a).
In the sequel, we always use p, p1, p2, . . . and q, q1, q2, . . . to denote states.

We give an example of a tree transducer:

Example 6 Let T = (Q, Σ, p, R) where Q = {p, q}, Σ = {a, b, c, d, e}, and R

1 In general, of course, one can define transducers where the input alphabet differs
from the output alphabet.
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<xsl:template match="a" mode ="p">

<d>

<e/>

</d>

</xsl:template>

<xsl:template match="b" mode ="p">

<d>

<xsl:apply-templates mode="q"/>

</d>

</xsl:template>

<xsl:template match="a" mode ="q">

<c/>

<xsl:apply-templates mode="p"/>

</xsl:template>

<xsl:template match="b" mode ="q">

<c>

<xsl:apply-templates mode="p"/>

<xsl:apply-templates mode="q"/>

</c>

</xsl:template>

Fig. 1. The XSLT program equivalent to the transducer of Example 6.

contains the rules

(p, a) → d(e) (p, b) → d(q)

(q, a) → c p (q, b) → c(p q)

Note that the right-hand side of (q, a) → c p is a hedge consisting of two trees,
while the other right-hand sides consist of only one tree. 2

Our tree transducers can be implemented as XSLT programs in a straightfor-
ward way. For instance, the XSLT program equivalent to the above transducer
is given in Figure 1 (we assume the program is started in mode p).

Example 7 Consider the tree t shown in Figure 2(a). In Figure 2(b) we give
the translation of t by the transducer of Example 6. In order to keep the
example simple, we did not list T q(ε) and T p(ε) explicitly in the process of
translation. 2

2.4 The Typechecking Problem

Definition 8 A tree transducer T typechecks with respect to to an input tree
language Sin and an output tree language Sout, if T (t) ∈ Sout for every t ∈ Sin.

9



b
b b

a b
a
b

(a) The tree t of Example 7.

T p(t)

↓
d

T q(b) T q(b(ab)) T q(a(b))

↓
d

c c

T p(a) T p(b) T q(a) T q(b)

c T p(b)

↓
d

c c

d

e

d c c

c d

(b) The translation of t by the transducer T

of Example 6.

Fig. 2. A tree and its translation.

An example of a tree transducer that typechecks with respect to its input and
output schema can be found in Example 11.

We define the problem central to this paper.

Definition 9 Given two tree languages Sin, Sout, and a transducer T , the
typechecking problem consists in verifying whether T typechecks with respect
to Sin and Sout.

The size of the input of the typechecking problem is the sum of the sizes of Sin,
Sout, and T . We parameterize the typechecking problem by the kind of tree
transducers and tree languages we allow. Let T be a class of transducers and S
be a class of tree languages. Then TC[T ,S] denotes the typechecking problem
where T ∈ T and Sin, Sout ∈ S. Examples of classes of tree languages are those
defined by tree automata or DTDs. Classes of transducers are discussed in the
next section. The complexity of the problem is measured in terms of the sum
of the sizes of the input and output schemas and the transducer.

2.5 Copying and Deletion

We discuss two important features of tree transducers: copying and deletion.
In Example 6, the rule (q, b) → c(p q) copies the children of the current node
in the input tree twice: one copy is processed in state p and the other in state
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book

title author chapter

title intro section

title paragraph section

title paragraph

section

title paragraph

chapter

title intro section

title paragraph

Fig. 3. A document conforming to the schema of Example 10.

q. The symbol c is the parent node of the two copies. So, one could say that
the current node is translated in the new parent node labeled c. The rule
(q, a) → c p copies the children of the current node only once. However, no
parent node is given for this copy. So, there is no node in the output tree that
can be interpreted as the translation of the current node in the input tree.
We therefore say that it is deleted and that q is a deleting state. For instance,
T q(a(b)) = c d where d corresponds to b and not to a.

We illustrate the functionality of copying and deletion by means of a typical
filtering example.

Example 10 The following DTD defines a schema for books:

book → title author+ chapter+

chapter → title intro section+

section → title paragraph+ section∗

Figure 3 depicts a document conforming to the given schema. The following
transducer generates a table of contents:

(q, book) → book(q)

(q, chapter) → chapter q

(q, title) → title

(q, section) → q

That is, for every chapter of the book a list of its section titles is generated.

The document in Figure 3 is transformed into the tree

book

title chapter title title title title chapter title title

The example illustrates the usefulness of deleting states: all intermediate sec-
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tions are skipped. Further, the rule

(q, chapter) → chapter q

allows to list all section titles next to the chapter element rather than below.

Next, we illustrate copying. The following transducer extends the previous one
by adding a summary of the book to the table of contents. The summary is
given by listing the title and introduction of each chapter. By using the two
states p and p′, we make sure that the title of the book is not printed in the
summary.

(q, book) → book(q p)

(q, chapter) → chapter q

(q, title) → title

(q, section) → q

(p, chapter) → chapter(p′)

(p′, title) → title

(p′, intro) → intro

The output of the transformation, applied to the document in Figure 3 is the
following tree. Here, we replaced the part of the output that is also generated
by the previous transformation with dots.

book

· · · chapter

title intro

chapter

title intro

2

Example 11 The second transducer of Example 10 typechecks with respect
to the input schema and the following DTD:

book → title, (chapter, title∗)∗, chapter∗

chapter → title, intro | ε

2

We define some relevant classes of transducers. A transducer is non-deleting
if no rhs contains states at its top-level. We denote by Tnd the class of non-
deleting transducers and by Td the class of transducers where we allow deletion.
Further, a transducer T has copying width C if there are at most C occurrences
of states in every sequence of siblings in the right-hand sides of rules of T . For
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instance, the transducer in Example 6 has copying width 2. By T C
bc we denote

the class of transducers that have copying width C. The abbreviation “bc”
stands for bounded copying. We will often leave the number C implicit and
simply write Tbc. We denote the intersections of these classes by combining
the indexes. For instance, Tnd,bc is the class of non-deleting transducers with
bounded copying. To emphasize that we allow unbounded copying in a certain
application, we write, for instance, Tnd,uc instead of Tnd.

2.6 Previous Results

Table 1 summarizes the results obtained in [21]. All problems are complete for
the mentioned complexity classes. In the setting of [21], typechecking is only
tractable when restricting to non-deleting and bounded copying transducers
in the presence of DTDs with DFAs. In the remainder of the paper, we ob-
tain more general classes for which typechecking is in ptime. Note that the
exptime-hardness of TC[Tnd,bc,DTA] was left open in [21] but settled in [22].

T NTA DTA DTD(NFA) DTD(DFA)

d,c exptime exptime exptime exptime

d,bc exptime exptime exptime exptime

nd,c exptime exptime pspace pspace

nd,bc exptime exptime pspace ptime

Table 1
A summary of the results of [21] (upper and lower bounds).

3 Deletion, Bounded Copying, and DFAs

Although deletion has an enormous impact on the complexity of typechecking,
as is exemplified by the first two rows of Table 1, more often than not, the
ability to skip nodes in the input tree is critical. Indeed, many simple trans-
formations like the ones in Example 10 select specific parts of the input while
deleting the non interesting ones. Moreover, such deletion can be unbounded.
That is, the number of deleted nodes on a path depends only on the input
tree and not on the schema.

Since the typechecking problem is immediately intractable for DTD(NFA)s
and transducers with unbounded copying, we focus in this section on DTD(DFA)s
and on bounded copying transducers. We prove a general lemma which quan-
tifies the combined effect of copying and deletion on the complexity of type-
checking. From this lemma we then derive conditions under which typecheck-
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ing becomes tractable. Interestingly, these conditions allow arbitrary deletion
when no copying occurs, but at the same time permit bounded copying for
those rules that only delete in a bounded fashion. We further show that these
conditions cannot be relaxed without increasing the complexity. Finally, we
discuss typechecking in the context of schemas represented by deterministic
tree automata.

3.1 A Tractable Case

We start by introducing some terminology to describe the effect of deleting
states. Let T = (QT , Σ, qT

0 , RT ) be a transducer. A deletion path is a sequence
of states q1, . . . , qn in QT such that qi occurs in top(rhs(qi−1, ai−1)) for all
i = 2, . . . , n and some a2, . . . , an ∈ Σ. Note that every q1, . . . , qn−1 is a deleting
state as defined in Section 2.5.

The deletion width of a state q ∈ QT is the maximum number of states in
top(rhs(q, a)) for all a ∈ Σ. We denote the deletion width of q by dw(q). The
width of a deletion path q1, . . . , qn is the product

∏n−1
i=1 dw(qi). Note that we do

not take the deletion width of qn into account as it may be zero. We say that
T has deletion path width K if every deletion path has width smaller than or
equal to K.

Example 12 Let T be the transducer consisting of the following rules:

(qT
0 , a) → a(q1 q5)

(q1, a) → q2 a q2 a (q5, a) → q6 a a q6

(q2, a) → a q3 q3 a q3 (q6, a) → q7 q7

(q3, a) → q4 (q7, a) → a q8 a

(q4, a) → a (q8, a) → a a q7

The deletion widths of the states are given as follows:

state q1 q2 q3 q4 q5 q6 q7 q8

deletion width 2 3 1 0 2 2 1 1

The sequences q1, q2, q3, q4 and q5, q6, q7, q8, q7 are examples of deletion paths
in T . The former has deletion width six and the latter has deletion width four.
Note that the deletion path

q5, q6, q7, q8, q7, q8, q7, q8
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also has deletion width four. The reason is that the deletion width of q7 and
q8 is one. Would there be a rule (q7, b) → q8q8 then paths of arbitrary large
deletion width could be constructed.

Notice that the deletion path width of T is six. We discuss a general algo-
rithm to compute the deletion path width of a tree transducer in the proof of
Proposition 16. 2

A deleting state is recursively deleting if it occurs twice in some deletion path;
otherwise, it is said to be non-recursively deleting. The deletion depth of a
state q is the maximum length of a deletion path in which it occurs. When no
such maximum exists, we say that the state has unbounded deletion depth. In
particular, all recursively deleting states have unbounded deletion depth.

By T C,K
trac , we denote the class of transducers with copying width at most C

and deletion path width at most K. When C and K are not important, we
simply write Ttrac instead of T C,K

trac .

Note that a class T C,K
trac allows recursive deletion, but only for those states that

do not copy at the same time. Otherwise the width of deletion paths cannot be
bounded. So, if a state of a T C,K

trac -transducer is recursively deleting then every
associated rhs is of the form hpg where p is a state and h and g are hedges
containing no states on their top level and with at most C occurrences of states
in every sequence of siblings. When a state is non-recursively deleting, then
simultaneous copying and deletion is allowed but only in a bounded fashion.
That is, every deletion path containing that state is of deletion width at most
K.

Example 13 The first transducer in Example 10 belongs to T 1,1
trac while the

second is in T 2,1
trac. The transducer of Example 12 is in T 3,6

trac.

The next lemma provides a detailed analysis of the complexity of typechecking
in terms of copying and deletion power. Its proof is a non-trivial generaliza-
tion from non-deleting to deleting transducers of the reduction in [21] from
TC[Tnd,c, DTD(DFA)] to emptiness of unranked tree automata, followed by
an analysis of the size of the obtained automaton.

We use the following terminology in the proof of Lemma 14. For a tree t and a
node u ∈ Dom(t), we denote by t/u the subtree of t rooted at u. For a hedge
h and a DTD (d, sd), we say that h partly satisfies d if for every u ∈ Dom(h),
labh(u1) · · · labh(un) ∈ L(d(labh(u))) where u has n children. Note that there
is no requirement on the root nodes of the trees in h. Hence, the term partly.

Lemma 14 TC[T C,K
trac , DTD(DFA)] can be decided in

O
(

(|din||T |C×K|dout|
C×K)α

)

time,
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where |din| and |dout| are the sizes of the input and output schema, respectively;
|T | is the size of the tree transducer T ; and α is a constant.

PROOF. Let T = (QT , Σ, q0
T , RT ) ∈ T C,K

trac be a tree transducer. Let din and
dout be the input and output DTDs, respectively. We construct an NTA(NFA)
B such that L(B) = {t ∈ L(din) | T (t) 6∈ L(dout)}. Thus, B accepts all
counterexample trees. Therefore, L(B) = ∅ if and only if T typechecks with
respect to din and dout. We argue that B can be constructed in time

O((|din||T |C×K|dout|
C×K)β)

for a constant β. As the emptiness problem of NTA(NFA)s is in ptime (Propo-
sition 4), the complexity of the typechecking problem is

O
(

(|din||T |C×K|dout|
C×K)α

)

,

for a constant α.

Behavior of B. A tree automaton can easily verify that the input tree satisfies
din. To check that the translated tree violates the output schema dout, B non-
deterministically locates a node v in the input tree generating a subtree

σ(a1(s1) · · ·am(sm))

such that a1 · · ·am 6∈ dout(σ). We explain how the latter can be verified.
Thereto, let a(t1 · · · tn) be the tree rooted at v. Assume that T processes v
in state q and that rhs(q, a) contains the subtree σ(z0q1z1 · · · zk−1qkzk), where
z0, . . . , zk ∈ Σ∗ and q1, . . . , qk ∈ QT . Then, B needs to simulate the comple-
ment of the DFA D for dout(σ) on the string

z0 top
(

T q1(t1) · · ·T
q1(tn)

)

z1 · · · zk−1 top
(

T qk(t1) · · ·T
qk(tn)

)

zk.

As the strings top(T qi(ti)) depend on the subtrees ti rooted at v, B cannot
simply run D. Instead, for each ti, the automaton B guesses k pairs of states
(p1

i,1, p
1
i,2), . . . , (p

k
i,1, p

k
i,2) of D, and verifies later that indeed top(T qj(ti)) takes

D from state pj
i,1 to state pj

i,2. At present, B can only verify that

(1) z0 takes D from its initial state to p1
1,1;

(2) zk takes D from pk
n,2 to an accepting state;

(3) for each j = 1, . . . , k − 1, zj takes D from pj
n,2 to pj+1

1,1 ; and

(4) for each i = 1, . . . , n − 1 and j = 1, . . . , k, we have that pj
i,2 = pj

i+1,1.

Note that for this step, B needs to remember at most 2C states of D for each
subtree. We briefly sketch how B can verify that the string top(T qj(ti)) takes
D from state pj

i,1 to state pj
i,2. If rhs(qj , σi), where σi is the root of ti, contains
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no deleting states, then top(T qj(ti)) only depends on rhs(qj , σi) and not on ti
and B can simply run D. When rhs(qj , σi) contains ℓ deleting states, then we
just need to guess ℓ new pairs of states (pi,1, pi,2) and defer verification to the
children of the present node. As long as the transducer deletes, new pairs of
states are guessed. As K is an upper bound for this number, C × K is the
maximum number of pairs that need to be remembered at all time to check
whether for every i, top(T qj(ti)) takes D from state pj

i,1 to state pj
i,2. Note that

we also allow recursively deleting states but as these cannot copy, they do not
increase the number of pairs of states B has to guess.

Construction. Let T = (QT , Σ, q0
T , RT ) and let for each a ∈ Σ, Aa =

(Qa, Σ, δa, Ia, Fa) be the DFA for which dout(a) = L(Aa). Without loss of
generality, we assume that the sets Qa are pairwise disjoint. Set M = C ×K.
Intuitively, M is an upper bound on the number of states of some Aa that
B needs to remember. This will become clear later. Next, we define the tree
automaton B = (QB, Σ, FB, δB). The set of states QB is the union of the
following sets:

• Σ,
• {(a, q) | a ∈ Σ, q ∈ QT},
• {(a, q, check) | a ∈ Σ, q ∈ QT}, and

•
⋃M

i=1
{(a, (q1, ℓ

b
1, r

b
1), . . . , (qM , ℓb

M , rb
M)) |

(q1, ℓ
b
1, r

b
1) · · · (qM , ℓb

M , rb
M) ∈ {(QT×Qa×Qa)

i·(#, #, #)M−i | i = 1, . . . , M},
a, b ∈ Σ}, where # 6∈ QT ∪

⋃

a∈Σ Qa.

Note that the size of QB is O(|Σ||QT |
M |dout|

2M). We explain the intuition
behind these states. When there is an accepting run on a tree t, then a node
v labeled with a state of the form

a, (a, q), (a, q, check), or (a, (q1, ℓ
b
1, r

b
1), . . . , (qM , ℓb

M , rb
M))

has the following meaning:

a: v is labeled with a and the subtree rooted at v partly satisfies din.
(a, q): same as in previous case with the following two additions: (1) v is

processed by T in state q; and, (2) a descendant of v will produce a tree
that does not partly satisfy dout.

(a, q, check): same as the previous case only now v itself will produce a tree
that does not partly satisfy dout.

(a, (q1, ℓ
b
1, r

b
1), . . . , (qM , ℓb

M , rb
M)): v is labeled with a and the subtree rooted at

v partly satisfies din. Furthermore, v is processed by T in states q1, . . . , qj ,
where j is maximal such that qj 6= #, and v is a descendant of the node la-
beled with (a, q, check). The triple (qi, ℓ

b
i , r

b
i ), i ≤ j, indicates that top(T qi(t/v))

takes Ab from state ℓb
i to rb

i .
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The set of final states is FB := {(sin, q
0
T )} where sin is the start symbol of din.

The transition function is defined as follows: for all a, b ∈ Σ with a 6= b and
q ∈ QT

(1) we have

δB(a, b) = ∅;

δB((a, q), b) = ∅;

δB((a, q, check), b) = ∅; and

δB((a, (q1, ℓ
c
1, r

c
1), . . . , (qM , ℓc

M , rc
M)), b) = ∅.

(2) δB(a, a) = din(a) and δB((a, q), a) consists of those strings a1 · · ·an such
that there is precisely one index j ∈ {1, . . . , n} for which aj = (b, p)
or aj = (b, p, check) where p occurs in rhs(q, a) and for all i 6= j, ai ∈
Σ; further, a1 · · ·aj−1baj+1 · · ·an ∈ L(din(a)). Note that δB((a, q), a) is
defined in such a way that it ensures that all subtrees partly satisfy din

and that at least one subtree will generate a violation of dout. Clearly,
δB(a, a) and δB((a, q), a) can be represented by DFAs whose size is at most
quadratic in the size of the input DTD plus the size of the transducer.

(3) We define δB((a, q, check), a). Let u be an arbitrary node in rhs(q, a)
labeled with b ∈ Σ and let Ab = (Qb, Σ, δb, Ib, Qb − Fb). Let su =
z0q1z1 · · · zk−1qkzk be the concatenation of the labels of the children of
u, where every zi ∈ Σ∗ and qi ∈ QT . Intuitively, if v is the node in the
input tree t labeled with (a, q, check), and v has n children, then we want
to check here whether the string

s = z0top(T q1(t/v1)) · · · top(T q1(t/vn))z1 · · ·

· · · zk−1top(T qk(t/v1)) · · · top(T qk(t/vn))zk

is accepted by Ab (or, equivalently, rejected by Ab). Of course, at v the
automaton B does not know the strings top(T qj(t/vi)). Instead, B guesses
k · n pairs of states (ℓj,i, rj,i) of Ab, where i = 1, . . . , n and j = 1, . . . , k,
such that Ab accepts the string

z0(ℓ1,1, r1,1)(ℓ1,2, r1,2) · · · (ℓ1,n, r1,n)z1 · · ·

· · · zk−1(ℓk,1, rk,1)(ℓk,2, rk,2) · · · (ℓk,n, rk,n)zk

where the behavior of Ab is modified as follows: when Ab reaches (ℓj,i, rj,i)
in state ℓj,i, it moves to state rj,i, otherwise it rejects. So, B guesses
the input-output behavior (ℓj,i, rj,i) of Ab at every string top(T qj(t/vi)).
These guesses should then be verified further down in the tree.

Formally, let for I, F ⊆ Qb, Nb(I, F ) = (Qb, Σ∪ (Qb×Qb), δNb
, I, F ) be

the DFA that behaves the same way as Ab, but when it reads a symbol
(q′1, q

′
2) in state q′1 it immediately jumps to state q′2, and rejects otherwise.
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The parameterization of the initial and final states of Nb will be needed
in bullet (4).

We define δB((a, q, check), a) as the union of all sets R(u) where u is a
node in rhs(q, a) and each R(u) is defined as follows:

(

a1, (q1, ℓ
b
1,1, r

b
1,1), . . . , (qM , ℓb

M,1, r
b
M,1)

)

· · ·

· · ·
(

an, (q1, ℓ
b
1,n, rb

1,n), . . . , (qM , ℓb
M,n, r

b
M,n)

)

such that
• a1 · · ·an ∈ din(a);
• the string

z0(ℓ
b
1,1, r

b
1,1) · · · (ℓ

b
1,n, r

b
1,n)z1 · · · zk−1(ℓ

b
k,1, r

b
k,1) · · · (ℓ

b
k,n, r

b
k,n)zk

is accepted by Nb(Ib, Qb − Fb);
• q1, . . . , qk are the states as occurring in su = z0q1z1 · · · qkzk; and
• for i = k + 1, . . . , M , j = 1, . . . , n: (qi, ℓ

b
i,j, r

b
i,j) = (#, #, #).

We compute an upper bound for the size of the NFA representing
δB((a, q, check), a). The alphabet size of δB((a, q, check), a) is bounded
by |Σ||QT |

C|Qout|
2C , where Qout =

⋃

b∈Σ Qb. Further, for a node u in
rhs(q, a) labeled with b, R(u) can be accepted by a DFA that simulates
in parallel one copy of din(a) and at most C copies of Ab. Note that once
u is chosen, the states q1, . . . , qk in R(u), with k ≤ C, are fixed. Hence,
δB((a, q, check), a) can be represented as a union of |rhs(q, a)| DFAs with
|din(a)||dout|

C states, which bounds the total size of the NFA representing
δB((a, q, check), a) by

|Σ||QT |
C |Qout|

2C × |rhs(q, a)||din(a)||dout|
C.

(4) Finally, we define δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓb

M , rb
M)), a). Let m be the

smallest index such that for all m′ > m, pm′

= #. Intuitively, when B
arrives at a node v in state (a, (p1, ℓ

b
1, r

b
1), . . . , (pM , ℓb

M , rb
M)), then it should

verify that for every i = 1, . . . , m, top(T pi(t/v)) takes Ab from ℓb
i to rb

i . For
every i = 1, . . . , m, let top(rhs(pi, a)) be of the form zi,0qi,1zi,1 · · · qi,ki

zi,ki

where zi,j ∈ Σ∗ and qi,j ∈ QT . When ki > 0 B has to replace (pi, ℓ
b
i , r

b
i )

with a new sequence in (QT × Ab × Ab)
∗.

So, δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓb

M , rb
M)), a) accepts the strings

(

a1, (q1, ℓ
b
1,1, r

b
1,1), . . . , (qM , ℓb

M,1, r
b
M,1)

)

· · ·

· · ·
(

an, (q1, ℓ
b
1,n, rb

1,n), . . . , (qM , ℓb
M,n, r

b
M,n)

)

such that
• a1 · · ·an ∈ din(a); and
• for all i ≤ m, qj+1 · · · qj+ki

= qi,1 · · · qi,ki
, where j = Σi−1

x=1kx; and

19



• for all i ≤ m, the string

zi,0(ℓ
b
j+1,1, r

b
j+1,1) · · · (ℓ

b
j+1,n, r

b
j+1,n)zi,1 · · ·

· · · zi,ki−1(ℓ
b
j+ki,1

, rb
j+ki,1

) · · · (ℓb
j+ki,n

, rb
j+ki,n

)zi,ki

is accepted by Nb({ℓ
b
i}, {r

b
i}), where j = Σi−1

x=1kx; and,
• for i = (1 + Σm

x=1kx), . . . , M , j = 1, . . . , n: (qi, ℓi,j, ri,j) = (#, #, #).
We need to argue that at all times, Σm

x=1kx ≤ M . Let for an input tree
t, v ∈ Dom(t) be the node that is visited in state (a, q, check) by B and let
u ∈ rhs(q, a) be the node selected in step (3), labeled with b. Assume first
that q is a state with bounded deletion depth. To produce the string s
that must be tested for membership in Ab, T visits v’s children in at most
C states. Let q, q1, . . . , qℓ be an arbitrary deletion path in T , and let for
each qi, Di be the deletion width of qi. Then, the nodes at depth i in t/v
are visited by T in at most C · D1 · · ·Di−1 states of T . So, every node in
t/v is visited by T in at most C×K = M states to produce s. Hence, M is
an upper bound for Σm

x=1kx. When q has unbounded deletion depth, only
states that do not copy can occur multiple times. These cannot increase
the number of states B needs to remember.

We compute an upper bound for the size of

δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓb

M , rb
M)), a).

The alphabet size of δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓb

M , rb
M)), a) is bounded by

|Σ||QT |
M |Qout|

2M . Further, δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓb

M , rb
M)), a) simu-

lates one copy of din(a) and at most M copies of Ab in parallel. Note that
the sequence q1 · · · qM is uniquely determined by a and p1 · · · pm. Hence,

δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓb

M , rb
M)), a)

is a DFA of size

|Σ||QT |
M |Qout|

2M × |din(a)||Ab|
M .

We compute the size of B. The size of every NFA in B is O(|din|
2|QT |

M+1|dout|
3M).

Further, B has O(|Σ||QT |
M |dout|

2M) states. Hence the size of B is

O(|din|
3|QT |

3M+1|dout|
5M).

As emptiness of NTA(NFA)s is in ptime, we get our upper bound. 2

From Lemma 14 we immediately obtain that typechecking with respect to
DTD(DFA)s is tractable for all classes of tree transducers with a bounded
deletion path width:

Theorem 15 TC[Ttrac, DTD(DFA)] is ptime-complete.
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The lower bound follows from Table 1.

Not only do we obtain a ptime algorithm, Lemma 14 also provides a clear
view on the concrete complexity in terms of the different parameters. Although
the parameters C and K occur in the exponent, we believe these numbers to
be small in practical transformations. It is important to point out that the
presence of non-copying recursively deleting states do not affect the parame-
ter K. Hence, there is no penalty for the recursive deletion without copying
that occurs in many filtering transformations. In contrast to our previous re-
sults that abandoned deletion completely [21,22], the present result shows that
transformations with small K but arbitrary deletion without copying can still
be efficiently typechecked.

Proposition 16 Let T be a tree transducer. The smallest numbers C and K
such that T ∈ T C,K

trac can be computed in ptime.

PROOF. It is obvious that C can be computed in ptime. We only need to
count the maximum number of states that occur as siblings in a rhs in T .

The computation of K is somewhat more complicated. We reduce this problem
to the problem of finding a longest path (or a path with the highest cost) in a
directed acyclic graph. The latter problem can be solved in polynomial time
(see problem ND29 in [11]). Given a tree transducer T = (QT , Σ, q0

T , RT ), we
define the deletion path graph GT = (VT , ET ) — which can still contain cycles
— as follows. The set of nodes VT = {(q, a) | q ∈ QT , a ∈ Σ}. For a node (q, a),
the set of outgoing edges is defined as {((q, a), (q′, a′)) | a′ ∈ Σ, q′ ∈ Qq,a},
where Qq,a is the set of states occurring in top(rhs(q, a)). Note that these edges
can be computed in ptime. To every edge e = ((q, a), (q′, a′)) we associate a
cost, denoted cost(e), which is the number of states occurring at top(rhs(q, a)).
The cost of a path p in GT is the product of the costs of the edges occurring
in p. Note that by definition, all costs of edges are at least one and that the
deletion path width of T is equal to the largest cost of a path in GT .

We now transform GT into an acyclic graph as follows. Assume that there is
at least one edge with cost two, otherwise, we immediately know that K = 1.
First we investigate, for every edge e = ((q, a), (q′, a′)), if it is part of a cycle.
This can be done in nlogspace, and, hence, also in ptime. If there exists an
e which is part of a cycle and cost(e) > 1, then we can immediately halt the
algorithm and conclude that K cannot be bounded. Therefore, assume now
that every edge occurring in a cycle has cost one. Since cycles with cost one
have no effect on the cost of the longest path in GT , we remove these cycles
from GT by joining the nodes that they connect.

Formally, we define an equivalence relation ≡ between nodes of GT . For two
nodes v and v′, we say that v ≡ v′ if (1) v = v′; or (2) v and v′ occur in
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the same cycle (that is, there exists a directed path from v to v′ and from v′

to v). For a node v, we denote by v the set of nodes which are equivalent to
v. We now define the graph G′

T = (V ′
T , E ′

T ), where V ′
T = {v | v ∈ VT} and

E ′
T = {((q, a), (q′, a′)) | ((q, a), (q′, a′)) ∈ ET and (q, a) 6= (q′, a′)}.

Since G′
T is a DAG, we can compute the longest path in G′

T in ptime. Note
that, in the longest path problem, we want to maximize the sum of the costs
of the edges, whereas we want to maximize their product. However, this can
directly be incorporated in the longest path algorithm, as our costs are always
positive integers. It is easy to see that the maximum possible intermediate cost
is always bounded by |T ||T |. This number can be represented using |T |·⌈log |T |⌉
bits, which is polynomial. 2

We illustrate how the algorithm in Proposition 16 computes C and K for the
tree transducer of Example 12.

Example 17 Let T be the tree transducer defined in Example 12. It is im-
mediate that C = 3. The deletion path graph GT = (VT , ET ) is graphically
represented in Figure 4(a). The graph G′

T , which is obtained from GT by elimi-
nating the cycles, is shown in Figure 4(b). The path (q1, a) (q2, a) (q3, a) (q4, a)
in G′

T has a cost of 6, which is the highest possible cost in G′
T . 2 Therefore,

K = 6. 2

(q1, a)

(q2, a)

(q3, a)

(q4, a)

(q5, a)

(q6, a)

(q7, a)

(q8, a)

2

3

1

2

2

11

(a) The deletion path graph GT .

(q1, a)

(q2, a)

(q3, a)

(q4, a)

(q5, a)

(q6, a)

(q7, a)

2

3

1

2

2

(b) The graph G′
T .

Fig. 4. The deletion path width graphs GT and G′
T of the transducer T from Ex-

ample 12

3.2 Lower Bounds for Extensions

We show that the scenario of the previous section cannot be enlarged in an ob-
vious way without rendering the typechecking problem intractable. The ptime

2 Recall that the cost of a path is defined to be the product of the costs of its edges.
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result of the previous section is obtained for those classes of transducers that
can bound their deletion path width and their copying width by a constant.
The restriction on copying width cannot be relaxed: even TC[Tnd,c,DTD(DFA)]
is pspace-hard (cf. Table 1). What about the constraint on a bounded dele-
tion path width? A slight relaxation of this constraint is to require that the
deletion path width is finite for each transducer in the class but not necessarily
bounded by a predetermined constant. We denote by Tdw=2,cw=2,fdpw the class
of such transducers with the additional constraint that the deletion width and
copying width of states is restricted to two. The next theorem shows that
typechecking in this scenario is intractable.

Theorem 18 TC[Tdw=2,cw=2,fdpw, DTD(DFA)] is pspace-hard.

PROOF. We reduce the intersection emptiness problem of an arbitrary num-
ber of DFAs, which is pspace-hard [17], to the typechecking problem. The
intersection emptiness problem for DFAs asks whether

⋂n
i=1 L(Ai) = ∅ for a

given sequence of DFAs A1, . . . , An.

For i = 1, . . . , n, let Ai = (Qi, ∆, δi, Ii, Fi) be a DFA. Define Σ = ∆∪{#, r, ok}.
We construct two DTD(DFA)s din and dout, and a tree transducer T with dele-
tion and copying width two, and deletion depth ⌈log n⌉, such that T typechecks
with respect to din and dout if and only if

⋂n
i=1 L(Ai) = ∅.

The input DTD (din, r) is defined as follows: din(r) = # and din(#) = #+∆∗.
Then, every allowed tree is of the form

r

#

#
...

#

s

where s ∈ ∆∗. We define the tree transducer T = (QT , Σ, q0
T , RT ) where

QT = {q0
T , q1, . . . , q⌈log n⌉} and RT consists of the following rules:

• (q0
T , r) → r(q1#q1);

• (qi−1, #) → qi#qi for i = 2, . . . , ⌈log n⌉;
• (qi, a) → ok for i < ⌈log n⌉ and a ∈ ∆;
• (q⌈log n⌉, #) → ok; and
• (q⌈log n⌉, a) → a for all a ∈ Σ.
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Note that T produces a tree of the form r(w) with w ∈ (∆∪{#, ok})∗. When
the depth of the input tree is different from ⌈log n⌉, w contains the symbol
ok. Otherwise, w consists of at least n copies of the ∆-string s.

It remains to define the DFA specifying dout(r). The automaton starts by
simulating A1. Further, when the DFA encounters the ith occurrence of a
#, the simulation of Ai+1 is started. The DFA accepts when at least one Ai

rejects, or when the symbol ok appears in the output.

So, for all t ∈ L(din) with depth ⌈log n⌉, we have that T (t) ∈ L(dout) if and only
if

⋂n
i=1 L(Ai) = ∅. As for all other trees t ∈ L(din) we have that T (t) ∈ L(dout),

this instance typechecks if and only if
⋂n

i=1 L(Ai) = ∅. 2

For completeness, we also mention here that typechecking is exptime-hard
for deleting tree transducers with a deletion and copying width of two. This
hardness even holds for a fixed input and output schema [22].

3.3 Tree Automata

In this section, we turn to schemas defined by unranked tree automata. We
show that when every right hand side of a rewrite rule contains at most 1
state, recursively deleting of width one remains tractable in the presence of
DTAc(DFA)s. The latter is the class of bottom-up deterministic complete tree
automata that use DFAs to represent transition functions. Such transforma-
tions are mild generalizations of relabelings and we therefore denote the class
of these transducers by Tdel-relab. It is hence not surprising that the output type
of a transducer in Tdel-relab can be exactly captured by a tree automaton. The
latter observation is a generalization of the corresponding result for ranked
tree transducers [12] (Proposition 7.8(b)). We only have to show that the con-
struction of the unranked tree automaton can be done in ptime. Typechecking
then reduces to containment checking of NTA(NFA)s in DTAc(DFA)s.

We make use of the following Lemma.

Lemma 19 Let A be an NTA(NFA) and T be a non-deleting tree transducer
for which every rhs contains at most one state. Then we can construct in
polynomial time an NTA(NFA) B such that L(B) = T (L(A)).

PROOF. Let A = (QA, Σ, δA, FA) be an NTA(NFA) and let T = (QT , Σ, q0
T , RT )

be a tree transducer such that every rule in RT is of the form (q, a) →
b(h), where h contains at most one state. We construct a NTA(NFA) B =
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(QB, Σ, δB, FB) such that L(B) = T (L(A)). Intuitively, when B processes a
tree t, it guesses the tree t′ such that T (t′) = t and verifies whether t′ ∈ L(A).

The automaton B is defined as follows:

QB = Σ × QA × QT × ∪(q,a)∈QT ×ΣDom(rhs(q, a));

FB = Σ × FA × {q0
T} × {ε}. Intuitively, when t ∈ L(B), it means that there

is some tree t′ ∈ L(A) such that T (t′) = t. If a node v ∈ Dom(t) is labeled
with (a, qA, qT , u) in an accepting run of B, it intuitively means that there is
a node v′ in t′ for which

• the label of v′ is a;
• λ(v′) = qA in some accepting run λ of A on t′;
• v′ was visited by T in state qT ; and
• v was constructed by T from node u in rhs(qT , a).

Formally, for any a ∈ Σ, qA ∈ QA and qT ∈ QT , let t1 = rhs(q, a) and let
i1 · · · ik ∈ N

∗ be the unique node in t1 labeled by a state, if it exists. Then,
for every node u ∈ Dom(t1) different from i1 · · · ik−1 or i1 · · · ik, with children
u1, . . . , un, we define

δB((a, qA, qT , u), labt(u)) := {(a, qA, qT , u1) · · · (a, qA, qT , un)}.

It is trivial to construct an NFA of size n that accepts this singleton. Note
that this language contains only the empty string if u is a leaf.

Denote by v the node i1 · · · ik−1 and suppose that v has m children. Then,
to define δB((a, qA, qT , v), labt1(v)), let D = (QD, QA, δD, ID, FD) be the NFA
representing δ(qA, a) and let q′T be the state in rhs(qT , a). Then,

δB((a, qA, qT , v), labt1(v))

is the NFA accepting the language

(a, qA, qT , v1) · · · (a, qA, qT , v(ik−1))L(D′)(a, qA, qT , v(ik+1)) · · · (a, qA, qT , vm)

where D′ is obtained from D by replacing every transition δD(p1, q
′
A) = {p2}

by

• the transitions δD(p1, (c, q
′
A, q′T , ε)) = {p2} for every c ∈ Σ when rhs(q′T , c)

is a tree; and by
• the transitions

δD

(

p1, (c, q
′
A, q′T , 1)

)

= {p
q′
T

,c,1
1 },

δD

(

p
q′
T

,c,1
1 , (c, q′A, q′T , 2)

)

= {p
q′
T

,c,2
1 }, . . .

. . . , δD

(

p
q′
T

,c,ℓ−1
1 , (c, q′A, q′T , ℓ)

)

= {p2}
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when rhs(q′T , c) is a hedge consisting of ℓ > 1 trees. The states p
q′
T

,c,1
1 , . . . , p

q′
T

,c,ℓ−1
1

are new states not occurring in the state set of D.

In other words, B guesses a string of children of node v′ in t′, continues with
the simulation of T by remembering q′T and continues with the simulation of
A on t′ by running D over the states of A.

So, B has O(|Σ||A||T |) states, and for each such state, the size of B’s transition
function is O(|Σ||A||T |). 2

We are now ready to prove the following theorem.

Theorem 20 TC[Tdel-relab,DTAc(DFA)] is ptime-complete.

PROOF. The lower bound is immediate from Lemma 3.

For the upper bound, we reduce the typechecking problem to the emptiness
problem of the intersection of two NTA(NFA)s. To this end, let Ain and Aout

be the input and output tree automaton, respectively.

We construct a non-deleting tree transducer T ′ from T by replacing every
deleting state q in a rhs of T by #(q). So, T ′ outputs a # whenever T
would process a deleting state. We assume that # 6∈ Σ. We now construct
an NTA(NFA) Bin such that L(Bin) = T ′(L(Ain)). According to Lemma 19,
Bin can be computed in time polynomial in the size of Ain and T ′.

As Aout is a complete DTA(DFA), the complement Aout can easily be computed
by switching the final and non-final states. Note that the size of Aout is linear
in the size of Aout.

Define the #-eliminating function γ as follows: γ(a(h)) is γ(h) when a = #
and a(γ(h)) otherwise; further, γ(t1 · · · tn) := γ(t1) · · ·γ(tn). We construct the
NTA(NFA) Bout, such that Bout accepts a tree t ∈ TΣ∪{#} if and only if γ(t)
is accepted by Aout.

According to the proof of Theorem 11(1) in [21], we can construct Bout in
logspace. The instance then typechecks if and only if L(Bin ∩ Bout) = ∅. 2

For completeness, we note that typechecking with respect to DTA(DFA)s al-
ready turns exptime-hard for tree transducers with a copying width of one,
and for which the right-hand sides of rewrite rules are allowed to contain at
most two states [22]. In the reduction, both the input and output schemas are
fixed.
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4 XPath Patterns

An approach complementary to deletion, is the use of XPath patterns to skip
nodes of the input tree [7]. As XPath patterns are very likely to occur in
practical transformations, it is important to study the complexity of the type-
checking problem for tree transducers that allow the use of XPath patterns.
We only consider XPath patterns for downward navigation and therefore re-
strict attention to the following axes and operations: child (/), descendant
(//), wildcard (∗), disjunction (|), and filter ([ ]). We allow element tests and
either the child or descendant axis in every fragment of XPath we consider.

Definition 21 An XPath{/, //, [ ], |, ∗} pattern P is an expression ·/φ or
·//φ where φ is defined by the following grammar:

φ := φ1|φ2 (disjunction)

| φ1/φ2 (child)

| φ1//φ2 (descendant)

| φ1[P ] (filter)

| a (element test)

| ∗ (wildcard)

An example of an XPath{/, //, [ ], |, ∗} pattern is ·/(a|b)//c[·//e]/∗.

Note that in our framework, we only use XPath patterns that start with · ,
that is, always start from the context node. We use the following notational
convention: for a sequence X of axes and operations, we denote by XPath{X}
the XPath patterns that only use the axes and operations in {X}. For instance,
XPath{/, |} denotes the fragment of XPath{/, //, [ ], |, ∗} where only element
test and the child and disjunction axes are used. An XPath pattern P defines
a function fP : t × Dom(t) → 2Dom(t). We inductively define fP as follows.

• f·/φ(t, u) := {v | ∃z ∈ N : v ∈ fφ(t, uz)};
• f·//φ(t, u) := {v | ∃z ∈ N

∗ − {ε} : v ∈ fφ(t, uz)};
• fφ1|φ2

(t, u) := fφ1
(t, u) ∪ fφ2

(t, u);
• fφ1/φ2

(t, u) := {v | ∃w ∈ Dom(t), z ∈ N : w ∈ fφ1
(t, u) and v ∈ fφ2

(t, wz)};
• fφ1//φ2

(t, u) := {v | ∃w ∈ Dom(t), z ∈ N
∗ − {ε} : w ∈ fφ1

(t, u) and v ∈
fφ2

(t, wz)};
• fφ1[P ](t, u) := {v | v ∈ fφ1

(t, u) and fP (t, v) 6= ∅};

• fa(t, u) :=







{u} if labt(u) = a;

∅ otherwise;

• f∗(t, u) := {u};
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When a node u is in fP (t, ε), we say that P selects u in t.

Let P ⊆ XPath{/, //, [ ], |, ∗} be a set of XPath patterns. We explain how
the syntax and the semantics of transducers is extended to patterns in P. We
denote the latter fragment by T P . Rules are now of the form (q, a) → h where
h ∈ HΣ((Q × P) ∪ Q). That is, state-pattern pairs 〈q, P 〉 can now also occur
at leaves. Previously, all children of the current node were processed; now,
only the nodes selected by P starting from the current node. These nodes are
processed in document order, that is, the order in which they would occur
in a depth-first left to right traversal of the tree. We denote state-pattern
pairs with angled parentheses to avoid confusion in the string representation
of trees.

If T is a tree transducer, t = a(t1 · · · tn) and there is a rule (q, a) → h ∈ RT

then T q(t) is obtained from h by replacing every node u in h labeled with
〈p, P 〉 by the hedge T p(t/u1) · · ·T

p(t/um) where fP (t, ε) = {u1, . . . , um} and
the sequence u1, . . . , um occurs in document order. Recall that we denote by
t/u the subtree of t rooted at u. Note that the context node is always set to
the root of the subtree that is to be processed by T and that every XPath
pattern is of the form ·/φ or ·//φ. In this way, the context node itself is never
selected and the transformation by T always terminates.

Example 22 When making use of XPath patterns, we can write the first
document transformation in Example 10 more succinctly as follows:

(q, book) → book(q)

(q, chapter) → chapter 〈q, ·//title〉

(q, title) → title

2

Via a reduction to Theorem 15, we show that for very simple XPath patterns
added to the formalism typechecking remains in ptime.

Theorem 23 TC[T
XPath{/,∗}
trac , DTD(DFA)] is ptime-complete.

PROOF. The lower bound is immediate from Theorem 15. We prove the
upper bound. In particular, we will show that for any tree transducer T ∈
T

XPath{/,∗}
trac , we can construct an equivalent tree transducer T ′ ∈ Ttrac which

has size polynomial in the size of T and the same copying and deletion path
width as T . Intuitively, we convert every XPath-pattern P occurring in T to
a DFA, which we simulate by using deleting states in T ′. The simulation of
such DFAs only introduces non-recursively deleting states of deleting width
one, hence, unaffecting the deletion path width.
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Formally, let T = (QT , Σ, q0
T , RT ) and let PT be the set of XPath patterns

occurring in T . For every XPath-pattern P ∈ PT , we can easily construct
a DFA AP = (QP , Σ, δP , {qI

P}, {q
F
P }) accepting all strings a1 · · ·an such that

P selects the an-labeled node in the tree r(a1(· · · (an))) when evaluated from
the root. Moreover, each AP has a linear number of states in the number of
symbols of P and at most a quadratic number of transitions. Further, AP is
acyclic, only accepts a finite language, and all strings in L(AP ) are of the same
length. Without loss of generality, we assume that the sets QP are pairwise
disjoint and disjoint from QT .

We construct T ′ = (QT ′ , Σ, q0
T , RT ′) as follows. Its state set is QT∪

⋃

P∈PT
(QT×

QP ). For every rule (q, a) → h in RT , and for every 〈p, P 〉 occurring in h we
have the following set of rules in RT ′:

• (q, a) → h′ where h′ is the hedge obtained from h by replacing every occur-
rence of 〈p, P 〉 by (p, qI

P );
• ((p, qP ), b) → (p, δP , qP , b)) for every qP ∈ QP and b ∈ Σ such that δP (qP , b) 6=

qF
P ; and

• ((p, qP ), b) → rhs(p, b) for every qP ∈ QP and b ∈ Σ such that δP (qP , b) = qF
P .

Note that the final state of AP itself does not occur in the rewrite rules.

We only need to argue that the XPath patterns in T are evaluated correctly
in T ′. To this end, it easy to see that we only use deleting states for nodes that
are skipped in the input tree by the XPath patterns, and that we continue in
the correct state in QT in the nodes that are selected by the XPath patterns.
Further, only deleting states of width one are introduced. So, T ′ ∈ T C,K

trac

whenever T ∈ T C,K
trac . 2

Although the fragment XPath{/, ∗} is very limited, we show in Theorem 28
that there is not much room for improvement. The lower bounds in bullet
(1) follow from a reduction from XPath containment in the presence of DTDs
with DFAs [29,40]. This problem is defined as follows: given a DTD(DFA) d
and XPath patterns P1 and P2, is it true that fP1

(t, ε) ⊆ fP2
(t, ε) for all trees

t satisfying d.

In the statements of Theorem 24 and Lemma 26, let XPath{X} denote any
fragment XPath{/, |}, XPath{//, |}, XPath{/, [ ]} or XPath{//, [ ]}.

Theorem 24 ([29,39,40]) XPath{X} containment in the presence of DTD(DFA)s
is conp-hard.

We note that Wood used DTDs with DFAs in his conp-hardness proof of the
inclusion problems of XPath{/, [ ]} and XPath{//, [ ]} [38].
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We also make use of the following lemma. The proof uses the notion of select-
ing literals of an XPath pattern. Intuitively, an element test or a wildcard in
an XPath pattern is a selecting literal if it used for selecting nodes in the doc-
ument rather dan for navigation in the document. In the following definition,
we denote by ℓ an arbitrary a ∈ Σ or a wildcard.

• ℓ is a selecting literal in ·/φ2, in ·//φ2, in φ1/φ2, in φ1//φ2 or in φ2[P ] if it
is a selecting literal in φ2.

• ℓ is a selecting literal in φ1|φ2 if it is a selecting literal in φ1 or in φ2.
• ℓ is a selecting literal in ℓ.

Example 25 We provide some examples.

• The selecting literals of ·//a/b/((c/d)|(b/e)) are labeled d and e.
• The selecting literal of ·/a[·/c]// ∗ [·/(b|c)] is labeled ∗.

Lemma 26 ([25,29]) Given a DTD(DFA) d and XPath{X} patterns P1 and
P2, we can construct a DTD(DFA) d′ and XPath{X} patterns P ′

1 and P ′
2 in

logspace such that deciding whether

fP1
(t, ε) ⊆ fP2

(t, ε) for all trees t satisfying d,

is equivalent to deciding whether for all trees t satisfying d′,

if P ′
1 selects an x1-labeled node in t, then P ′

2 selects an x2-labeled node in t.

PROOF. [Sketch] The DTD d′ is identical to d, except that d′ also requires
that every node has a child leaf labeled with x1 and one with x2.

For i = 1, 2, pattern P ′
i is constructed from Pi by replacing for every selecting

literal ℓ

(a) subpatterns /ℓ[φ1] · · · [φn] by /ℓ[φ1] · · · [φn]/xi; and
(b) subpatterns //ℓ[φ1] · · · [φn] by //ℓ[φ1] · · · [φn]//xi,

where [φ1] · · · [φn] is a (possibly empty) sequence of filter operations. 2

The lower bound in bullet (2) of Theorem 28 follows from a reduction from
the intersection emptiness problem for DFAs over a unary alphabet. Given an
arbitrary number of DFAs A1, . . . , An over alphabet {a}, this problem asks
whether

⋂n
i=1 L(Ai) = ∅. In the next lemma, we show that this problem is

conp-hard.

Lemma 27 Intersection emptiness of an arbitrary number of DFAs over one-
letter alphabet {a} is conp-hard.
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PROOF. We reduce the satisfiability problem for Boolean formulas in 3-CNF
to the complement of the intersection emptiness problem. The technique is an
adaptation of the proof of Meyer and Stockmeyer establishing that inequiva-
lence of regular expressions over a unary alphabet is np-hard [34].

Let Φ = φ1 ∧ · · · ∧ φk be a formula in 3-CNF with variables {x1, . . . , xn}. Let
p1, . . . , pn be the first n primes. Due to the Prime Number Theorem, we only
need to check values up to at most n2 for primality and we can find p1, . . . , pn

in logarithmic space since n is given in unary notation. Intuitively, we can
represent every truth assignment of Φ with a string ar by assigning true to
each xi if r mod pi = 0 and false otherwise. We now construct a DFA Ai

for each φi such that
⋂k

i=1 L(Ai) 6= ∅ if and only if Φ is satisfiable.

We illustrate the construction of the Ai’s by means of an example. Let φi =
(x1 ∨¬x2 ∨x3) be a clause in Φ. Then L(Ai) = (ap1)∗ +(ap2)∗ +(ap3)∗. Hence,
Ai accepts all strings that satisfy φi. Note that, since (apj)∗ or its complement
can be easily represented by a DFA and since we only take unions of three
automata, each Ai has O(n2·3) states.

Finally, it is easy to see that a string w ∈
⋂k

i=1 L(Ai) if and only if w encodes
a truth assignment that satisfies Φ. 2

Theorem 28 The following problems are conp-hard.

(1) TC[T
XPath{X}

nd,bc , DTD(DFA)], for XPath{X} among
• XPath{/, |};
• XPath{//, |};
• XPath{/, [ ]} and
• XPath{//, [ ]}.

(2) TC[T
XPath{//}

trac , DTD(DFA)].

PROOF. (1) In all four cases, we can do a reduction from the XPath{X}
containment problem in the presence of DTD(DFA)s, which is conp-hard ac-
cording to Theorem 24.

To this end, let P1 and P2 be two XPath{X} patterns and let (d, s) be a
DTD(DFA). We construct an instance of the typechecking problem that type-
checks if and only if P1(t, ε) ⊆ P2(t, ε) for every t ∈ (d, s).

The input DTD (din, r) is identical to (d′, s) as constructed in the proof of
Lemma 26, except that r is a new alphabet symbol and din(r) = s. Let P ′

1 and
P ′

2 be the XPath{X} patterns as constructed in the proof of Lemma 26.
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We define the tree transducer T = ({q0
T , q1}, Σ, q0

T , RT ). The set RT contains
the following rule:

(q0, r) → r

〈q1, P
′
1〉 〈q1, P

′
2〉

For state q1 we have the rules (q1, x1) → x1 and (q1, x2) → x2, which is the
identity transformation on x1 and x2. The output DTD dout has start symbol
r and dout(r) = x∗

2 + (x1x
∗
1x2x

∗
2). The latter checks that x1 does not appear or

appears together with x2. The correctness now follows from the statement of
Lemma 26.

(2) We reduce the intersection emptiness problem for an arbitrary number of
DFAs A1, . . . , An, defined over alphabet {a}, which is conp-hard (Lemma 27)
to the typechecking problem.

The input DTD (din, r) is defined as follows: din(r) = #, din(#) = # + $, and
din($) = a∗. So, trees are of the form

r

#

#
...

#

$

a · · ·a

We define the tree transducer T = ({q0
T , q1, q2, q3}, {a, r, #, $}, q0

T , RT ) with
the following rewrite rules:

(q0
T , r) → r(〈q1, ·//#〉) (q1, #) → 〈q2, ·//$〉

(q2, $) → 〈q3, ·//a〉$ (q3, a) → a

The transducer starts by selecting every #-labeled node. For each of those
(say there are k) it selects the single $-labeled descendant node. So, k copies
of the input string in L(a∗) are made, separated by the $-symbol.

The output DTD simulates the ith DFAs on the ith copy and accepts if one
of them rejects or if there are less than n copies. So, the instance typechecks
if the intersection is empty. Note that the copying width (C) and the deletion
path width (K) are both one. 2
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The previous results show that to retain tractability of typechecking only very
restricted XPath patterns can be added to Ttrac, or even Tnd,bc. Next, we look
at transducers where patterns are specified by DFAs (rather than by XPath
patterns). We denote this fragment by T DFA. The semantics of such selecting
DFAs is as follows: given a DFA A and a context node u, a descendant v of u
is selected by A if and only if A accepts the string of labels on the path from
u to v. From Theorem 28(2) it follows that typechecking is already hard when
we allow patterns to be specified by DFAs in Ttrac transducers (for instance,
every XPath{//}-pattern used in the proof of Theorem 28(2) can be translated
to an equivalent DFA in linear time). When we completely disallow deletion
however, we still have tractability.

Theorem 29 TC[T DFA
nd,bc , DTD(DFA)] is in ptime.

PROOF. We show that for any tree transducer T ∈ T DFA
nd,bc , we can construct

an equivalent tree transducer T ′ ∈ Ttrac with size linear in the size of T , and
the same copying and deletion path width as T .

The proof is quite analogous to the proof of Theorem 23. We simulate every
DFA-pattern in T by deleting states in T ′. The simulation of such DFAs only
introduces deleting states of deletion width one.

Formally, let T be the transducer (QT , Σ, q0
T , RT ). Let Ax = (Qx, Σ, δx, {q

I
x}, {q

F
x }),

x ∈ X be the sets of selecting DFAs in T , where X is a set of indices. Without
loss of generality, we assume that the sets Qx are pairwise disjoint and disjoint
from QT .

We construct T ′ = (QT ′, Σ, q0
T , RT ′) as follows. Its state set is QT ∪

⋃

x∈X(QT ×
Qx). For every rule (q, a) → h in RT , and for every 〈p, Ax〉 occurring in h we
have the following set of rules in RT ′:

• (q, a) → h′ where h′ is the hedge h where every 〈p, Ax〉 is replaced by (p, qI
x);

• ((p, qx), b) → (p, δx(qx, b)) for every px ∈ Qx and b ∈ Σ such that δx(px, b) 6=
qF
x ; and

• ((p, qx), b) → rhs(p, b) (p, qF
x ) for every px ∈ Qx and b ∈ Σ such that

δx(px, b) = qF
x . Since T is non-deleting, no states occur in top(rhs(p, b))

and hence, (p, qx) has deletion path width one.

The main difference with Theorem 23 is that when we arrive in a final state of
Ax, the simulation of Ax still needs to go on. This is shown in the third bullet.
There, the output hedge consists of the output generated by the selection of
the current node, followed by the output generated by selecting descendant
nodes of the current node by Ax. Hence, the document order is respected.
Again, T ′ ∈ T C,K

trac whenever T ∈ T C,K
trac . 2
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As shown by Green et al., any XPath pattern in XPath{/, //, ∗} for which the
number of wildcards occurring between two descendant axes is bounded from
above by c, can be translated to an equivalent DFA of size O(nc), where n is
the size of the pattern [13]. We hence obtain that typechecking is in ptime

for T
XPath{/,//,∗}

nd,bc where patterns are such that c is bounded by a constant.

It remains open whether typechecking for T
XPath{/,//,∗}

nd,bc is in ptime in general.

5 Deletion, Unbounded Copying, and RE+

All tractable fragments of the previous setting assume a uniform bound on
the copying and deletion width of a transducer. Although in practice these
bounds will usually be small and Lemma 14 provides a detailed account of
their effect, the restrictions remain somewhat artificial. In the present section,
we therefore investigate fragments in which there are no restrictions on the
copying or deletion power of the transducer. As the typechecking problem
is already pspace-hard when we use DTD(DFA)s, we have to restrain the
schemas, for example, by restricting the regular expressions in rules.

We consider the following regular expressions. Let RE+ be the set of regu-
lar expressions of the form α1 · · ·αk where every αi is ε, a, or a+ for some
a ∈ Σ. An example is title author+ chapter+. In this section, we show that
typechecking for arbitrary tree transducers with respect to DTD(RE+)s is in
ptime. We note that every DTD(RE+) is either non-recursive (that is, an
a-labeled node has no a-labeled descendants) or defines the empty language.
However, the tractability of typechecking remains non-trivial, as in general
typechecking is already pspace-complete when using DTD(DFA)s only defin-
ing trees of depth two [21].

Notice that deciding inclusion and equivalence for RE+ expressions is in ptime,
as every such expression can be transformed to a corresponding DFA in lin-
ear time. Moreover, deciding whether the intersection of an arbitrary num-
ber of RE+ expressions is empty can also be decided in ptime [23]. We fur-
ther note that Benedikt, Fan, and Geerts, among other things, obtained that
satisfiability of various fragments of XPath is tractable in the presence of a
DTD(RE+) [3].

We present the typechecking algorithm and show its correctness. For the rest of
this section, let T = (QT , Σ, q0

T , RT ) be a tree transducer and denote the input
and output DTD by din and dout, respectively. We introduce some notational
shorthands. For an RE+-expression e and DTD d, we denote by de the hedge
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language

{a1(h1) · · ·an(hn) | a1 · · ·an ∈ L(e) and ∀i = 1, . . . , n : ai(hi) ∈ L(d, ai)}.

So, if t1 · · · tn ∈ de then top(t1) · · · top(tn) ∈ L(e) and every ti is a derivation
tree of (d, top(ti)). Recall that (d, ai) denotes DTD d with start symbol ai.
For a state q ∈ QT and an alphabet symbol a ∈ Σ, we say that the pair (q, a)
is reachable if there exists a tree t in L(din) such that T processes at least one
node of t labeled with a in state q. The set of reachable pairs can be computed
in ptime.

To verify that the instance typechecks, we have to check that for every reach-
able pair (q, a) and for every node u in rhs(q, a) that

{z0top(T q1(h))z1 · · · zk−1top(T qk(h))zk | h ∈ de
in} ⊆ dout(σ),

where e = din(a), z0q1z1 · · · zk−1qkzk is the concatenation of u’s children, and
σ is the label of u. In the above, for h = t1 · · · tn, we denoted by T q(h) the
hedge T q(t1) · · ·T

q(tn). We denote the above language

{z0top(T q1(h))z1 · · · zk−1top(T qk(h))zk | h ∈ de
in}

by Lq,a,u. Note that the latter language is not necessarily regular, or even
context-free.

We construct an extended context-free grammar Gq,a,u such that L(Gq,a,u) ⊆
dout(σ) if and only if Lq,a,u ⊆ dout(σ). More specifically, define Gq,a,u = (V, Σ, P, S),
where V = {〈p, b〉 | p ∈ QT , b ∈ Σ} is the set of non-terminals, Σ is the
set of terminals, P is the set of production rules and S = 〈q, a〉 is the
start symbol. Each non-terminal 〈p, b〉 corresponds to the string language
{top(T p(t)) | t ∈ L(din, b)}. It remains to define the production rules P . For
the start symbol 〈q, a〉, we have the rule

〈q, a〉 → z0〈q1, e1〉
θ1 · · · 〈q1, en〉

θnz1 · · · zk−1〈qk, e1〉
θ1 · · · 〈qk, en〉

θnzk,

where e = eθ1

1 · · · eθn
n , every ei ∈ Σ and θi is either + or the empty string.

For a non-terminal 〈p, b〉 let din(b) = bα1

1 · · · bαm
m and let top(rhs(p, b)) =

s0p1s1 · · · pℓsℓ. Then we add the rule

〈p, b〉 → s0〈p1, b1〉
α1 · · · 〈p1, bm〉

αms1 · · · sℓ−1〈pℓ, b1〉
α1 · · · 〈pℓ, bm〉

αmsℓ

to P . If there is no rhs(p, b) in RT , we add 〈p, b〉 → ε to P . Note that Gq,a,u is
an extended context-free grammar, polynomial in the size of din and T . It is
easy to see that since din is non-recursive, Gq,a,u is also non-recursive and that
Lq,a,u ⊆ L(Ga,q,u).

Our next goal is to prove the following theorem, which states that typecheck-
ing reduces to checking inclusion of the language defined by the constructed
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grammar in the language defined by an RE+ expression.

Theorem 30 For every q ∈ Q, a ∈ Σ and u ∈ rhs(q, a),

Lq,a,u ⊆ L(dout(σ)) if and only if L(Gq,a,u) ⊆ L(dout(σ)),

where σ is the label of u.

So, typechecking reduces to testing whether L(Gq,a,u) ⊆ L(dout(σ)). The lat-
ter can be reduced to emptiness testing of the cross-product of the push-
down automaton equivalent to Gq,a,u and the DFA accepting the complement
of L(dout(σ)). All applied constructions and the emptiness test can be done
ptime [14,32].

We now prove Theorem 30 in a series of lemmas. The theorem immediately
follows from Lemma 36. We fix a transducer T and an input and output
schema din and dout.

First, we introduce some additional notation and concepts. We bring an RE+-
expressions e in normal form as follows. In e, we replace every occurrence of
a symbol a and a+ by a=1 and a≥1, respectively. Next, we repeatedly combine
successive terms a=ia=j as a=i+j , and a≥ia=j , a=ia≥j or a≥ia≥j as a≥i+j. When
no combinations can be made anymore, we say that the resulting expression
is normalized.

For a normalized RE+-expression e = aθ1x1

1 · · ·aθnxn
n , we denote by emin the

minimal string ax1

1 · · ·axn
n . A string is vast with respect to e, or e-vast, when

it is of the form ay1

1 · · ·ayn
n where for every i = 1, . . . , n, yi > xi if θi is ≥ and

yi = xi otherwise. Note that when L(e) is a singleton, the minimal string is
e-vast.

We call two string languages L1 and L2 RE+-equivalent, denoted L1 ≡ L2, if
for every RE+-expression e, L1 ⊆ L(e) ⇔ L2 ⊆ L(e). Obviously, this is an
equivalence relation.

Lemma 31 For any RE+-expression e and e-vast string evast,

L(e) ≡ {emin, evast}.

PROOF. Let e be of the form aθ1x1

1 · · ·aθnxn
n . Let f be an arbitrary RE+-

expression such that {emin, evast} ⊆ L(f). As emin ∈ L(f), f is of the form

a
θ′
1
y1

1 · · ·aθ′nyn
n , where yi ≤ xi for every i = 1, . . . , n. Moreover, when θ′i is =,

then yi = xi. Since evast = az1

1 · · ·azn
n ∈ L(f), for every i = 1, . . . , n, θ′i is ≥

whenever zi > xi, and consequently, when θi is ≥. Therefore, L(e) ⊆ L(f).
Clearly, {emin, evast} ⊆ L(f) when L(e) ⊆ L(f). This proves the lemma. 2
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Corollary 32 Let e, f be RE+-expressions. If L(e) 6⊆ L(f) then either emin 6∈
L(f) or evast 6∈ L(f) for any e-vast string evast ∈ L(e).

Lemma 33 Let e be an RE+-expression and evast an e-vast string. For any
L ⊆ Σ∗, if {emin, evast} ⊆ L ⊆ L(e) then L ≡ L(e).

PROOF. Let f be an arbitrary RE+-expression such that L ⊆ L(f). Towards
a contradiction, assume that L(e) 6⊆ L(f). But then, according to Corollary 32,
either emin 6∈ L(f) or evast 6∈ L(f). This leads to the desired contradiction. The
other direction is trivial since L ⊆ L(e). 2

A string language L is bounded when there is an RE+-expression e = a+
1 · · ·a+

ℓ

where ai 6= ai+1 for each i = 1, . . . , ℓ − 1 such that L ⊆ L(e). We refer to e as
a witness. Two bounded languages are bound equivalent when they share the
same witness expression. A language is unbounded when it is not bounded.

For every p ∈ QT and b ∈ Σ, define Rp,b to be the set of strings {top(T p(t)) |
t ∈ L(din, b)}. Consider the grammar Gq,a,u = (V, Σ, P, S) as defined earlier in
this section. Denote by L(〈p, b〉) the language accepted by (V, Σ, P, 〈p, b〉) for
every non-terminal 〈p, b〉 ∈ V . That is, L(〈p, b〉) is the grammar Gq,a,u, but
with start symbol 〈p, b〉. Note that, by definition of Gq,a,u, for each p ∈ QT ,
b ∈ Σ we have that Rp,b ⊆ L(〈p, b〉), and in particular, Lq,a,u ⊆ L(Gq,a,u).
Hence, the next lemma immediately follows.

Lemma 34 (1) For every p ∈ QT , b ∈ Σ, if L(〈p, b〉) is bounded, then Rp,b

and L(〈p, b〉) are bound equivalent.
(2) If L(Gq,a,u) is bounded, then L(Gq,a,u) and Lq,a,u are bound equivalent.

We now show that the languages defined by the constructed grammars are
bounded if and only if Rp,b and Lq,a,u are bounded, respectively.

Lemma 35 (1) For every p ∈ QT , b ∈ Σ, L(〈p, b〉) is bounded if and only if
Rp,b is bounded.

(2) L(Gq,a,u) is bounded if and only if Lq,a,u is bounded.

PROOF. We only prove (1) as the proof of (2) is similar. As Gq,a,u = (V, Σ, P,
〈q, a〉) is non-recursive, we can prove this lemma by induction on the maximum
depth d of derivation trees in (V, Σ, P, 〈p, b〉).

When d = 1, then 〈p, b〉 → w is a rule in P for some w ∈ Σ∗.

By definition of Gq,a,u and Rp,b, we then have that L(〈p, b〉) = {w} = Rp,b. So,
the statement of the lemma follows.
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We turn to the induction step. Assume d > 1. Let

〈p, b〉 → s0〈p1, b1〉
α1 · · · 〈p1, bm〉

αms1 · · · sℓ−1〈pℓ, b1〉
α1 · · · 〈pℓ, bm〉

αmsℓ

be a rule in P . Then, Rp,b is the set

{

s0top
(

T p1(t1) · · ·T
p1(tn)

)

s1 · · · sℓ−1top
(

T pℓ(t1) · · ·T
pℓ(tn)

)

sℓ | t1 · · · tn ∈ db
α1

1
···bαm

m

}

.

The latter is equal to

{

s0top
(

T p1(b1(h
1
1)) · · ·T

p1(b1(h
k1

1 )) · · ·T p1(bm(h1
m)) · · ·T p1(bm(hkm

m ))
)

s1 · · ·

· · · sℓ−1top
(

T pℓ(b1(h
1
1)) · · ·T

pℓ(b1(h
k1

1 )) · · ·T pℓ(bm(h1
m)) · · ·T pℓ(bm(hkm

m ))
)

sℓ

| b1(h
1
1) · · · b1(h

k1

1 ) · · · bm(h1
m) · · · bm(hkm

m ) ∈ db
α1

1
···bαm

m

}

.

As Rp,b ⊆ L(〈p, b〉), Rp,b is bounded when L(〈p, b〉) is. We next show that if
L(〈p, b〉) is unbounded then Rp,b is unbounded. We distinguish two cases.

(i) There is an L(〈pi, bj〉) which is unbounded. By induction,

Rpi,bj
= {top(T pi(t)) | t ∈ d

bj

in}

is unbounded. As for every string w ∈ Rpi,bj
, there are strings w1, w2 such

that w1ww2 ∈ Rp,b, we have that the latter language is also unbounded.
(ii) Every L(〈pi, bj〉) is bounded, but there are a ℓ, m such that L(〈pℓ, bm〉)

contains a string with at least two different alphabet symbols and αm is
+. Clearly, L(〈p, b〉) is unbounded. By induction, Rpℓ,bm

is bounded. By
Lemma 34(1), L(〈pℓ, bm〉) and Rpℓ,bm

are bound equivalent. Therefore,
since L(〈pℓ, bm〉) contains a string with at least two different alphabet
symbols, every string

top(T pℓ(bm(h1
m))), . . . , top(T pℓ(bj(h

km

m )))

contains at least two different alphabet symbols. As km can be arbitrarily
large, Rp,b is unbounded.

2

For every a ∈ Σ, we define trees tmin
a and tvasta in L(din) as follows:

• when din(a) = ε then tmin
a = tvasta = a; and

• when din(a) = aα1

1 · · ·aαn
n then

(i) tmin
a = a(tmin

a1
· · · tmin

an
) and

(ii) tvasta = a(ha1
· · ·han

), where for every i = 1, . . . , n we have
· hai

= tvastai
tvastai

when αi is +; and
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· hai
= tvastai

, otherwise.

Theorem 30 now follows from Lemma 36(2).

Lemma 36 (1) For every p ∈ QT , b ∈ Σ, L(〈p, b〉) ≡ Rp,b; and
(2) L(Gq,a,u) ≡ Lq,a,u.

PROOF. As Gq,a,u is non-recursive, we can prove this lemma by induction
on the maximum depth d of the derivation trees of (V, Σ, P, 〈p, b〉).

We prove by induction on d that for any p ∈ QT , b ∈ Σ,

(IH) if Rp,b is bounded, then there is an RE+-expression rp,b such that
(1) L(〈p, b〉) ⊆ L(rp,b);
(2) (rp,b)min = top(T p(tmin

b ))) and top(T p(tvastb )) is rp,b-vast. (Note that the
latter strings are in Rp,b.)

We argue that the lemma is proven when (IH) holds. Indeed, by Lemma 33
we have that L(〈p, b〉) ≡ L(rp,b) ≡ Rp,b. When Rp,b is unbounded, then so is
L(〈p, b〉) (Lemma 35(1)). By definition, L(〈p, b〉) ≡ 〈p, din, b〉.

Suppose that d = 1, then 〈p, b〉 → w for some w ∈ Σ∗.

By definition, L(〈p, b〉) = {w} = Rp,b. Define rp,b = w = rmin
p,b = rvast

p,b . IH now
holds.

We turn to the induction step. Assume d > 1. Let

〈p, b〉 → s0〈p1, b1〉
α1 · · · 〈p1, bm〉

αms1 · · · sℓ−1〈pℓ, b1〉
α1 · · · 〈pℓ, bm〉

αmsℓ

be a rule in P . Then Rp,b =

{s0top(T p1(t1) · · ·T
p1(tn))s1 · · · sℓ−1top(T pℓ(t1) · · ·T

pℓ(tn))sℓ | t1 · · · tn ∈ db
α1

1
···bαm

m }.

Assume Rp,b is bounded. The latter implies that L(〈p, b〉) is bounded (Lemma 35).
As the maximum depth of the derivation trees rooted at each 〈pi, bj〉 is d− 1,
there are corresponding RE+-expressions rpi,bj

for which the induction hypoth-
esis holds.

Define the RE+-expression r′p,b as

s0(rp1,b1)
α1 · · · (rp1,bm

)αms1 · · · sℓ−1(rpℓ,b1)
α1 · · · (rpℓ,bm

)αmsℓ.

We now construct rp,b from r′p,b as follows. For any i = 1, . . . , ℓ, j = 1, . . . , n, if
αj is + and rpi,bj

= c=m or rpi,bj
≡ c≥m then replace (rpi,bj

)+ by c≥m. Finally,
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normalize the resulting expression. Note that no rpi,bj
can contain two different

alphabet symbols as L(〈pj, bi〉) is bounded.

From the construction and the induction hypothesis it follows that L(〈p, b〉) ⊆
L(r′p,b) ⊆ L(rp,b), so (1) holds.

It remains to show (2). Clearly,

rmin
p,b = s0(rp1,b1)min · · · (rp1,bm

)mins1 · · · sℓ−1(rpℓ,b1)min · · · (rpℓ,bm
)minsℓ.

Now define

(rp,b)vast = s0(rp1,b1)
x1

vast · · · (rp1,bm
)xm

vasts1 · · · sℓ−1(rpℓ,b1)
x1

vast · · · (rpℓ,bm
)xm

vastsℓ,

where for every i we have that xi = 1 if αi is ε and xi = 2 otherwise. Note
that the string (rp,b)vast is rp,b-vast.

It remains to show that (rp,b)min = top(T p(tmin
b )) and (rp,b)vast = top(T p(tvastb )).

By induction, (rp,b)min

=s0top(T p1(tmin
b1

) · · ·T p1(tmin
bm

))s1 · · · sℓ−1top(T pℓ(tmin
b1

) · · ·T pℓ(tmin
bm

))sℓ

=s0top(T p1(tmin
b1 · · · tmin

bm
))s1 · · · sℓ−1top(T pℓ(tmin

b1 · · · tmin
bm

))sℓ

=top(T p(tmin
b ))

and we analogously have that (rp,b)vast

=s0top(T p1(tvastb1 ))x1 · · · top(T p1(hvast
bm

))xms1 · · ·

· · · sℓ−1top(T pℓ(hvast
b1 ))x1 · · · top(T pℓ(hvast

bm
))xmsℓ

=s0top(T p1(hvast
b1 ) · · ·T p1(hvast

bm
))s1 · · · sℓ−1top(T pℓ(hvast

b1 ) · · ·T pℓ(hvast
bm

))sℓ

=s0top(T p1(hvast
b1 · · ·hvast

bm
))s1 · · · sℓ−1top(T pℓ(hvast

b1 · · ·hvast
bm

))sℓ

=top(T p(tvastb ))

where hvast
bi

= tvastbi
tvastbi

when αi is + and hvast
bi

= tvastbi
otherwise. 2

We have thus obtained the following Theorem:

Theorem 37 TC[Td,c, DTD(RE+)] is in ptime.

The simplicity of RE+-expressions seems to be the price to pay for a tractable
algorithm for arbitrary transducers. Indeed, the inclusion problem for a class
of regular expressions C can readily be reduced to typechecking with DTD(C)s.
As it is shown in [23] that inclusion of obvious extensions of RE+-expressions
is conp-hard, typechecking for the corresponding fragment is conp-hard. In
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particular, [23] discusses expressions of the form α1 · · ·αn where all αi belong
to classes (1) a or a?, and (2) a or a∗. By using similar techniques as in [23],
it can also be shown that inclusion is conp-hard for expressions where all
αi belong to classes (3) a or (a+

1 + · · · + a+
n ), (4) a or (a1 · · ·an)+ (5) a or

(a1 + · · · + an)+ and (6) (a1 + · · · + an) or a+ [24]. Of course, this argument
only holds for setting imposing the same restrictions on input and output
schemas.

An interesting question is whether we can also obtain a ptime typechecking
algorithm if we allow expressions of the form α and α + ε where α is an
RE+-expression. This problem remains open.

6 Remarks

In practice it is relevant that typechecking algorithms can generate counterex-
ample trees (or a description of them) for instances that it rejects. As our
main upper bound theorem reduces the typechecking problem to the empti-
ness problem for a NTA(NFA) of polynomial size, and since it is possible to
generate a description of a tree in the language of an NTA(NFA) in polyno-
mial time (cfr. Proposition 4(3)), we can also generate a counterexample tree
for the typechecking algorithm in polynomial time. Further, from the proof
of Lemma 36 it follows that if an instance of TC[Ttrac, DTD(DFA)] does not
typecheck, we either have that tmin

a or tvasta is a counterexample, where a is the
start symbol of the DTD. Note that both trees can be easily represented by a
polynomial sized extended context free grammar. We have thus obtained the
following.

Corollary 38 If an instance of

• TC[Ttrac, DTD(DFA)] or
• TC[Td,c, DTD(RE+)]

does not typecheck, we can generate a counterexample in ptime.

Note that in the case of TC[Td,c, DTD(RE+)], testing whether tmin
a or tvasta are

counterexamples gives rise to a slightly different typechecking algorithm than
the one we exhibited in Section 5. However, we believe that algorithms similar
to the one in Section 5 might also be useful for typechecking with respect to
DTDs using other formalisms than RE+-expressions, or for incomplete type-
checking algorithms. This is not the case for the algorithm that tests whether
tmin
a or tvasta are counterexamples.
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We say that an instance of the typechecking problem typechecks almost always
if the set {t ∈ din | T (t) 6∈ dout} is finite. The latter notion is introduced
by Engelfriet and Maneth [16]. Since the finiteness problem of NTA(NFA)
is decidable in ptime, according to Proposition 4(1), we have obtained the
following.

Corollary 39 Almost always typechecking of Ttrac transducers with respect to
DTD(DFA)s is in ptime.

7 Conclusion

We provided a rather complete overview of how the different parameters in-
fluence the complexity of the typechecking problem. As the main focus of
the paper is on tractable scenarios, we did not investigate upper bounds for
intractable cases.

We identified several interesting practical tractable cases that can be classified
depending on the strength of the schema languages. The most liberal setting
is where RE+ expressions suffice to define schema languages: we have ptime

typechecking for all transducers in our framework. Sometimes, however, one
needs more expressive regular expressions in schema languages. For instance,
to express choice like in (section+ table+ figure)∗. Our results show that
there is still a ptime algorithm when those expressions can be translated in
ptime to DFAs and when one can bound simultaneous copying and deletion.
Interestingly, arbitrary deletion without copying can be allowed. As copy-
ing is usually fairly limited in the simple transformations for which XSLT is
used, but unbounded deletion without copying is required for so-called filter-
ing transformations, our result identifies a tractable fragment with potential
in practice. Further, we obtained that the XPath axes / and ∗ can be added
without increasing the complexity. Finally, when deterministic tree automata
are required, no copying can be allowed but arbitrary deletion is permitted.

We also showed that none of the above restrictions can be severely relaxed
without rendering the typechecking problem intractable. So, for these larger
classes of transformations or schema languages, it is more appropriate to de-
velop incomplete or approximate algorithms.

A Appendix: Basic Results

In the following lemma, we treat the emptiness problem for DTAcs: given a
DTAc A, is L(A) = ∅?
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Proof of Lemma 3 The emptiness problem is ptime-complete for DTAc(DFA).

PROOF. The upper bound follows from a reduction to the emptiness prob-
lem for NTA(NFA)s, which is in ptime (cf. Proposition 4).

For the lower bound, we reduce path systems [9], which is known to be
ptime-complete, to our problem. path systems is the decision problem de-
fined as follows: given a finite set P , a set A ⊆ P of axioms, a set R ⊆ P 3 of
inference rules and some p ∈ P , is p provable from A using R? We construct a
DTAc(DFA) A = (Σ∪{qerror}, Σ, δ, Σ) such that L(A) is empty if and only if p
is provable. In particular, for every (a, b, c) ∈ R, we add the string ab to δ(c, c);
for every a ∈ A, δ(a, a) = {ε}. Further, for every a ∈ Σ we define δ(qerror, a)
as (Σ ∪ {qerror})

∗ − L(δ(a, a)). Clearly, (d, p) satisfies the requirements. 2

Proof of Proposition 4

(1) Finiteness of NTA(NFA) is in ptime.
(2) Emptiness of NTA(NFA) is in ptime.
(3) For a NTA(NFA) N , we can generate a description of a tree t ∈ L(N)

in ptime.

PROOF. Part (1) immediately follows from results in [8]. Indeed, an efficient
way to test for finiteness of is to check the existence of a loop. A language is
infinite if and only if there is a loop on some useful state, that is, some state
that can be used in an accepting run on some tree.

Part (2) immediately follows from results in [21]. We briefly give the algorithm
as it is used in part (3). To this end, let A = (Q, Σ, δ, F ) be an NTA(NFA).
The emptiness algorithm is then depicted in Figure A.1. When the algorithm
is finished, we have that L(A) is empty if and only if R does not contain a
final state.

Further, part (3) is an easy adaptation of the emptiness algorithm in part
(2). Indeed, for every computed state q ∈ Ri where i > 1, we can remember
the witnesses symbol a ∈ Σ and the string w ∈ R∗

i−1 ∩ δ(q, a). Using these
witnesses, a DAG-representation of the counterexample tree t can easily be
computed in a top-down manner, starting from an accepting state in R|Q|. 2
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R1 := {q ∈ Q | ∃a ∈ Σ, ε ∈ δ(q, a)};
for i := 2 to |Q| do

Ri := {q ∈ Q | ∃a ∈ Σ, δ(q, a) ∩ R∗
i−1 6= ∅};

end for
R := R|Q|;

Fig. A.1. The emptiness algorithm in [21] computing the set R of reachable states.
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