
Efficient Algorithms for the Tree

Homeomorphism Problem

Michaela Götz1, Christoph Koch1, and Wim Martens2⋆

1 Saarland University
Saarbrücken, Germany

{goetz,koch}@infosys.uni-sb.de
2 University of Dortmund

Dortmund, Germany
wim.martens@udo.edu

Abstract. Tree pattern matching is a fundamental problem that has
a wide range of applications in Web data management, XML process-
ing, and selective data dissemination. In this paper we develop efficient
algorithms for the tree homeomorphism problem, i.e., the problem of
matching a tree pattern with exclusively transitive (descendant) edges.
We first prove that deciding whether there is a tree homeomorphism is
LOGSPACE-complete, improving on the current LOGCFL upper bound.
As our main result we develop a practical algorithm for the tree home-
omorphism decision problem that is both space- and time efficient. The
algorithm is in LOGDCFL and space consumption is strongly bounded,
while the running time is linear in the size of the data tree. This al-
gorithm immediately generalizes to the problem of matching the tree
pattern against all subtrees of the data tree, preserving the mentioned
efficiency properties.

1 Introduction

Tree patterns are a simple query language for tree-structured data. They are at
the heart of several widely-used Web languages such as XPath and XQuery [4].
As a consequence, they form part of a number of typing mechanisms such as
XML Schema, and of Web Programming Languages. They have also been used
as query languages in their own right, for example for expressing subscriptions
in publish-subscribe systems [1, 5, 6, 13].

The general tree pattern matching problem considered in the literature is
the problem of finding a mapping between two node-labeled trees which is, in a
sense, a cross of a subtree homomorphism and a homeomorphism. In this paper
we consider a clean and important special case of the tree pattern embedding
problem that we call the tree homeomorphism problem. The question we consider
is whether there is a mapping θ from the nodes of the first tree, the tree pattern

⋆ This work was supported by a scholarship of the FWO-Vlaanderen that permitted
Wim Martens to visit the Technical University of Vienna in January–February, 2005.

time space streaming

Yannakakis 1981 [19] O(|Q| · |D| · depth(D)) O(depth(Q) · |D|) no
Gottlob et al. 2002 [10] O(|Q| · |D|) O(|Q| · |D|) no
Olteanu et al. 2004 [16] O(|Q| · |D| · depth(D)) O(|Q| · depth(D) + |D|) yes
Bar-Yossef et al. 2005 [3] O(|Q| · |D|) O(|Q| · log |D|+ candD) yes
Ramanan 2005 [17] O((|Q|+ depth(D)) · |D|) O(|Q| · depth(D) + candD) yes
Our bottom-up algorithm O(|Q| · |D| · depth(|Q|)) O(depth(D) · branch(D)) no

Our LOGSPACE algorithm poly(|Q|+ |D|) O(log(|Q|+ |D|)) no

Table 1. Time and space consumption for algorithms solving the tree homeomor-
phism matching problem. Here depth(·) and branch(·) denote the depth and maximal
branching factor of a tree, respectively.

or query, to the nodes of the second tree, the data tree, such that if node y is a
child of x in the first tree, then θ(y) is a descendant of θ(x) in the second tree.
We also consider the tree homeomorphism matching problem: finding all nodes v

of the data tree such that there is such a tree homeomorphism with v the image
of the root node of the pattern tree. This problem of selecting all nodes whose
subtrees match the tree pattern has frequent application in XML and Web query
processing [1, 10].

While this problem is of immediate practical relevance and a substantial
number of papers have studied complexity and efficient algorithms for tree pat-
tern matching, the precise complexity of both the general tree pattern matching
problem and the tree homeomorphism problem are open; they are both known to
be in LOGCFL and LOGSPACE-hard [11].The former can be immediately con-
cluded from earlier results on the complexity of the acyclic conjunctive queries
[12] and the positive navigational fragment of XPath [11], both much stronger
languages. The latter is a direct consequence of the fact that reachability in trees
is LOGSPACE-complete [8].

Much work has been dedicated to developing efficient algorithms for finding
matches of tree patterns and tree homeomorphisms. Certain algorithms aim at
processing the data tree as a stream (i.e., in a single scan) [5, 6, 13, 15, 9, 16, 2,
3, 17]. For this case a number of lower bound results have been obtained using
mechanisms from communication complexity [2, 3, 14]. It is basically known that
streaming algorithms for even simple tree patterns consume space proportional
to the size of the data tree in the worst case. Table 1 lists algorithms for the
tree homeomorphism matching problem together with bounds on their running
time and space consumption. Here D is the data tree and Q is the tree pattern.
We assume a random access machine model with unit cost for reading and writ-
ing integers. Some of the algorithms presented support generalizations of the
tree homeomorphism problem but where a better bound is known for the tree
homeomorphism problem, it is shown. Some of the streaming algorithms [3, 17]
use a notion of candidate node sets candD which depends on the algorithm and
which can be of size close to |D| in the worst case. The algorithm of [3] makes
the assumption of so-called non-recursive data trees, in which no two nodes such
that one is a descendant of the other may have the same label. Finally, streaming

algorithms such as [15] focus on being able to process SAX-events in constant
time, at the cost of an exponential preprocessing step.

In this paper we study the tree homeomorphism (matching) problem. We
establish a tight complexity characterization and develop an algorithm for the
node-selection problem (shown at the bottom of Table 1) that is both time- and
space efficient. In detail, the technical contributions of this paper are as follows.

– We first develop a top-down algorithm for the tree homeomorphism problem
that is in LOGDCFL.3

– From this we develop a proof that the problem is LOGSPACE-complete,
improving on the LOGCFL upper bound from [11].

– As our main result we develop a bottom-up LOGDCFL algorithm for com-
puting all solutions of the tree homeomorphism problem which is both time
and space efficient. This is a rather difficult algorithm and the correctness
proof is involved. The algorithm runs in time O(|D| · |Q| · depth(Q)) and
employs a stack of depth bounded by O(depth(D) · branch(D)).
The algorithm may be of relevance in practical implementations. Indeed, in
most Web or XML applications, the data tree is much larger than the tree
pattern yet its depth is rather small. It can be observed that ours is the only
algorithm in Table 1 — and to the best of our knowledge, in existence —
that can guarantee a space bound that does not contain the size, but only
depth and branching factor, of the data tree as a term. At the same time
the algorithm admits a good time bound.
Furthermore, the algorithm is of relevance in theory as well. It is a first
step in classifying the complexity of positive Core XPath with child and
descendant axis, which is probably the most widely used XPath fragment in
practice. Its precise complexity, however, is unknown.

– In some applications (e.g., for certain XML data trees), a few nodes can
have a very large number of children. Our algorithm can be made to run in
space O(depth(D) · log(branch(D))) with the same time bound if we assume
the data tree to be in a ranked form that can be obtained by a LOGSPACE
linear-time preprocessing algorithm. Given that ours is an offline algorithm
it means little loss of generality to assume that data trees are kept in a
database in this preprocessed form.

The paper presents these result basically in the order given here. Because of
space limitations, some proofs had to be omitted.

2 Definitions

By N we denote the set of strictly positive integers. By Σ we denote a finite
alphabet. The set of unranked Σ-trees, denoted by TΣ , is the smallest set of
strings over Σ and the parenthesis symbols “(” and “)” which contains the

3 For our purposes, it is enough to know that LOGDCFL is characterized by deter-
ministic logspace bounded pushdown automata which run in polynomial time [18].

empty string and, for each a ∈ Σ and w ∈ (TΣ)∗, contains a(w). So, a tree is
either ε (empty) or is of the form a(T1 · · ·Tn) where each Ti is a tree. In the tree
a(T1 · · ·Tn), the subtrees T1, . . . , Tn are attached to the root labeled a. When we
write a tree as a(T1 · · ·Tn), we tacitly assume that every Ti is a non-empty tree.
Moreover, we write a rather than a(). Notice that there is no a priori bound on
the number of children of a node in a Σ-tree; such trees are therefore unranked.
A hedge H is a finite sequence T1 · · ·Tn of trees. Hence, the set of unranked
Σ-hedges, denoted by HΣ , equals (TΣ)∗. When we write a hedge as T1 · · ·Tn, we
tacitly assume that every Ti is a non-empty tree. In the sequel, whenever we say
tree or hedge, we always mean Σ-tree or Σ-hedge, respectively. We will slightly
abuse terminology and use the term “tree” to also refer to a hedge consisting
of one tree, and we use the term “hedge” to also refer to the union of trees
and hedges. We assume familiarity with terms such as child, parent, descendant,
ancestor, leaf, root, first child, last child, first sibling, and last sibling.

For a hedge H , the set of nodes or domain of H , denoted by Dom(H), is the
subset of N

∗ inductively defined as follows: (i) if H = ε, then Dom(H) = ∅; (ii) if
H = a, then Dom(H) = {1}; (iii) if H = a(T1 · · ·Tn), where each Ti ∈ TΣ −{ε},
then Dom(H) = {1}∪

⋃n

i=1{1iu | 1u ∈ Dom(Ti)}; and (iv) if H = T1 · · ·Tn with
n ≥ 2 and each Ti ∈ TΣ − {ε}, then Dom(H) = {iu | 1u ∈ Dom(Ti)}. The label
of node u in the tree or hedge H , denoted by labH(u), is defined as follows: (i)
if H = a and u = 1, then labH(u) = a; (ii) if H = a(T1 · · ·Tn) and u = 1iv with
i ∈ {1, . . . , n}, then labH(u) = labTi(1v); and (iii) if H = T1 · · ·Tn with n ≥ 2
and u = iv with i ∈ {1, . . . , n}, then labH(u) = labTi(1v).

By |H |, we denote the number of nodes in a hedge H . The depth of a node
u in hedge H , denoted by depthH(u), is 1 when u ∈ N and 1 + depth(v) when
u = vi and i ∈ N. The height of a node u in hedge H , denoted by heightH(u), is
1 when u is a leaf and max(heightH(u1), . . . , heightH(uk))+1 when u has k > 0
children. By subtreeH(u), we denote the subtree of H rooted at node u. In the
remainder of the paper, we usually leave H implicit when H is clear from the
context.

The Tree Homeomorphism Problem. A tree pattern query (with descendant
edges) Q is an unranked tree over the alphabet Σ ⊎ {∗}. In the following, we
use the terms data tree or data hedge to refer to ordinary Σ-trees and Σ-hedges.
Given a data hedge H , a node u ∈ Dom(H), and a tree pattern query Q, we say
that H matches Q at node u, denoted by H |=u Q, if one of the following holds:

– H = a, Q = a or Q = ∗, and u = 1;
– H = a(T1 · · ·Tn), Q = a or Q = ∗, and u = 1;
– H = a(T1 · · ·Tn), Ti |=1v Q, and u = 1iv, for some i ∈ {1, . . . , n};
– H = T1 · · ·Tn, Ti |=1v Q, and u = iv, for some i ∈ {1, . . . , n};
– H = a(T1 · · ·Tn), Q = x(Q1 · · ·Qm), u = 1, x ∈ Σ ⊎ {∗}, a |= x, and, for

every k = 1, . . . , m, there exists an ik ∈ {1, . . . , n}, uk ∈ Dom(Tik
), such that

Tik
|=uk Qk.

Notice that the ordering of children in our tree pattern queries does not matter.
This corresponds to the well known semantics of XPath queries with descendant

Algorithm 1 Tree pattern matching with descendant axes: Top-down algorithm
Match

Match (DNode d, QNode q)
2: if d matches q then

return ∀ child qc of q ∃ child dc of d: Match(dc,qc)
4: else ⊲ q not matched yet, try d’s children

return ∃ child dc of d: Match(dc,q)
6: end if

axes [7]. In the following, we abbreviate by H |= Q that H |=u Q for some
u ∈ Dom(H). Alternatively, we say that H matches Q.

In this paper, we are interested in the following problems. Given a data tree T

and a tree pattern query Q, the tree homeomorphism problem consists of deciding
whether T |= Q. Furthermore, we are interested in computing all answers for the
tree homeomorphism problem, that is, computing all nodes u ∈ Dom(T) such
that T |=u Q. We refer to the latter problem as tree homeomorphism matching.

We assume that trees are stored on tape as a set of records; one for each
node. Each record contains a pointer to its first child, last child, parent, previous
sibling, and next sibling.

In the remainder of the paper, we assume a fixed data tree D and a fixed
query tree Q for ease of presentation. We will refer to nodes of D and Q as data
nodes and query nodes, respectively.

3 A Top-Down Algorithm

This section provides a simple top-down algorithm for the tree homeomorphism
matching problem. The core of this top-down algorithm lies in a simple procedure
that decides, given a data node d and a query node q, whether subtree(d) |=
subtree(q).

3.1 A Top-Down LOGDCFL Algorithm

Algorithm 1 describes the procedure Match to test whether subtree(d) |=
subtree(q). It is straightforward to prove that Match is indeed correct.

Lemma 1. Match is correct. That is, given a data node d and a query node
q, Match returns true iff subtree(d) |= subtree(q).

We can turn the procedure in Algorithm 1 into an algorithm Top-Down-

Match for the tree homeomorphism matching problem as follows. First, we
need a procedure Exact-Match that, given a data node d and query node q,
decides whether subtree(d) |=1 subtree(q). This is easy: Exact-Match only
differs from Match in l.5, where it just returns false. Given a data node d and
the root qroot of the query tree, Top-Down-Match now simply iterates over all
the data nodes and returns every data node d for which Exact-Match(d, qroot)
returns true. From this construction and from the correctness of Match, it is
now immediate that Top-Down-Match is correct as well.

Q

q

Fig. 1. Illustration of the remainder of q in Q.

Time and Space Complexity. It can be shown quite directly that the time com-
plexities of Match and Exact-Match are in O(|subtree(d)| · |subtree(q)|). As
Top-Down-Match simply calls Exact-Match for every data node, we im-
mediately have the following result.

Proposition 2. The running time of Top-Down-Match is in O(|D|2 · |Q|).
Moreover, Top-Down-Match makes O(|D|2 · |Q|) comparisons between a data
node and a query node.

It is immediate from our implementation of the algorithm that it can be ex-
ecuted by a deterministic logarithmic space bounded auxiliary pushdown au-
tomaton (see, e.g., [18]). Moreover, by Proposition 2, this auxiliary pushdown
automaton runs in polynomial time. It follows from [18] that the tree homeo-
morphism matching problem is in LOGDCFL. As the maximum recursion depth
of Algorithm 1 is O(depth(D)), this renders the algorithm quite space-efficient,
but the running time being quadratic in the size of the data tree, and the many
unnecessary comparisons between query and data nodes are quite unsatisfactory.
In the next section, we show how these issues can be resolved by turning to a
bottom-up approach.

3.2 A LOGSPACE Procedure

While the top-down algorithm does not seem to be well-suited for efficiently
computing all nodes u for which D |=u Q, it is quite useful for deciding whether
D |= Q, from a complexity theory point of view. Indeed, as we will exhibit, a
modified version of Match can decide in LOGSPACE whether D |= Q. To this
end, we assume the left-to-right pre-order ordering on nodes in trees and hedges
in the remainder of this section. In particular, for every node u with k children
in a hedge H , we have that u < u1 < u2 < · · · < uk. For a node u, we denote
by u + 1 the next node in the depth first, left-to-right traversal.

We argue how to transform Algorithm 1 into a LOGSPACE algorithm that
decides whether D |= Q. Intuitively, the LOGSPACE algorithm processes the
data and query trees in a top-down manner, just like Algorithm 1, and it pro-
cesses the children of a node from left to right. The essential difference, however,
lies in a backtracking procedure. When, for example, Algorithm 1 matches a leaf
q of the query tree onto some data node d, then it uses the recursion stack to

Algorithm 2 LOGSPACE decision procedure: Top-down algorithm L-Match.
We assume left-to-right preordering on trees.

L-Match (DNode d, QNode q)
2: if d matches q, and both d and q have children then

return L-Match (d + 1,q + 1)
4: else if d does not match q and d has a child then

return L-Match (d + 1, q)
6: else if d matches q and q is a leaf then

if q is maximal in Q then return true ⊲ none of q’s ancestors has a right sib.
8: else

d′ ← Backtrack(d, q + 1) ⊲ node onto which q + 1’s parent was matched
10: return L-Match (d′ + 1, q + 1)

end if

12: else ⊲ d is a leaf and (d does not match q or q is not a leaf)
if d is maximal in D then return false

14: end if

while q has a parent do

16: d′ ← Backtrack(d, q) ⊲ node onto which q’s parent was matched
if d′ is an ancestor of d + 1 then return L-Match (d + 1, q)

18: else q ← q.parent
end if

20: end while

return L-Match (d + 1, q)
22: end if

discover the data node onto which q’s parent was matched in the data tree and
tries to match q’s next sibling in some subtree of that data node. Instead of using
this recursion stack, the LOGSPACE algorithm enters a subprocedure Back-

track(d, q) that recomputes d′. In particular, Backtrack(d, q) computes the
highest possible node d′′ on the path from D’s root to d, such that the path from
D’s root to d′′ matches the path from Q’s root to q’s parent. The crux of the
algorithm is that this is correct, i.e., d′′ = d′; and that Backtrack(d, q) can be
performed using only logarithmic space on a Turing Machine. Backtrack(d, q)
stores d and q on tape and goes to the roots of the query and data tree. It
then matches the path to d with the path to q in a greedy manner. The crux of
executing Backtrack(d, q) using logarithmic space lies in the following. If we
arrive at a node u in D (resp., Q), we have to be able to determine the child of
u that lies on the path to d (resp. q). To this end, we first store d (resp., q) in a
temporary variable v. We now determine v’s parent by scanning the input tape
(i.e., we search a node with a child-pointer to v) and we overwrite v with v’s
parent. We continue following the parent relation in this fashion until we find u,
at which point we return the value of v, which is a child of u.

We present the LOGSPACE algorithm in Algorithm 2. For ease of presen-
tation, we have written the algorithm as a recursive procedure, but it can be
implemented to only use logarithmic space. This can be seen by observing Algo-

rithm 2: every recursive call to L-Match is a return-statement, so the algorithm
does not change when the recursion stack is not used at all.

Let, for a query node q, the remainder of q in Q be the subhedge of Q

consisting of the nodes {q′ | q ≤ q′ ≤ qmax}, where qmax is the maximal query
nodes w.r.t. the depth-first left-to-right ordering. We illustrate the remainder of
q in Q in Figure 1. Given a data node d and a query node q, the algorithm first
tries to match the remainder of q in Q consistently with what has already been
matched in D (lines 2–11). If this fails, it either returns false (line 13), or enters
a backtracking procedure (lines 15–21).

Lemma 3. Algorithm 2 is correct. That is, given the roots d and q of a data D

and query tree Q, Algorithm 2 decides whether D |= Q. Moreover, Algorithm 2
only uses logarithmic space.

Theorem 4. The tree homeomorphism problem is LOGSPACE-complete.

4 The Bottom-up Algorithm

Although the previously presented top-down algorithms for tree homeomorphism
matching are quite space-efficient, their time complexity is quite high and they
involve quite a lot of recomputing of already obtained matchings, which is un-
satisfactory. We therefore turn to a bottom-up matching approach which has the
property that no obtained matchings between the data and query tree need to
be recomputed, which leads to a better time complexity of the overall algorithm.

Before presenting the bottom-up algorithm for the tree homeomorphism
matching problem in detail, we need to introduce several formal notions. As
in the previous section, we first present an algorithm for the tree homeomor-
phism problem and then show how to change it into an algorithm for the tree
homeomorphism matching problem.

In the present section, we assume the left-to-right post-order ordering on
nodes in trees and hedges. In particular, for every node u with k children in a
hedge H , we have that u1 < u2 < · · · < uk < u. For a node u, we denote by
u+1 the next node in the left-to-right postorder traversal. Hence, when we, e.g.,
use terminology such as “largest” and “smallest”, we always assume the left-to-
right post ordering. In this section, we also assume that XML documents are
stored on tape in left-to-right postorder (or, alternatively, together with a left-
to-right postorder index), which allows a random-access machine model to verify
the left-to-right post-order ordering in constant time. For technical purposes, we
also assume two dummy nodes in every tree and hedge: nil and ∞. The node nil
is such that nil+1 is the smallest node in the hedge, and the node ∞ is defined as
the successor of the largest node of the hedge. Given two nodes hfrom ≤ huntil in
a hedge H , we denote by the interval [hfrom, huntil] the subhedge of H consisting
only of the nodes {v | hfrom ≤ v ≤ huntil}. The notion of such an interval in a tree
is illustrated in Figure 2(a). Here, the interval [hfrom, huntil] is the striped area in
the tree. Given a hedge H and a node h ∈ Dom(H), we denote by subhedgeH(h)
the subhedge [hfrom, h], where hfrom is the smallest descendant of h’s leftmost

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

hfrom

rtop(hfrom, huntil)

huntil

(a)
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

h

(b)

Fig. 2. Illustration of a hedge interval and RTop (left) and of subhedgeH(h) (right).

sibling according to the left-to-right postorder ordering. We illustrate this notion
in Figure 2(b).

When H is a data hedge or a tree pattern query, we refer to [hfrom, huntil]
as a data or query hedge interval, respectively. We extend the semantics of tree
pattern matching to hedges as follows. Let Q1 · · ·Qn be a query hedge interval
[qfrom, quntil] and D1 · · ·Dm be a data hedge interval [dfrom, duntil]. We say that
[dfrom, duntil] matches [qfrom, quntil], denoted by [dfrom, duntil] |= [qfrom, quntil], if,
for every Qi, i = 1, . . . , n, there exists a Dj , j = 1, . . . , m, such that Dj |= Qi.

Before presenting the intuition about the bottom-up tree homeomorphism
algorithm, we describe an auxiliary procedure RTop, which, given two nodes
hfrom and huntil, returns the rightmost node among the topmost nodes in the
interval [hfrom, huntil]. More formally, RTop(hfrom, huntil) is the node u such that
depth(u) is minimal and u is larger than every other node v in [hfrom, huntil] with
depth(u) = depth(v). This notion is illustrated in Figure 2(a). Furthermore, in
order to simplify the presentation of the algorithm, we define RTop(hfrom, huntil) =
∞ if hfrom > huntil. Notice that RTop can easily be computed in time lin-
ear in the depth of the tree and in logarithmic space by traversing the path
from huntil to the query root and comparing the previous siblings of nodes on
the path with hfrom w.r.t. the left-to-right post-ordering. Indeed, assume that
hfrom ≤ huntil. Let u be the highest ancestor of huntil that has a previous sib-
ling s such that s ≥ hfrom. If no such u exists, then rtop(hfrom, huntil) is huntil.
Otherwise, rtop(hfrom, huntil) is s.

We first present an algorithm for deciding whether D |= Q and show later
how it can be extended to an algorithm for the tree homeomorphism matching
problem. The main procedure of our algorithm is called TMatch. Given a data
node d and query nodes qfrom and quntil, TMatch returns the largest query node
q in the interval [qfrom, quntil] such that subtreeD(d) matches [qfrom, q] if q exists;
and qfrom − 1 otherwise. Hence, if d is the root of D, and qfrom and quntil are the
leftmost leaf and the root of Q, respectively, then D |= Q if and only if TMatch

returns quntil.
TMatch uses an auxiliary procedure called HMatch, which, given a data

node d and query nodes qfrom and quntil, returns the largest node q in the interval
[qfrom, quntil] such that subhedgeD(d) matches [qfrom, q] if q exists; and qfrom − 1
otherwise.

qbest

d

D′

QD

(a) Operation of TMatch: recursive call
of HMatch.

q′bestd

D′

D Q

?

(b) Operation of TMatch: recursive call
of TMatch.

d

D′′

qhedge

QD

qtree

D′

(c) Operation of HMatch: first recur-
sive calls of TMatch and HMatch.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

? ?

qhedge

QD

D′ D′′

d

(d) Operation of HMatch: a subsequent
recursive call of TMatch, trying to im-
prove qtree.

Fig. 3. Illustrations of the tree homeomorphism algorithm.

We start by explaining the operation of TMatch, which is presented in
Algorithm 3. Given a data node d and query nodes qfrom and quntil, TMatch

first starts by recursively calling HMatch with the same query nodes for the
subhedge D′ of D defined by d’s last child, yielding result qbest (see Figure 3(a)).
In the remainder of TMatch, we essentially want to test how qbest can be
improved when we also consider the node d in addition to D′. One particular
interesting case is when qbest is a last sibling and its parent has the same label
as d. In this case, we can at least improve our best query node to qbest’s parent
which we call here q′best. Furthermore, it is possible that q′best is not yet the best
query node we can obtain. In particular, we still need to test which part of the
hedge defined by [q′best+1, q′best.lastSibling] can be matched in the subtree below
d (see Figure 3(b)). The largest node that is obtained in this manner is the node
that TMatch should return.

We now explain the operation of HMatch, which is presented in Algo-
rithm 4. Essentially, given d, qfrom, and quntil, HMatch starts by recursively
calling itself with the same query nodes on the hedge defined by the previous
sibling of d (i.e., D′ in Figure 3(c)), yielding qhedge, and by calling TMatch

with the same query nodes on the subtree under d itself (D′′ in Figure 3(c)),
yielding qtree. The remainder of HMatch consists of iteratively improving qtree

and qhedge. That is, while it is possible that D′ and D′′ yield small values of qtree

and qhedge, their concatenation can give rise to a much larger part of the query
that can be matched. Essentially, this is due to the fact that the matching of tree
pattern queries is unordered. For example, it can occur that we need to match
a certain first sibling in D′, a second one in D′′, a third one again in D′ and so

Algorithm 3 Tree pattern matching: function TMatch.

TMatch (DNode d, QNode qfrom, QNode quntil)
2: if d is a leaf then qbest ← qfrom − 1

else qbest ← HMatch(d.lastChild, qfrom, quntil)
4: end if

if qbest + 1 ≤ quntil and d matches qbest + 1 then

6: qbest ← qbest + 1
if qbest + 1 ≤ qbest.lastSib then

8: return TMatch(d, qbest + 1, qbest.lastSib)
else return qbest

10: end if

else return qbest

12: end if

on. Hence, the procedure HMatch alternates between finding best matches in
D′ and D′′ until it reaches a fixpoint.

However, we need to take care in how this fixpoint is computed. One possible
case is illustrated in Figure 3(d). This particular case builds further on the
situation in Figure 3(c). Here, we try to improve qtree by starting the TMatch

procedure again for the node d, but now only with the part of the query marked
with question marks. The case where qtree is larger than qhedge is dual and not
illustrated here.

Example 5. Figure 4(a) and 4(b) illustrate an example for the bottom up al-
gorithm. For brevity, we denote TMatch and HMatch with TM and HM,
respectively. The first calls of TM and HM demonstrate the basic recursive
structure of our algorithm: TM on a node d calls HM on the rightmost child of
d. HM on a node d returns TM of d if that node is a first sibling; or performs a
divide-and-conquer technique by calling HM on the left sibling of d and TM on
d itself (as in the function call HM(d4, q1, q5)). Further recursive calls to TM or
HM are then needed to maximize the part of the query that can be matched.

The simplest function call in the example that performs such further recursive
calls is the call HM(d2, q1, q5), which starts by computing qhedge = HM(d1, q1, q5)
and qtree = TM(d2, q1, q5). As can be seen in Figure 4(b), qhedge = nil. The call
TM(d2, q1, q5) is more successful, because d2 and q1 are both labeled with a.
In general, it might be possible that q2 and further nodes can be matched in
subtree(d2). The function call TM(d2, q2, q4) checks that possibility. (For sure,
q1 and q5 cannot both be matched on d2, which is why we restrict the query tree
interval by q4.) But q2 is not labeled with a so the return value of the two TM

calls is q1. After this initial phase, HM(d2, q1, q5) tries to improve qtree and qhedge

iteratively. It calls HM(d1, q2, q4) and improves qhedge to be q2, because q2 and
d1 are both labeled with b. Further improvements fail as there is no c-labeled
node in the subhedge of d2.

A similar iterative improvement is illustrated by HM(d3, q1, q5). Observe that
we try to improve qtree here and call TM(d4, q2, q4) and TM(d4, q3, q3). Only
the latter call yields an improvement. But we cannot omit the former one: if

Algorithm 4 Tree pattern matching: function HMatch.

HMatch (DNode d, QNode qfrom, QNode quntil)
14: if d is a first sibling then return TMatch(d, qfrom, quntil)

else

16: qhedge ← HMatch(d.prevSib, qfrom, quntil)
qtree ← TMatch(d, qfrom, quntil)

18: loop

if qhedge = qtree then return qhedge

20: else if qtree < qhedge then

rtop← RTop(qtree + 1, qhedge)
22: while rtop <∞ and qhedge < rtop.lastSib do

qtree ← TMatch(d, rtop+1, rtop.lastSib)
24: rtop← RTop(qtree + 1, qhedge)

end while

26: if qtree ≤ qhedge then return qhedge

end if

28: else

rtop← RTop(qhedge + 1, qtree)
30: while rtop <∞ and qtree < rtop.lastSib do

qhedge ← HMatch(d.prevSib, rtop + 1, rtop.lastSib)
32: rtop← RTop(qhedge + 1, qtree)

end while

34: if qhedge ≤ qtree then return qtree

end if

36: end if

end loop

38: end if

subtree(d4) would match subtree(q4), then the former call would yield q4 and
the latter call would yield q3. As we want our algorithm to return the largest
query node such that the interval ending with it can be matched the result of
the former call would have been the relevant one in that case.

Correctness. The main technical difficulty of the paper is proving that TMatch

is correct. Due to space limitations, the proof has been omitted.

Lemma 6. Let D be a data tree and let Q be a query tree. TMatch is correct,
that is, given the root node d of D, the smallest and largest node qfrom and quntil

of Q, respectively, TMatch returns quntil iff D |= Q.

We now argue how TMatch can be modified to a procedure TMatch-All,
that computes all data nodes u such that D |=u Q. In order to compute all the
matches, we add a test to l.9 of TMatch. That is, before returning qbest, we test
whether qbest is the root of Q, and we output d if it is. Now we return qbest − 1,
as if the query root was not matched. Furthermore, TMatch-All recursively
calls TMatch-All and HMatch-All instead of TMatch and HMatch. Here
HMatch-All is the same as HMatch, except that it recursively calls TMatch-

All and HMatch-All instead of HMatch and TMatch.

∗

q5

a

q1

d

q4

b

q2

c

q3

e

d

d5

f

d3

b

d1

a

d2

c

d4

(a) Query tree (left) and data tree (right) of Example 5.

TM(d1, q1, q5) ⇒ nil

TM(d2, q2, q4) ⇒ q1

TM(d1, q2, q4) ⇒ q2

TM(d1, q3, q3) ⇒ q2

TM(d6, q1, q5) ⇒ q5

HM(d5, q1, q5) ⇒ q4

TM(d5, q1, q5) ⇒ q4

HM(d4, q1, q5) ⇒ q3

HM(d3, q1, q5) ⇒ q2

TM(d3, q1, q5) ⇒ q2

HM(d2, q1, q5) ⇒ q2

HM(d1, q1, q5) ⇒ nil

TM(d2, q1, q5) ⇒ q1

HM(d1, q2, q4) ⇒ q2

TM(d2, q3, q3) ⇒ q2

TM(d4, q1, q5) ⇒ nil

TM(d4, q2, q4) ⇒ q1

TM(d4, q3, q3) ⇒ q3

(b) Function calls of HMatch (HM) and TMatch (TM)
of Example 5.

Fig. 4. Illustrations for Example 5.

The following theorem can be proved:

Theorem 7. Let d be the root node of D and let qfrom be the smallest and
qroot be the largest node of Q, respectively. TMatch-All is correct, that is,
TMatch-All(d, qfrom, quntil) outputs the data nodes u such that D |=u Q.

Proof (Sketch). It follows directly from our additional test and the correctness
of TMatch that D |=u Q for all the nodes u that TMatch-All outputs.

It remains to prove that, if D |=u Q, then TMatch-All outputs u. Towards
a contradiction, assume that there is an u such that D |=u Q, but u was not
reported by TMatch-All. By an easy induction it can be shown that for every
data node d0 in D there is a call TMatch-All for d0’s subtree and Q. In partic-
ular, there was a call TMatch-All(u, qfrom, qroot). Since this call did not output

u, it follows that u must have children and that HMatch-All(u.lastChild, qfrom,

qroot) < qroot−1, (because otherwise qroot and u would have been compared and u

would have been written to the output). In general, we have that HMatch-All(d,

q1, q2) = min (HMatch(d, q1, q2), qroot − 1).
It follows that HMatch-All(u.lastChild, qfrom, qroot) = HMatch(u.lastChild,

qfrom, qroot).
If we now call TMatch(u, qfrom, qroot), it calls HMatch(u.lastChild, qfrom,

qroot), which yields again a value less than qroot−1. Therefore, the return value of
TMatch(u, qfrom, qroot) is less than qroot. But we assumed that subtree(u) |= Q,
which contradicts the correctness of TMatch proved in Lemma 6. �

Time and Space Complexity. First, we need to show that our algorithm deter-
mines in PTIME whether D |= Q. Notice that the näıve manner of computing
the running time of TMatch gives rise to only an exponential upper bound.
Indeed, define (i) T (N) as the running time of TMatch on d, qfrom, and quntil,
where subtree(d) and [qfrom, quntil] have N nodes in total, and (ii) H(N) as
the running time of HMatch on d, qfrom, and quntil, where subhedge(d) and
[qfrom, quntil] have N nodes in total. Then, we have that T (2) ≤ p(N) for a poly-
nomial p, T (N) ≤ p(N) + H(N − 1) + T (N − 1), and H(N) ≤ T (N) + X(N),
where X(N) ≥ 0. Hence, T (N) ≤ 2N−1, which is obviously not sufficient.

We therefore employ a slightly more sophisticated approach in the following
Lemma.

Lemma 8. Given the root node of a data tree D, and the smallest and largest
query nodes and of a query tree Q, respectively, TMatch runs in time O(|D| ·
|Q| · depth(Q)). Moreover, TMatch makes O(|D| · |Q|) comparisons between a
data node and a query node.

The depth(Q) factor in the complexity of TMatch is due to the calls to rtop
in HMatch, and the computation of the successors of query nodes.

Theorem 9. TMatch-All(D, Q) runs in time O(|D| · |Q| · depth(Q)). More-
over, TMatch-All makes O(|D| · |Q|) comparisons between a data node and a
query node.

Currently, the maximum recursion depth of TMatch-All is O(depth(D) ×
branch(D)), where branch(D) is the maximum number of children a node in
D has. We have the branch(D) factor because HMatch(d, qfrom, quntil) calls
HMatch(d.prevSib, qfrom, quntil). However, this bound can be improved using a
simple preprocessing step: we can turn D into a binary tree Dbin by inserting
intermediate levels of special nodes between each data node and its children. By
doing so, D only grows linearly in size and the depth only grows by a factor of
log(branch(D)).

As Q only uses descendant axes, we have that D |=u Q iff Dbin |=u Q.4 When
this preprocessing step is carried out, our algorithm still has O(|D||Q|depth(Q))

4 Under the assumption that the new dummy nodes do not match ∗, which can be
trivially incorporated in the algorithm.

time complexity, but the recursion/stack depth is improved to O(depth(D) ·
log(branch(D))).

References

1. M. Altinel and M. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proc. VLDB, pages 53–64, 2000.

2. Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the memory requirements of
XPath evaluation over XML streams. In Proc. PODS, pages 177–188, 2004.

3. Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in query evaluation over
XML streams. In Proc. PODS, 2005.

4. N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: Optimal XML pattern
matching. In Proc. SIGMOD, pages 310–321, 2002.

5. C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and R. Rastogi. Tree pattern
aggregation for scalable XML data dissemination. In Proc. VLDB, pages 826–837,
2002.

6. C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of
XML documents with XPath expressions. In Proc. ICDE, pages 235–244, 2000.

7. J. Clark and S. DeRose. XML Path Language (XPath). Technical report, World
Wide Web Consortium, November 1999. http://www.w3.org/TR/xpath.

8. S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic
space. J. Algorithms, 8:385–394, 1987.

9. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst., 28(4):467–516, 2003.

10. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst., 30(2):444–491, 2005.

11. G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath query
evaluation and XML typing. J. ACM, 52(2):284–335, 2005.

12. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. J. ACM, 48(1):431–498, 2001.

13. T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML
streams with deterministic automata and stream indexes. ACM Trans. Database
Syst., 29(4):752–788, 2004.

14. M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query processing
on streaming and external memory data. In Proc. ICALP 2005, 2005.

15. A. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In
Proc. SIGMOD, pages 419–430, 2003.

16. D. Olteanu, T. Furche, and F. Bry. An evaluation of regular path expressions with
qualifiers against XML streams. In Proc. BNCOD 2004, pages 31–44, 2004.

17. P. Ramanan. Evaluating an XPath query on a streaming XML document. In Proc.
COMAD 2005, pages 41–52, 2005.

18. I. H. Sudborough. Time and tape bounded auxiliary pushdown automata. In Proc.
MFCS 1977, pages 493–503. Springer Verlag, 1977.

19. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. VLDB, pages
82–94, 1981.

