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Abstract. The complexity of containment and satisfiability of conjunc-
tive queries over finite, unranked, labeled trees is studied with respect
to the axes Child , NextSibling , their transitive and reflexive closures,
and Following . For the containment problem a trichotomy is presented,
classifying the problems as in PTIME, coNP-complete, or ΠP

2 -complete.
For the satisfiability problem most problems are classified as either in
PTIME or NP-complete.

1 Introduction

Conjunctive query containment for relational databases is one of the most thor-
oughly investigated problems in database theory. It is known to be essentially
equivalent to conjunctive query evaluation and to Constraint Satisfaction in
AI [9]. From the database point of view, the importance of conjunctive queries
on relational structures lies in the fact that they correspond to the most widely
used queries in practice. More precisely, they correspond to the select-from-where
queries from SQL that only use “and” as a Boolean connective.

Recently, conjunctive queries over trees also attracted quite some atten-
tion [7]. It is somewhat surprising that they have not been studied earlier, as
they arise very naturally in various settings, such as data extraction and integra-
tion, computational linguistics, and dominance constraints [7]. Moreover, unary
and binary conjunctive queries over trees form a very natural fragment of XPath
2.0 [1], and therefore also of XQuery [2]. Indeed, unary and binary conjunctive
queries over trees correspond to Core XPath without negation and union (see,
e.g., [6]), but with path intersection, as introduced in XPath 2.0 (see, e.g., [8, 13]).
Gottlob et al. already showed that unary conjunctive queries over trees can be
translated to XPath 1.0 queries, albeit with an exponential blow-up [7], and the
above-mentioned Core XPath queries with path intersection can be translated
into conjunctive queries by identifying variables. Hence, our complexity upper
bounds transfer to positive Core XPath expressions with path intersection, but
without union.

In this paper, we consider conjunctive query containment on trees. We mainly
focus on Boolean containment of conjunctive queries, i.e., given two conjunctive
queries P and Q, is L(P ) ⊆ L(Q), where L(P ) (resp., L(Q)) denotes the set of
trees on which P (resp., Q) has a non-empty output. Conjunctive query con-
tainment over trees is a problem that needs to be solved for conjunctive query
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Child Child+ Child∗ NextSibling NextSibling+ NextSibling∗ Following

Child in P ΠP
2 ΠP

2 coNP coNP coNP ΠP
2

Child+ coNP coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

Child∗ coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

NextSibling in P coNP coNP ΠP
2

NextSibling+ coNP coNP ΠP
2

NextSibling∗ coNP ΠP
2

Following coNP

Table 1. Complexities of Conjunctive Query Containment.

optimization. The latter is, for instance, important for XQuery engines, but is
also relevant in the other settings mentioned above. Moreover, conjunctive query
satisfiability, which we also study and which is a simplified form of containment,
needs to be solved if one wants to decide well-definedness for important XQuery
fragments [14]. There is a further relevant setting in which the set of trees under
consideration is restricted by a schema and the containment question is asked
relative to this schema. We give a brief overview of our results.

Containment. We obtain a similar classification as Gottlob et al. [7]. The most
essential differences are that the PTIME membership results for conjunctive
query evaluation translate to coNP membership results for containment and that
NP-completeness results for evaluation translate to ΠP

2 -completeness results for
containment. The former translation is easy to obtain due to a polynomial size
witness property for counter examples (Lemma 8). For the latter translation,
we build on some of the NP lower bound reductions by Gottlob et al. for our
ΠP

2 lower bound proofs. They had to be significantly adapted, however, as un-
like in the relational setting, conjunctive query containment on trees cannot
be reduced in a straightforward manner to conjunctive query evaluation on a
canonical model. Most of our complexity results on conjunctive query contain-
ment are summarized in Table 1. From the above mentioned polynomial size
witness property and the results by Gottlob et al. [7], we can also conclude that
containment is in coNP for the fragments CQ(Child, NextSibling, NextSibling∗,
NextSibling+), CQ(Child∗, Child+), and CQ(Following). Combined with the re-
sults from the table, this gives us a complete trichotomy of the complexity of
conjunctive query containment with respect to all sets of axes we consider.

Unfortunately, as we can see from the table, conjunctive query containment
on trees is quite a hard problem. We only identify two tractable fragments, that
is, CQ(NextSibling) and CQ(Child). For the latter fragment, PTIME member-
ship is already non-trivial. All other combinations of axes are at least coNP-hard.

Satisfiability. Conjunctive query satisfiability can be seen as a simplification of
the containment problem. Indeed, Q is satisfiable if and only if L(Q) 6⊆ L(false).
Our results on satisfiability are summarized in Table 2. Interestingly, we see here
that the dichotomy drawn by the evaluation and the containment problem shifts.



Child Child+ Child∗ NextSibling NextSibling+ NextSibling∗ Following

Child in P NP [8] NP in P in P in P NP

Child+ in P in P ? ? ? ?

Child∗ in P ? ? ? ?

NextSibling in P NP NP NP

NextSibling+ in P in P in P

NextSibling∗ in P in P

Following in P

Table 2. Complexities of Conjunctive Query Satisfiability.

For the satisfiability problem, we obtain significantly more tractable fragments
than for the containment problem. Some cases, however, still remain NP-hard.

We note that the NP lower bound for satisfiability of CQ(Child ,Child+) is
already obtained by Hidders [8]. We prove it in an alternative manner in Theo-
rem 26.

Containment with respect to a schema. It turns out that the complexity of the
containment problem is (presumably) much higher if it is posed relative to a given
schema which restricts the set of trees under consideration. A similar effect was
observed before for XPath query containment [11]. More concretely, we show
that deciding whether a conjunctive query only using Child -axes returns a non-
empty output on each tree defined by a DTD is EXPTIME-hard. In fact, the
conjunctive query in our proof can even be expressed as an XPath query using
wildcards, predicates, and the axes Child and Descendant , thereby obtaining
that XPath containment w.r.t. a DTD is EXPTIME-complete for XPath queries
using Child , Descendant , predicates, and wildcards.

Related Work. Most of the related work has already been mentioned. We note,
however, that conjunctive query containment has also been investigated for
object-oriented database systems [3]. In particular, it is shown that conjunctive
query containment is ΠP

2 -complete. The classes of conjunctive queries studied
in [3] are, however, incomparable to ours.

2 Preliminaries

2.1 Trees

By Σ we always denote a fixed but infinite set of labels. For a finite set S, we
denote by |S| the number of elements of S. The trees we consider are rooted,
ordered, finite, labeled, unranked trees, which are directed from the root down-
wards. That is, we consider trees with a finite number of nodes and in which
nodes can have arbitrarily many children. We view a tree t as a relational struc-
ture over a finite number of unary labeling relations a(·), where each a ∈ Σ,



and binary relations Child(·, ·) and NextSibling(·, ·). Here, a(u) expresses that u

is a node with label a, and Child(u, v) (respectively, NextSibling(u, v)) expresses
that v is a child (respectively, next sibling) of u.

Notice that, in contrast to standard practice, we have an infinite set of labels
from which our (finite) trees can choose. This reflects how trees occur in an
XML-context: an XML tree is a finite structure, but there is no restriction on
how it should be labeled (if no schema is provided).

In addition to Child and NextSibling, we use their transitive closures (denoted
Child+ and NextSibling+) and their transitive and reflexive closures (denoted
Child∗ and NextSibling∗). We also use the Following-relation, which is inspired
by XPath [4] and defined as

Following(u, v) = ∃x∃yChild∗(x, u) ∧ NextSibling+(x, y) ∧ Child∗(y, v).

We denote the set of nodes of a tree t by Nodes(t). We define the size of t,
denoted by |t|, as the number of nodes of t. We refer to the above mentioned
binary relations as axes.

2.2 Conjunctive Queries

Let X = {x, y, z, . . .} be a set of variables. A conjunctive query (CQ) over alpha-
bet Σ is a positive existential first-order formula without disjunction over a finite
set of unary predicates a(x) where each a ∈ Σ, and the binary predicates Child ,
Child+, Child∗, NextSibling, NextSibling+, NextSibling∗, and Following. In this
paper, we will mainly focus on Boolean satisfaction of conjunctive queries. We
will therefore consider conjunctive queries without free variables. As our con-
junctive queries do not contain free variables, we sometimes omit the existential
quantifiers to simplify notation. For a conjunctive query Q, we denote the set of
variables appearing in Q by Var(Q). We use CQ(R1, . . . , Rk) or CQ(R) (where
R = {R1, . . . , Rk}) to denote the fragment of CQs that uses only the unary al-
phabet predicates and the binary predicates R1, . . . , Rk. We use the terminology
on valuations of a query and query graphs from Gottlob et al. [7].

Definition 1. Let Q be a conjunctive query, and t a tree. A valuation of Q on
t is a total function θ : Var(Q) → Nodes(t). A valuation is a satisfaction if it
satisfies the query, that is, if every atom of Q is satisfied by the assignment. A
tree t models Q (t |= Q) if there is a satisfaction of Q on t. The language L(Q)
of Q is the set of all trees that model Q.

We say that a tree t is a minimal model of Q if t |= Q and the number of nodes
in t is minimal among all trees in L(Q).

The following example illustrates a conjunctive query.

Example 2. Consider the conjunctive query Q = Child+(x1, x2)∧Child+(x2, x4)∧
Child+(x1, x3) ∧ Child+(x3, x4) ∧ a(x1) ∧ b(x2) ∧ c(x3) ∧ d(x4) ∧ e(x5). A tree t

models Q if t has an a-labeled node u with a d-labeled descendant v such that
the path from u to v contains a b-labeled node and a c-labeled node (in arbitrary
order). Moreover, t must contain an e-labeled node somewhere.



Definition 3. Let Q be a conjunctive query over Σ with variables Var(Q). The
query graph Q is the directed multigraph GQ = (V, E) with edge labels and
node labels such that V = Var(Q), node x is labeled a if and only if a(x) is an

atom in Q; and E contains the labeled directed edge x
R
→ y if and only if R(x, y)

is an atom in Q.

We assume familiarity with standard graph-related terminology such as reach-
ability, connected components, etc. Subgraphs of GQ correspond to subqueries
of Q. We will sometimes slightly abuse the terminology by using graph-related
concepts when talking about queries. Thus “variable x is reachable from variable
y in Q” means that x is reachable from y in GQ. Similarly, “maximal connected
component of Q” means a subquery corresponding to a maximal connected com-
ponent of GQ.

For ease of readability, we often represent queries (or their query graphs)
graphically. For example, the rightmost picture in Figure 2 represents the query

Child(x1, x2) ∧ Child(x2, x3) ∧Child(x2, x4) ∧ b(x3) ∧ c(x4).

The following decision problems for conjunctive queries are the main topic
of interest for this paper.

Definition 4. – Containment: Given two conjunctive queries P and Q, is
L(P ) ⊆ L(Q)?

– Satisfiability: Given a conjunctive query Q, is L(Q) 6= ∅?

The above problems are in a sense both instances of the containment problem.
That is, satisfiability for Q is testing whether L(Q) 6⊆ L(false).

As mentioned above, we consider conjunctive queries without free variables.
This means that we only look at whether a tree models the query or not, and not
at the whole set of satisfactions. One can also consider k-ary conjunctive queries,
i.e., CQs with k free variables, returning a k-ary relation when evaluated on a
tree. For two k-ary queries P and Q, P is contained in Q if, for every tree t,
the relation returned by P is a subset of the relation returned by Q. Using a
result of Miklau and Suciu [10], this problem reduces to containment for Boolean
queries for all fragments that include the Child -axis. For instance, consider the
left query P (x1, x2, x3) in Figure 1. By introducing, for each free variable xi, a
new variable x′

i and adding the atoms Child(xi, x
′

i)∧Xi(x
′

i) to the query, where
Xi is a new label, the query P ′, depicted on the right of Figure 1, is obtained.
It is now easy to see that, for two queries P (x) and Q(x)1 with k free variables,
P is contained in Q if and only if L(P ′) ⊆ L(Q′), where P ′ and Q′ are obtained
by adding the atoms Child(xi, x

′

i)∧Xi(x
′

i) to P and Q, respectively. Indeed, the
proof is analogous to the one in [10]. For satisfiability, it is of course immediate
that the complexities are the same for 0-ary and k-ary queries.

1 We can assume w.l.o.g. that the free variables are the same in P and Q.
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Fig. 1. How to reduce from k-ary queries to 0-ary queries.

2.3 Basic Properties

If t and t′ are trees, h is a function from t to t′, and R is a set of binary relations,
we say that h is an R-homomorphism if h(u) is defined for every node u in t,
a(u) in t implies a(h(u)) in t′, for each a ∈ Σ, and R(u, v) holds in t implies that
R(h(u), h(v)) holds in t′, for each R ∈ R.

Observation 5. Let t be a tree and let Q ∈ CQ(R) be a query such that t |= Q.
If t′ is a tree and there exists an R-homomorphism h : t → t′, then t′ |= Q.

Observation 6. Conjunctive queries are monotonous, i.e., if t |= Q, for a tree t

and a CQ Q, then t′ |= Q for all trees t′ for which t ⊆ t′.

3 Containment

When we investigate whether query P is contained in query Q, i.e., L(P ) ⊆ L(Q),
we will always assume that the graph of Q has only one maximal connected
component. This is because P is contained in Q if and only if P is contained in
every subquery of Q that corresponds to a maximal connected component.

3.1 PTIME Upper Bounds.

Theorem 7. Containment is in PTIME for CQ(Child) and CQ(NextSibling).

Proof (Sketch). The proof for CQ(NextSibling) is straightforward: for testing
whether L(P ) ⊆ L(Q), one can start by simplifying both queries, by applying
the chase for the relation NextSibling(A, B) with functional dependencies A → B

and B → A (i.e., NextSibling(x, x1) ∧ NextSibling(x, x2) or NextSibling(x1, x) ∧
NextSibling(x2, x) should not occur). Consequently, we have to test whether the
chased query for Q can be embedded into the chased query for P .

The proof for CQ(Child) is tedious and too intricate to illustrate the main
idea here. We just want to point out that the problem is not trivial. A naive
algorithm would try to find an embedding of Q into P and accept iff it can be
found. However, Figure 2 illustrates that not finding an embedding of Q into P

does not imply that L(P ) 6⊆ L(Q). �
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Fig. 2. Example for which L(P ) ⊆ L(Q) but Q cannot obviously be embedded into P .
Every arrow denotes a Child -axis.
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Fig. 3. Structure of query P in the proof of Theorem 10.

3.2 coNP and Π
P

2
Upper Bounds.

We first show that if CQ P is not contained in CQ Q, then there is a polynomial
size witness tree.

Lemma 8. Let P and Q be conjunctive queries. If L(P ) 6⊆ L(Q) then there
exists a tree t such that t |= P , t 6|= Q, and |t| ≤ 2 · |Var(P )| · (|Var(Q)| + 4).

The above lemma puts conjunctive query containment in ΠP
2 . Indeed, for

testing whether L(P ) 6⊆ L(Q), the algorithm would guess a tree tsmall of size
at most 2 · |Var(P )| · (|Var(Q)| + 4), test in NP whether tsmall |= P and test
in coNP whether tsmall 6|= Q. As Gottlob et al. showed that conjunctive query
evaluation is in PTIME for CQ(Child , NextSibling, NextSibling∗, NextSibling+),
CQ(Child∗,Child+), and CQ(Following), the above algorithm gives us a coNP
upper bound for containment for these fragments. We can therefore state the
following theorem.

Theorem 9. 1. Containment is in ΠP
2 for CQs.

2. Containment is in coNP for CQ(Child∗,Child+), CQ(Following),
and CQ(Child,NextSibling,NextSibling∗,NextSibling+).

3.3 coNP Lower Bounds.

For the coNP lower bounds, we will reduce from the complement of the Short-

est Common Supersequence problem; or the Shortest Common Super-

string problem, both of which are known to be NP-complete [12, 5]. The Short-

est Common Supersequence (respectively, Shortest Common Superstring)
problem asks, given a set of strings S, and an integer k, whether there exists a
string of length at most k which is a supersequence (respectively, superstring)
of each string in S. Here, s is a supersequence of s0 if s0 can by obtained by
deleting symbols from s, and s is a superstring of s0 if s0 can be obtained by
deleting a prefix and a postfix of s.



Theorem 10. Containment is coNP-hard for CQ(NextSibling+),
CQ(NextSibling∗), CQ(Child+), CQ(Child∗), and CQ(Following).

Proof. All cases can be proved by a reduction from Shortest Common Su-

persequence. Thereto, let S and k be an instance of Shortest Common Su-

persequence. We now define conjunctive queries P and Q such that P 6⊆ Q if
and only if there exists a shortest common supersequence for S of length at most
k. Thereto, let S = {s1, . . . , sm} where, for each i = 1, . . . , m, si = a1

i · · ·a
ni

i .
Let # be a symbol not occurring in any string in S.

We first show how the proof works for NextSibling+. The query P is defined
as in Figure 3, where each arrow represents a NextSibling+-axis and # and each
a

j
i is a Σ-symbol. The query Q now essentially states that each tree must have

a string of siblings with at least k + 1 + 2 different nodes. Formally, we define Q

as
NextSibling+(x1, x2) ∧ · · · ∧NextSibling+(xk+2, xk+3).

It is not difficult to see that P 6⊆ Q if and only if there exists a shortest common
supersequence for S of length at most k. The proofs for Child+and Following
are completely analogous. For Child∗and NextSibling∗, we need to insert dummy
#-symbols between all a

j
i labels in P , and adapt the query Q accordingly. �

The proof of the next theorem is in the same lines as the previous one, but
this time we reduce from the Shortest Common Superstring problem. The
essential difference is that P now does not contain the leftmost and rightmost
#-labeled symbol in Figure 3, the arrows in Figure 3 now denote NextSibling-
axes, and that all the ai

j-labeled nodes are connected to a common parent by
Child -axes.

Theorem 11. Containment is coNP-hard for CQ(Child,NextSibling).

3.4 Π
P

2
Lower Bounds

The ΠP
2 lower bounds in this section will all be obtained by a reduction from

∀∃ positive 1-in-3 SAT, which is formally defined as follows. A set C1, . . . , Cm of
clauses is given, each of which has three Boolean variables from {x1, . . . , xnx

} ⊎
{y1, . . . , yny

}. No variable is negated. The question is whether, for every truth
assignment for {x1, . . . , xnx

}, there exists a truth assignment for {y1, . . . , yny
}

such that each Ci contains precisely one true variable.
The proof of the following lemma is analogous to the proof showing that

positive 1-in-3 SAT is NP-complete.

Lemma 12. ∀∃ positive 1-in-3 SAT is ΠP
2 -complete.

Theorem 13. Containment is ΠP
2 -complete for CQ(Child, Child+) and CQ(Child,

Child∗).

Proof. We present a proof for CQ(Child , Child+) and discuss in the end how to
adapt it for CQ(Child , Child∗).
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Fig. 4. Illustration of the definition of query P in the proof of Theorem 13.

The proof is an adaptation of a proof by Gottlob et al., showing that the
query complexity of evaluation for CQ(Child,Child+) is NP-hard [7]. We reduce
from ∀∃ positive 1-in-3 SAT, which is ΠP

2 -complete according to Lemma 12.
For the purposes of this proof, we will assume that each tree node can carry

multiple labels. It can be modified to work for the standard definition of labeled
trees, where each node has only one label.

Let ∀x∃yC1, . . . , Cm be an instance of ∀∃ positive 1-in-3 SAT, where x =
{x1, . . . , xnx

} and y = {y1, . . . , yny
}. We may assume that no clause contains a

particular literal more than once. Let Φ denote the formula

∀x∃yC1, . . . , Cm, Cm+1, . . . Cm+nx
.

Here, for each i = 1, . . . , nx, Cm+i denotes the clause (y′

i, xi, y
′′

i ), where y′

i and y′′

i

are new existentially quantified variables. It is easy to see that there is solution
for the original formula if and only if there is one for Φ.

Let query P be defined as in Figure 4, where single lines represent the Child
axis, double lines represent the Child+axis, and the symbols outside of nodes, as
well as X1, . . . Xnx

, are labels.
For the query Q, we introduce variables ai, bi for each i = 1, . . . , m + nx and

in addition a variable ck,l,i,j whenever the k-th literal of Ci coincides with the
l-th literal of Cj (1 ≤ j ≤ m + nx, i 6= j, 1 ≤ k, l ≤ 3).

The query Q consists of the following atoms:

– for each i = 1, . . . , m + nx, A(ai) ∧ B(bi) ∧ Child3(ai, bi);
– for each variable ck,l,i,j , Lk(ck,l,i,j)∧Child+(bi, ck,l,i,j)∧Child8+k+l(aj , ck,l,i,j);

and,
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Fig. 5. Definition of query P in the proof of Theorem 15.

– for each i = m + 1, . . . , m + nx, Xi−m(ai).

This concludes the reduction for CQ(Child , Child+). For CQ(Child ,Child∗)
we replace each pair of atoms Child+(v0, Xi),Child+(Xi, w2,1) of P (for 1 ≤
i ≤ nx) with the pair Child∗(v1, Xi),Child∗(Xi, v3). In Q, we can simply replace
Child+ by Child∗. �

Theorem 14. Containment is ΠP
2 -hard for CQ(Child, Following).

Proof. We adapt the proof of Theorem 13 by simulating Child+with Child and
Following. To this end, we begin by equipping each of the variables u in query P

defined in Figure 4 that has an outgoing Child+-axes by two “dummy” children
z1 and z2. These new variables are used nowhere else, and get the new label #.
Now, whenever Child+(u, v) is used in one of the queries, we can replace it by

Child(u, z1) ∧ Child(u, z2) ∧ Following(z1, v) ∧ Following(v, z2).

It is now enough to note that all variables in the queries P and Q that have no
specified label are required by the queries to have children. Thus none of them
can bind to a node in one of the minimal models of the modified P query that
is labeled by #. �

Theorem 15. Containment is ΠP
2 -hard for CQ(Child+,Following).

Proof (Sketch). Let ∀x∃yC1, . . . , Cm be an instance of ∀∃ positive 1-in-3 SAT.
Let x = {x1, . . . , xnx

} and let y = {y1, . . . , yny
}. We can assume that no clause

contains a particular literal more than once.
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(b) The X-variable gadgets: varX(1, i) (left),
varX(2, i) (middle), and varX(3, i) (right).

Fig. 6. Gadgets for the definition of query Q in the proof of Theorem 15.

We construct two queries, P and Q, over the labeling alphabet {A, B, C, L1, L2,

L3, X1, . . . , Xnx
, Z} such that P ⊆ Q if and only if ∀x∃yC1, . . . , Cm has a solu-

tion. The current proof builds further on a proof by Gottlob et al. that shows that
the query complexity of evaluation for CQ(Child+,Following) is NP-hard [7].

The construction of query P is illustrated in Figure 5. Here, every double-
lined edge represents a Child+-axis and every directed edge represents a Fol-
lowing-axis. For improved readability, we adopt the terminology of the proof by
Gottlob et al.. That is, we will refer to the nodes labeled L1, L2, and L3 in
the 1-in-3 gadget from Figure 6(a) by v1, v2, and v3, respectively. Moreover, we
annotate the query fragment T in Figure 5(a) with numbers from 1 to 7. We call
the node 1 (resp., 3, 6) the topmost position of variable v1 (resp., v2, v3).

Let tmin be a minimal model of fragment T from Figure 5(a). That is, tmin

is essentially shaped as the structure given by the Child+ axes in T . Gottlob et
al. show that the following observation holds.

Observation 16 ([7]). Every satisfaction θ of the 1-in-3 gadget on tmin maps
exactly one of the variables v1, v2, and v3 to its topmost position.

Given a clause C, we interpret a satisfaction θ in which variable vk is mapped to
its topmost position as the selection of the k-th literal from C to be true. Hence,
the 1-in-3 gadget would ensure that, on tmin, exactly one variable of clause C is
selected and becomes true.

We now define the query P as in Figure 5(c). That is, P contains two copies
of the fragment T , followed by a copy of the X-fragment from Figure 5(b). The
ordering between the subqueries of P is enforced by Following-axes: the root of
T ’s left copy has a Following-axis to the root of T ’s right copy, and root of T ’s
right copy has a Following-axis to the root of the X-fragment.

Intuitively, the purposes of the different parts of the query P are as follows.
The left copy of the T -fragment in P , together with the 1-in-3 gadget, is used
to verify that the truth assignments we consider for x and y actually make one
literal per clause of ∀x∃yC1, . . . , Cm true. The second copy of T in P is needed to
ensure consistency of variable assignments between clauses: if we pick a variable
to be true in one clause, that variable must be true in all clauses. Finally, the
fragment X is used in P to generate all possible truth assignments for the x-
variables. Roughly, we interpret xi as “false” if Xi appears in the upper unary



path with nx nodes and as “true” if Xi appears in the lower unary path with
nx nodes in Figure 5(b).

The query Q is defined much like the query in the proof of Gottlob et al.,
with the essential difference that we have to transfer the variable assignment that
is generated in the X-fragment of P to the matching of L1, L2, and L3 of the
1-in-3 gadget of Q onto the subtrees that satisfy the two copies of T in P . This
will be taken care of by the X-assignment gadgets in Q, which are illustrated in
Figure 6(b). �

Theorem 17. Containment is ΠP
2 -hard for CQ(Child∗, Following).

Proof. The proof for this case can be obtained from the proof of Theorem 15
by ensuring that, for each occurrence of Child+(x, y), x and y bear a different
alphabet label in P . �

As Following can be defined in terms of Child∗and NextSibling+, we imme-
diately have the following corollary.

Corollary 18. Containment is ΠP
2 -hard for CQ(Child∗, NextSibling+).

Theorem 19. Containment is ΠP
2 -hard for

(1) CQ(Child∗, NextSibling), (4) CQ(Child+,NextSibling+), and
(2) CQ(Child∗,NextSibling∗), (5) CQ(Child+,NextSibling∗).
(3) CQ(Child+,NextSibling),

Proof. For each of these fragments, the proofs of Theorems 15 and 17 can be
adapted by the same methods as in the article by Gottlob et al. [7]. For the
fragments (2)–(5), we also need to adapt the query P , such that P accepts trees
in which the T -fragments have the shape from the proof by Gottlob et al. This
is, however, straightforward for each of the fragments. �

Theorem 20. Containment is ΠP
2 -hard for CQ(Following,NextSibling).

The proof uses a modified version of the reduction from Theorem 15.

Theorem 21. Containment is ΠP
2 -hard for CQ(Following, NextSibling+) and

CQ(Following, NextSibling∗).

4 Satisfiability

We first note that a conjunctive query Q is satisfiable if and only if all its maximal
connected components are satisfiable. We therefore assume in our proofs that Q

has only one maximal connected component.

Proposition 22. Satisfiability for CQs is in NP.

Proof. It is easy to see that if a CQ is satisfiable, then it is satisfiable in a linear
size tree. Indeed, let Q be a CQ and let t be a tree satisfying Q under valuation
θ. Now let t′ be the tree that



– contains the nodes of t onto which variables are matched by θ;
– contains, for each pair of variables x 6= y, the least common ancestor of θ(x)

and θ(y);
– contains no other nodes; and
– preserves the descendant relation and document order (i.e., depth-first-left-

to-right order) from t.

It is easy to see that t′ contains less than 2 · |Var(Q)| nodes and that t′ models
Q. Thus we can guess this tree, guess a satisfaction, and verify in polynomial
time that all atoms are satisfied. �

4.1 PTIME Upper Bounds

Theorem 23. Satisfiability is in PTIME for CQ(Child) and CQ(NextSibling).

Proof. First, we apply the chase on the relations in Q, i.e., we compute equiv-
alence classes [x] of variables such that [x] is the set of variables that must be
mapped to the same tree node as x by any satisfaction of Q. For Q ∈ CQ(Child),
we start with one class for each variable in Var(Q), and iteratively merge classes
[x] and [y] if there are x′ ∈ [x], y′ ∈ [y], and a variable z such that there
is are paths from x′ to z and from y′ to z in GQ, both of equal length. For
Q ∈ CQ(NextSibling) we do the same, with the addition that we also merge
classes [x] and [y] if there are x′ ∈ [x], y′ ∈ [y], and z such that there are equal
length paths from z to x′ and from z to y′.

Once these classes are computed, we test whether Q contains a cycle on
equivalence classes. If Q contains a cycle, it is unsatisfiable. Otherwise, we check
whether there exist a class containing two variables x, y and a 6= b such that a(x)
and b(y) are both atoms of Q. If this is the case, Q is unsatisfiable. Otherwise it
is satisfiable. �

Theorem 24. Satisfiability is in PTIME for CQ(NextSibling+,NextSibling∗,Following)
and CQ(Child+,Child∗).

Proof. As in the proof of Theorem 23 we first check for cycles. However, unlike
for Theorem 23, a query may have cycles of Child∗(resp., NextSibling∗) axes and
still be satisfiable. On such cycles, there can be no variables x, y such that a(x)
and b(y) are atoms, for a 6= b. We start by removing such (allowed) cycles by
identifying all variables on the cycle. In the remainder of the proof, we assume
that the query is cycle free.

For CQ(NextSibling+,NextSibling∗,Following), we argue that if Q is satisfi-
able, then there is a tree t and a satisfaction θ for Q on t such that θ assigns all
variables of Q to nodes of t which are all siblings of one another (i.e., in the same
siblinghood). As a first step we note that, if Q is satisfiable, then Q′, obtained by
replacing all NextSibling∗-atoms of Q by NextSibling+-atoms is also satisfiable.
Indeed, if θ is a satisfaction of Q on tree t, NextSibling∗(x, y) is an atom of Q,
and θ(x) = θ(y), we can modify t by inserting a new node between θ(x) and its
left sibling (or at the beginning of the siblinghood if there is no left sibling), and



modify θ by assigning x to the new node. After doing this for all such pairs x, y,
the modified θ is a satisfaction of both Q and Q′.

Next, we note that any acyclic query Q in CQ(NextSibling+,Following) in-
duces a strict partial order on the variables. A topological sorting according to
this partial order gives us a string of variables such that if NextSibling+(x, y)
or Following(x, y) is an atom of Q, then x appears before y in the string. From
such a string it is easy to construct a tree with a siblinghood that satisfies Q.

For CQ(Child+, Child∗) we use the same arguments as for CQ(NextSibling+,
NextSibling∗, Following), except that instead of a siblinghood we use a tree that
does not branch. �

Theorem 25. Satisfiability is in PTIME for CQ(Child, NextSibling) and CQ(Child,
NextSibling+, NextSibling∗).

4.2 NP lower bounds

Theorem 26. Satisfiability is NP-hard for
(1) CQ(Child, Child+), (4) CQ(NextSibling,NextSibling∗),
(2) CQ(Child,Child∗), (5) CQ(NextSibling,Following), and
(3) CQ(NextSibling,NextSibling+), (6) CQ(Child,Following).

The proof uses reductions from Shortest Common Supersequence.

5 Containment with Respect to a DTD

We abstract from Document Type Definitions (DTDs) as follows:

Definition 27. A Document Type Definition (DTD) is a triple D = (Σf , d, sd)
where Σf is a finite subset of Σ, d is a function that maps Σf -symbols to regular
expressions over Σf and sd ∈ Σf is the start symbol.

For ease of notation, we denote by labt(u) the Σ-symbol a such that a(u) ap-
pears in t. A tree t then satisfies D if (i) labt(u) = sd for the root u of t

and, (ii) for every u ∈ Nodes(t) with n children u1, . . . , un from left to right,
labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of trees satisfy-
ing d.

The main problem of interest of this section is validity of a conjunctive query
Q w.r.t. a DTD D, that is, is L(D) ⊆ L(Q)? Notice that here, validity with
respect to a DTD can also be seen as a form of containment of conjunctive queries
with respect to a DTD. That is, L(D) ⊆ L(Q) if and only if (L(D)∩L(true)) ⊆
(L(D) ∩ L(Q)).

Theorem 28. Validity with respect to DTDs is EXPTIME-hard for CQ(Child).



6 Conclusions

We have determined the complexity of the containment problem for all sets of
axes built from Child , NextSibling, their transitive, respectively reflexive and
transitive, closures, and Following. The complexity of the satisfiability problem
was pinpointed for most sets, but the cases involving transitive closures of Child
and NextSibling (which we believe will be quite similar) are still open.

All these results were obtained in a schema-less setting. Since XML processing
is mostly done with respect to a schema, this is far from the complete picture.
As we show in Section 5, the presence of a schema dramatically increases the
complexity. We have preliminary results for some combinations of schemas and
axes, and intend to study this subject in more detail.
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