
Whih XML Shemas Admit 1-Pass PreorderTyping?Wim Martens1, Frank Neven1, and Thomas Shwentik21 Limburgs Universitair CentrumUniversitaire CampusB-3590 Diepenbeek, Belgiumfwim.martens,frank.neveng�lu.a.be2 Philipps Universit�at MarburgFahbereih 12, Mathematik und Informatiktik�informatik.uni-marburg.deAbstrat. It is shown that the lass of regular tree languages admittingone-pass preorder typing is exatly the lass de�ned by restrained om-petition tree grammars introdued by Murata et al. [14℄. In a streamingontext, the former is the largest lass of XSDs where every element in adoument an be typed when its opening tag is met. The main tehnialmahinery onsists of semantial haraterizations of restrained ompe-tition grammars and their sublasses. In partiular, they an be har-aterized in terms of the ontext of nodes, losure properties, allowedpatterns and guarded DTDs. It is further shown that deiding whether ashema is restrained ompetition is tratable. Deiding whether a shemais equivalent to a restrained ompetition tree grammar, or one of its sub-lasses, is muh more diÆult: it is omplete for exptime. We show thatour semantial haraterizations allow for easy optimization and mini-mization algorithms. Finally, we relate the notion of one-pass preordertyping to the existing XML Shema standard.1 IntrodutionXML (eXtensible Markup Language) onstitutes the basi format for data ex-hange on the Web [4℄. For many appliations, it is important to onstrain thestruture of douments by providing a shema spei�ed in a shema language.The most ommon shemas are Doument Type De�nitions (DTDs). A DTD isbasially a set of rules of the form a ! r, where a is a tag name and r is aregular expression. A doument is valid with respet to a DTD if eah elementlabeled with a has a sequene of hildren whose tags math r. We view an XMLdoument as a tree in the way indiated by Figure 1.Unfortunately, DTDs are limited in various ways. A partiular limitation isthat the type of an element an only depend on its tag but not on its ontext.As an example, in Figure 1 it is not possible to assign di�erent types to disountDVDs and non-disount DVDs while retaining the same tag.XML Shema De�nitions (XSDs) is the standard proposed by the WorldWide Web onsortium (W3C) to answer the shortomings of DTDs [5℄. In

database theory, the latter are modeled by extended ontext-free grammars,the former by unranked regular tree languages [2℄. Suh regular tree languagesan be represented by speialized DTDs (SDTDs) [16℄ allowing to assign typesai to elements with tags a (f. De�nition 2). The rules are of the form ai ! rwhere r is a regular expression over types, i.e., the rules onstrain, for eah ele-ment type, the sequene of types of sub-elements. In our example, regular DVDsould get the type dvd1, disount DVDs the type dvd2 (f. Setion 2.2). A treeis then valid w.r.t. an SDTD if there is an assignment of types mathing therules of the grammar. The enlarged exibility of SDTDs requires an additionalalgorithmi task: besides simply heking validity it will often be neessary toompute a mathing assignment. We refer to this as typing.The goal of the present paper is to identify the largest lass of SDTDs whihan be typed in a streaming fashion. In other words, when proessing an XMLdoument as a stream of opening and losing tags, the type of eah elementshould be uniquely determined when the opening tag is met. We will refer to thisas 1-pass preorder typing. The latter an be an important �rst step in proessingstreaming XML data. On top of this information, e.g., subsription queries anbe de�ned (e.g., inform me if there are new disounted dvds) and their evaluationan be optimized.Note that a doument is valid w.r.t. an SDTD if all elements an be orretlytyped. Hene, 1-pass preorder typing implies 1-pass (preorder) validation, butnot vie versa. Indeed, onsider the SDTD onsisting of the rules a0 ! b1 + b2,b1 ! and b2 ! d, de�ning the �nite tree language fa(b()); a(b(d))g. Thislanguage an easily be validated via an algorithm making a preorder traversalthrough the input tree, but does not admit preorder typing: the type of theb-element annot be determined without looking at its hild.Murata, Lee and Mani [14℄ proposed3 two restritions of SDTDs, single-type and restrained ompetition, whih guarantee 1-pass preorder typing. AnSDTD is single-type if for eah rule ai ! r and eah tag b at most one typebj ours in r. It is restrained ompetition if there is no rule ai ! r for whihthere exist strings wbju and wbkv in L(r) with j 6= k. Clearly, both restritionsassure 1-pass preorder typing. However, from the de�nition of these restritionsit is not immediately lear whether they are the weakest possible to ensure 1-pass preorder typing. More importantly, a preise semantial haraterizationproviding insight in fundamental properties of these lasses remained open.Contributions. It turns out that an SDTD admits 1-pass preorder typing ifand only if its trimmed version (i.e., without useless symbols) is restrained om-petition. So, a regular tree language admits 1-pass preorder typing if and onlyif it an be desribed by a restrained ompetition SDTD. Therefore, restrainedompetition SDTDs might be a good basis for an XML shema language ex-tending XSDs without losing the ability of eÆient parsing. Interestingly, for3 Atually, they de�ned these lasses in the slightly di�erent framework of regular treegrammars. We use SDTDs here to simplify proofs. Nevertheless, w.r.t. de�ning treelanguages, the two formalisms are equally expressive and one an be translated intothe other eÆiently in a straightforward manner.2

this purpose no further restrition to one-unambiguous regular expressions [3℄ isneessary. We disuss this further in Setion 7.Starting from this, we study the lasses of tree languages whih an be de-sribed by restrained-ompetition SDTDs and single-type SDTDs, respetively.The next ontribution is a set of semantial haraterizations of these lasses.The main parameter in these haraterizations is the dependeny of the type ofa node on the ontext of the node in the doument. In partiular, we prove thata regular tree language an be de�ned by (1) a single-type SDTD if and only ifthe type of eah node only depends on the sequene of tags on the path fromthe root to the node; and, (2) a restrained ompetition SDTD if and only if thetype of eah node only depends on the tags of the nodes on the path from theroot to the node and their left siblings. The other haraterizations are in termsof losure properties, allowed patterns and guarded DTDs.Next, we turn to algorithmi issues. Two algorithmi problems immediatelyarise from the above. Given an SDTD d, (1) is d a DTD, single-type SDTDor restrained ompetition SDTD, and (2) is there a DTD, single-type SDTD orrestrained ompetition SDTD d' desribing the same tree language as d? The�rst question is trivial for DTDs and single-type SDTDs. We prove that it is innlogspae for restrained ompetition SDTDs. The seond question turns out tobe muh harder: in all three ases it is omplete for exptime. Furthermore, thealgorithm is onstrutive. That is, if d is in fat in the desired lass, an equivalentDTD, single-type SDTD or restrained ompetition SDTD d0 is onstruted.Our semantial haraterizations lead to easy optimization and minimiza-tion algorithms. Whereas the inlusion problem is exptime-omplete for gen-eral SDTDs (even with one-unambiguous regular expressions [13℄) it follows fromour haraterizations that these problems are in pspae for restrained ompe-tition SDTDs and even in ptime if it is additionally required that the regularexpressions are one-unambiguous. We show that, in ontrast to general SDTDs(f. Setion 5.2), for every tree language de�nable by restrained ompetitiongrammars, there exists a unique minimal restrained ompetition grammar thatdesribes it. Moreover, this minimal grammar an be omputed in polynomialtime.We onlude with an observation on post-order typing. Although in general,arbitrary SDTDs do not admit 1-pass preorder typing, we show that for eahregular tree language there is an SDTD whih allows 1-pass postorder typing,i.e., a parsing algorithm that determines a type of an element when it reahesits losing tag. That every SDTD allows 1-pass validation was already observedby Segou�n and Vianu [18℄.Related work. Br�uggemann-Klein, Murata, and Wood study unranked reg-ular tree languages as a formal model for XML shema languages [2℄. In par-tiular, they prove that the latter model is equivalent to the morphi image oftree-loal tree languages. Papakonstantinou and Vianu [16℄ formalize the latteras the more manageable speialized DTDs whih are used in this paper. Murataet al. [14℄ provided a taxonomy of XML shema languages in terms of restritionson grammars whih are equivalent to speialized DTDs. In partiular, they pro-3

<store><dvd><title> "Amelie" </title> <prie> 17 </prie></dvd><dvd><title> "Gothika" </title><prie> 15 </prie> <disount> 4 </disount></dvd></store> storedvdtitle"Am�elie" prie17 dvdtitle"Gothika" prie15 disount4Fig. 1. An example of an XML doument and its tree representation.pose to formalize DTDs, XML Shema, and Relax NG [24℄ as loal, single-type,and arbitrary regular tree grammars, respetively. They also introdue the no-tion of restrained ompetition and show that these are 1-pass preorder typeablebut do not disuss optimality or give any semantial haraterizations.The organization of the paper is as follows. In Setion 2 we de�ne the var-ious lasses of SDTDs and the properties by whih we haraterize them. Theatual haraterizations are given in Setion 3. In Setion 4 the omplexity ofthe basi deision problems is addressed. In Setion 5, we disuss optimizationand minimization algorithms. Setion 6 shows that every regular tree languageallows 1-pass postorder typing. We disuss our results in Setion 7.2 De�nitions2.1 Trees and Tree LanguagesFor our purposes, an XML doument is basially a sequene of opening andlosing tags, properly nested. As usual, we identify XML douments with theirorresponding trees. The domain Dom(t) of a tree t is the set of its nodes,represented in a �xed way by sequenes of numbers. The empty sequene "represents the root. The n hildren of a node u are named u1; : : : ; un in theorder given by the doument. Nodes arry labels from alphabet � of tags. Wedenote the label of v in t by labt(v). The set of all unranked �-trees is denotedby T� . A tree language is a set of trees. For a gentle introdution into trees, treelanguages and tree automata we refer to [15℄.2.2 XML Shema LanguagesDe�nition 1. A DTD is a pair (d; sd) where d is a funtion that maps �-symbols to regular expressions and sd 2 � is the start symbol. We usuallysimply denote (d; sd) by d. A tree t is valid w.r.t. d (or satis�es d) if its root islabeled by sd and, for every node with label a, the sequene a1 � � �an of labelsof its hildren is in L(d(a)). By L(d) we denote the set of trees that satisfy d.A simple example of a DTD de�ning the inventory of a store is the following:store! dvd dvd� dvd! title prie(disount + ")4

De�nition 2 ([16, 17℄). A speialized DTD (SDTD) is a 4-tuple d = (�;�0;(d; sd); �), where �0 is an alphabet of types, (d; sd) is a DTD over �0 and � is amapping from �0 to �. A tree t is valid w.r.t. d (or satis�es d) if t = �(t0) forsome t0 2 L(d) (where � is extended to trees). Again, we denote the set of treesde�ned by d, by L(d). We denote by (d; ai) the speialized DTD d, where wereplae the DTD (d; sd) by (d; ai).The lass of tree languages de�ned by SDTDs orresponds preisely to theregular (unranked) tree languages [2℄. For ease of exposition, we always take�0 = fai j 1 � i � ka; a 2 �; i 2 Ng for some ka 2 N and set �(ai) = a. We referto the label ai of a node (or sometimes also to i) in t0 as its state or type. We saythat an SDTD d is trimmed if d has no unreahable rules and that there existsno ai 2 �0 for whih L((d; ai)) = ;. Note that L((d; ai)) ontains trees overalphabet �0, whereas L((d; ai)) ontains �-trees. In the remainder of the paper,we assume that all SDTDs are trimmed. We note that trimming an SDTD isptime-omplete. A simple example of an SDTD is the following:store! (dvd1 + dvd2)�dvd2(dvd1 + dvd2)�dvd1 ! title prie dvd2 ! title prie disountHere, dvd1 de�nes ordinary DVDs while dvd2 de�nes DVDs on sale. The rulefor store spei�es that there should be at least one DVD on disount.Murata et al. [14℄ argue that the expressiveness of SDTDs orresponds tothe XML shema language Relax NG, while the single-type SDTDs de�ned nextorrespond to XML Shema.De�nition 3. A single-type SDTD (SDTDst) is an SDTD (�;�0; d; �) in whihin no regular expression d(a) two types bi and bj with i 6= j our.The above de�ned SDTD is not single type as both dvd1 and dvd2 our in therule for store. An example of a single-type SDTD is given next:store! regulars disountsregulars! (dvd1)� disounts! dvd2 (dvd2)�dvd1 ! title prie dvd2 ! title prie disountAlthough there are still two element de�nitions dvd1 and dvd2, they an onlyour in a di�erent ontext. The next lass was de�ned in [14℄ beause it stillallows 1-pass preorder typing.De�nition 4. A regular expression r restrains ompetition if there are no stringswaiv and wajv0 in L(r) with i 6= j. An SDTD is restrained ompetition (SDTDr)i� all regular expressions ourring in rules restrain ompetition.An example of a restrained ompetition SDTD that is not single-type is givennext: store! (dvd1)� disounts (dvd2)�disounts! " dvd1 ! title prie dvd2 ! title prie disountThe lasses of tree languages de�ned by the grammars introdued above areinluded as follows: DTD (SDTDst (SDTDr (SDTD [14℄.5

v
t

(a) v
t

(b)
t1

t01 v1
t2
t02v2

t1
t02v12 T 2 T) 2 T()Fig. 2. Illustration of notions introdued in Setion 2.3. Figures 2(a) and 2(b) illustratethe anestor-string (an-str) and anestor-sibling string (an-sib-str) of v. Figure 2()illustrates the notion of anestor-sibling-guarded subtree exhange.2.3 Anestor- and Anestor-Sibling-PatternsFinally, we de�ne the notions that will be used in our semantial harateriza-tions. Let t be a tree and v be a node. By h-strt(v) we denote the string formedby the hildren of v, i.e., labt(v1) � � � labt(vn) if v has n hildren. Usually we omitthe supersript t. By an-strt(v) we denote the string formed by the labels onthe path from the root to v, i.e., labt(")labt(i1)labt(i1i2) � � � labt(i1i2 � � � ik) wherev = i1i2 � � � ik. By l-sib-strt(v) we denote the string formed by the labels of theleft siblings of v, i.e., labt(u1) � � � labt(uk) where v = uk. By an-sib-strt(v) wedenote the string l-sib-strt(")#l-sib-strt(i1)# � � �#l-sib-strt(i1i2 � � � ik) formed byonatenating the left-sibling strings of all anestors starting from the root. Weassume that # 62 �. Note that the �nal symbol of an-strt(v) and an-sib-strt(v)is always the label of v.De�nition 5. We say that a speialized SDTD d = (�;�0; d; �) has anestor-based types if there is a (partial) funtion f : (� [f#g)� ! �0 suh that, foreah tree t 2 L(d) the following holds: (1) there is a unique tree t0 2 L(d) with�(t0) = t; and (2) for eah node v 2 Dom(t), the label of v in t0 is f(an-strt(v)).We say d has anestor-sibling based types if the same holds with an-strt(v)replaed by an-sib-strt(v).By t1[u t2℄ we denote the tree obtained from a tree t1 by replaing thesubtree rooted at u 2 Dom(t1) by t2. By subtreet(u) we denote the subtree of trooted at u.De�nition 6. We say that a tree language T is losed under anestor-guardedsubtree exhange if the following holds. Whenever for two trees t1; t2 2 T withnodes u1 2 Dom(t1) and u2 2 Dom(t2) it holds that an-strt1(u1) = an-strt2(u2)implies t1[u1 subtreet2(u2)℄ 2 T . We all it losed under anestor-sibling-guarded subtree exhange if the same property holds with an-sib-strt1(u1) =an-sib-strt2(u2) as preondition of the impliation. Figure 2 illustrates the justde�ned notions. 6

De�nition 7. An anestor-guarded DTD d is a pair (d; sd) where sd 2 � is thestart symbol as in a DTD. But in ontrast to a DTD, d is a �nite set of triples(r; a; s), where a 2 � and r and s are regular expressions. If there are triples(r; a; s) and (r0; a; s0) in d then L(r) and L(r0) are disjoint. A tree t satis�es dif for every node v 2 Dom(t) the following holds. If an-str(v) mathes r andlab(v) = a there must be a triple (r; a; s) in d and h-str(v) must math s.An anestor-sibling-guarded DTD is de�ned in the same way with the di�er-ene that r has to be mathed by an-sib-str(v).De�nition 8. Let Pan(t) = fan-str(v)#h-str(v) j v 2 tg and Pan-sib(t) =fan-sib-str(v)#h-str(v) j v 2 tg: Let T be a set of trees. We say that T an beharaterized by anestor-based patterns, if there is a regular string language Lsuh that, for every tree t, we have that t 2 T if and only if Pan(t) � L. We sayT an be haraterized by anestor-sibling-based patterns if the same holds withPan(t) replaed by Pan-sib(t).3 Semanti Charaterizations of Single-Type andRestrained Competition SDTDsIn this setion, we �rst show that an SDTD is restrained ompetition if and onlyif it allows for 1-pass preorder typing. Afterwards, as an intermediate step, weharaterize the regular tree languages de�nable by single-type SDTDs. Finally,we haraterize the lass of tree languages whih an be desribed by restrainedompetition SDTDs.3.1 Shemas with 1-Pass Preorder TypingIt follows from Theorem 12 that in restrained ompetition SDTDs the type ofa node only depends on its anestor-sibling string. However, in an SDTD whihadmits 1-pass preorder typing the type of a node might depend on all parts ofthe tree whih our before the node. We formalize this notion via SDTDs withpreeding based types. Nevertheless, it will turn out that these two notions areidential.For a tree t and a node v we denote by preedingt(v) the tree resulting fromt by removing everything below v, all right siblings of v's anestors and of v,and their respetive subtrees (f. Figure 3). We de�ne the term preeding-basedtypes in analogy to De�nition 5 with preedingt(v) in plae of an-strt(v).Expressed in a di�erent way, the type of an element only depends on thepre�x of the XML doument ending with its opening tag.Theorem 9. A trimmed SDTD d has preeding based types if and only if it isrestrained ompetition.Proof sketh. The \if"-part of the statement is obvious. We sketh the \onlyif". Atually, it is easy to show that every trimmed SDTD d with anestor-sibling based types is restrained ompetition. Otherwise, a ounterexample ould7

v
t

v
t

v
t

Fig. 3. From left to right: a tree t, preedingt(v) and preeding-subtreet(v).be onstruted in a straightforward manner (f. Theorem 12). It an also beshown by ontraposition that eah SDTD with preeding based types alreadyhas anestor-sibling based types. �Hene, we immediately obtain the following:Corollary 10. Restrained ompetition SDTDs are exatly those SDTDs whihadmit 1-pass preorder typing.3.2 Anestor Based ShemasIn this subsetion, we haraterize single-type SDTDs in terms of the anestoraxis. In the following theorem we assume that all the trees in language T havethe same root label.Theorem 11. For a regular tree language T the following are equivalent:(a) T is de�nable by a single-type SDTD;(b) T is de�nable by an SDTD with anestor-based types;() T is losed under anestor-guarded subtree exhange;(d) T an be haraterized by anestor-based patterns; and,(e) T is de�nable by an anestor-guarded DTD.Proof. We show the following sequene of impliations. (a)) (e)) (d)) (b)) ()) (a). We only give the neessary onstrutions.(a)) (e): Let T be de�ned by a single-type SDTD d = (�;�0; (d; sd); �)with ? 62 �0. Let A be a DFA over � with state set Q = �0 [f?g and letÆ(ai; b) equal the unique bj ourring in d(ai) if suh a symbol exists, otherwise?. Note that the single-type property ensures that A is deterministi.Let d0 = (d0; sd) be the guarded DTD with all triples (ra;i; a; �(d(ai))), wherera;i is a regular expression desribing the set fw j Æ�(sd; w) = aig of stringswhih bring A into state ai. Of ourse, the languages L(ra;1); : : : ; L(ra;ka) areall disjoint where fa1; : : : ; akag are the symbols mapped to a by �.(e)) (d): Let T be de�ned by the anestor-guarded DTD d = (d; sd). ThenT an be haraterized by the set L = fua#v j ua 2 L(r); v 2 L(s); (r; a; s) 2 dg.(d)) (b): Let T be haraterized by anestor-based patterns using the lan-guage L. Let A = (�;Q; Æ; s; F) be a DFA for L. Let d = (�;�0; d; �) bede�ned as follows. �0 is the set of all pairs (a; q), where a 2 � and q 2 Q. We8

let d((a; q)) be a regular expression desribing all strings (b1; q1) � � � (bn; qn), forwhih A aepts #b1 � � � bn when started from state q and qi = Æ(q; bi), for everyi � n.(b)) (): Let T be de�ned by a SDTD d = (�;�0; d; �) with anestor-basedtypes. Let t1; t2 be in T and let u1 and u2 be nodes in t1 and t2, respetively,with an-strt1(u1) = an-strt2(u2). Let t01 and t02 be the unique trees in L(d)with �(t01) = t1 and �(t02) = t2. As the labels of u1 in t01 and the label of u2 int02 are determined by an-strt1(u1) = an-strt2(u2), they are the same. Hene,by replaing the subtree rooted at u1 in t01 with the subtree rooted at u2 in t02we get a tree t0 2 L(d). Therefore, �(t0) = t1[u1 subtreet2(u2)℄ is in T , asrequired.()) (a): The idea of the proof is as follows. In a sense, we lose a givenSDTD d for T with respet to the single-type property. Assume, e.g., that theregular expression d(ai) ontains two di�erent types bj and bk. Then, we replaeall ourrenes of bj and bk by a new type bfj;kg obtaining a single-type expressionwith respet to b. Of ourse, we now need a new rule with bfj;kg on the left-handside. This rule should apture the union of d(bj) and d(bk). By applying thisstep indutively, we arrive at an SDTD d1 whih is single-type but uses typesof the form bS , for S � f1; : : : ; kbg where f1; : : : ; kbg are the types of b in �0. Ina seond step we prove that L(d1) = T unless T fails to ful�ll ().Let T be a tree language de�ned by an SDTD d = (�;�0; d; �). Let thealphabet �01 onsist of all symbols aS , where S � f1; : : : ; kag. We extend thisnotation to sets C � �0 in a natural way. We write aC for the type aS withS = fi j ai 2 Cg. For example, for C = fa1; a2; b1; b3g, aC is the type af1;2g. Fora regular expression r over �0 and C � �0 let rC denote the expression whihis obtained from r by replaing every symbol ai by aC .We de�ne the SDTD d1 = (�;�01; d1; �1) as follows. For eah symbol aS ,�1(aS) = a, and d1(aS) = Si2S d(ai)C(aS), where C(aS) is the set of all bj inSi2S d(ai). For instane, for S = f1; 2g, d(a1) = a1b1(a2+ b1) and d(a2) = (a3+b3)a1, d1(aS) equals the expression (af1;2;3gbf1;3g(af1;2;3g+ bf1;3g))+((af1;2;3g+bf1;3g)af1;2;3g).Note that in d1(aS), for eah symbol b 2 �, there is at most one symbol ofthe form bS0 , hene d1 is a single-type SDTD. It an be shown that, if L(d) 6=L(d1), the language T is not losed under anestor-guarded subtree exhange.By ontraposition we get that () implies (a). �It should be noted that an analogous haraterization an be easily obtainedfor DTDs by replaing anestor by parent. The equivalene between () and (a)is then already obtained in [16℄.3.3 Anestor-Sibling Based ShemasFinally, we onsider restrained ompetition SDTDs and show that their treelanguages an be haraterized in terms of the anestor and left-sibling axis. Weagain assume that all the trees in language T have the same root label.Theorem 12. For a regular tree language T the following are equivalent:9

(a) T is de�nable by a restrained ompetition SDTD;(b) T is de�nable by an SDTD with anestor-sibling-based types;() T is losed under anestor-sibling-guarded subtree exhange;(d) T an be haraterized by anestor-sibling-based patterns; and(e) T is de�nable by an anestor-sibling-guarded DTD.Proof. Again we show (a)) (e)) (d)) (b)) ()) (a).(e)) (d), (d)) (b), (b)) (): These proofs are almost word for word thesame as for Theorem 11. Only anestor has to be replaed by anestor-sibling.()) (a): The proof is similar as but a bit more involved than the orre-sponding proof in Theorem 11. Let T be a tree language de�ned by a SDTDd = (�;�0; d; �).Let, for eah state ai of d, Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be an NFA forL(d(ai)). W.l.o.g. we assume that the sets Qa;i are pairwise disjoint and that forevery state in eah Aa;i a �nal state is reahable.Let �01 be de�ned as in the proof of Theorem 11. We de�ne, for eah aS 2 �01a DFA Aa;S = (Qa;S ; �01; Æa;S ; sa;S; Fa;S) as follows.{ Qa;S = fq?g [Si2S 2Qa;i ;{ sa;S = Si2Sfsa;ig;{ Fa;S = fB 2 Qa;S j B \ Fa;i 6= ;; i 2 Sg;{ In order to de�ne Æa;S, let B 2 Qa;S and b 2 �. We set S0 := fj j Æa;i(p; bj) 6=;; i 2 S; j � kb; p 2 Bg and Æa;S(B; bS0) := Si;p;j Æi(p; bj); where the latterunion is over all i 2 S, p 2 B and j � kb. For all other sets S00, we setÆa;S(B; bS00) := q?.Intuitively, Aa;S an be seen as obtained in two steps from d. First, we take theprodut of the power set automata of the Aa;i, i 2 S. Then, for eah symbolb, for eah state of this intermediate automaton, all outgoing edges with labelof the form bj are ombined into one transition whih ends in the (omponentwise) union of the all possible target states. The transition is labeled by b to theunion of all outgoing b-labels.We now de�ne the SDTD d1 = (�;�01; d1; �1), where, for eah a and S,d1(aS) is a regular expression orresponding to Aa;S .Note that eah d1(aS) has restrained ompetition. Indeed, as Aa;S is deter-ministi, for eah string w, Aa;S enters a unique state. Furthermore, for eahb 2 � there is only one outgoing transition of the form bS0 that an lead toaeptane.(a)) (e): Let T be de�ned by a restrained ompetition DTD d = (�;�0; d; �).For eah symbol ai in �0, let Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be a DFA for d(ai).We an modify Aa;i suh that it has exatly one state q? from whih no a-epting state is reahable and suh that it has no unreahable states (possiblybesides q?). From the restrained ompetition property it immediately followsthat in Aa;i, for eah state q, if Æ(q; bj) = q1, Æ(q; bk) = q2, q1 6= q2 and j 6= kthen q1 or q2 must be q?. We require that the sets Qa;i are pairwise disjoint.From these DFAs over the extended alphabet �0 we onstrut a DFA A =(QA; �; sA; ÆA; FA) as follows. The set QA onsists of all pairs (q; b), where q 210

Qa;i, for some ai, and b 2 �0 [f#g. Intuitively, q is the urrent state of anautomatonAa;i and b is the last extended symbol or type that has been identi�ed.The initial state sA of A is (sa;i;#) for the initial symbol ai of d. The transitionfuntion ÆA is de�ned as follows. For eah q 2 Qa;i, 2 �0 and b 2 � we letÆA((q;); b) = (Æa;i(q; bj); bj), for the unique j with Æa;i(q; bj) 6= q?, if suh a jexists. Otherwise, ÆA((q;); b) = (q?;#). Furthermore, we let ÆA((q; bj);#) =(sb;j ;#). We set FA = fq j q 2 Fa;ig.Now we are ready to de�ne the anestor-sibling guarded DTD d0. It onsistsof all triples (r; a; s), for whih there is a state (q; ai) of A, suh that r desribesthe set of strings w with Æ�A(sA; w) = (q; ai) and s is �(d(ai)). �4 Complexity of Basi Deision ProblemsAs the de�nition of a DTD and single-type SDTD is syntatial in nature, itan be immediately veri�ed by an inspetion of the rules whether an SDTD isin fat a DTD or a single-type SDTD.Theorem 13. It is deidable in nlogspae for an SDTD d whether it is re-strained ompetition.We study the omplexity of determining whether a tree language, given byan SDTD, an be de�ned by a DTD, a single-type or a restrained ompetitionSDTD, respetively.Theorem 14. Eah of deiding whether an SDTD has an equivalent DTD,single-type SDTD or restrained ompetition SDTD is exptime-omplete.Proof sketh. In all three ases, the lower bound is obtained by a redution fromthe universality problem for non-deterministi tree automata [19℄.The exponential time upper bounds for the single-type and restrained om-petition ases an be obtained by performing the onstrutions in the proofs ()) (a) in Theorems 11 and 12. Both the onstrution of the SDTD and hekingequivalene with the original one an be done in exponential time. For DTDs asimilar onstrution is in polynomial time but the equivalene hek still needsexponential time. �5 Appliations of the Semantial Charaterizations5.1 Inlusion and Equivalene of ShemasDeision problems like testing for inlusion or equivalene of shema languagesoften our in shema optimization or as basi building bloks of algorithmsfor typeheking or type inferene [8, 11, 12, 16, 22℄. In general these problemsare pspae and exptime-omplete for DTDs and SDTDs, respetively [21, 19℄.The XML spei�ation, however, restrits regular expressions in DTDs to bedeterministi [4℄ (sometimes also alled 1-unambiguous [3℄).11

Theorem 15. Given two restrained ompetition SDTDs d1 and d2, deidingwhether (a) L(d1) � L(d2), and whether (b) L(d1) = L(d2) is pspae-ompletein general, and ptime-omplete if d1 and d2 use deterministi regular expres-sions.This result strongly ontrasts with our results in [13℄, where we show thateven for very simple non-deterministi regular expressions these deision prob-lems are intratable, and with the ase of arbitrary SDTDs with determinis-ti regular expressions, for whih inlusion and equivalene test are exptime-omplete.5.2 Minimization of SDTDsIn strong ontrast to ranked trees, there are unranked regular tree languagesfor whih there is no unique minimal deterministi bottom-up tree automaton.Moreover, minimization an not be obtained by the standard translation tothe ranked ase. Using the haraterizations of Setion 3, we obtain that whenontent models are represented by DFAs rather than by regular expressions,every restrained ompetition SDTD an be minimized in polynomial time andthis minimal SDTD is unique up to isomorphism.Theorem 16. Every restrained ompetition (single-type) SDTD an be mini-mized in ptime. This minimal SDTD is unique up to isomorphism.6 Subtree Based ShemasFrom what was presented so far an obvious question arises. What happens ifwe soften the requirement that the type of an element has to be determinedwhen its opening tag is visited? What if instead it has to be omputed when thelosing tag is seen? It turns out that every regular tree language has a SDTDwhih allows suh 1-pass postorder typing. Furthermore, the SDTDs used for thispurpose an be de�ned as straightforward extensions of restrained ompetitionSDTDs.De�nition 17. An SDTD d = (�;�0; d; �) is extended restrained ompetitioni� for every regular expression r ourring in a rule the following holds: wheneverthere are two strings waiv and wajv0 in L(r) with i 6= j, then L((d; ai)) \L((d; aj)) is empty.For a tree t and a node v we denote by preeding-subtreet(v) the tree resultingfrom t by removing all right siblings of v and its anestors together with therespetive subtrees (f. Figure 3).De�nition 18. We say that a speialized SDTD d = (�;�0; d; �) has preeding-subtree based types if there is a (partial) funtion f : T� � Dom ! �0 suhthat, for eah tree t 2 L(d) the following holds: (1) there is a unique treet0 2 L(d) with �(t0) = t, and (2) for eah node v 2 Dom(t), the label of v in t0is f(preeding-subtreet(v); v). 12

Stated in terms of XML douments, the type of an element depends on thepre�x of the doument whih ends with the losing tag of the element. Thefollowing result shows that all regular tree languages admit 1-pass postordertyping. We assume that all the trees in language T have the same root label.Theorem 19. For a tree language T the following are equivalent:(a) T is de�nable by an extended restrained ompetition SDTD;(b) T is de�nable by an SDTD with preeding-subtree-based types;() T is regular.Proof sketh. The diretions (a)) () and (b)) () are trivial. The proof ofthe opposite diretions uses the fat that regular languages an be validated bydeterministi bottom-up automata. �In the SDTD used in the proof the type of eah element atually only dependson its subtree. This should be ompared with the previous haraterizationswhere the type depended on the upper ontext. These issues are further disussedin Setion 7.Note that not every SDTD is extended restrained ompetition. The SDTDd de�ned by r ! (a1 + a2), a1 ! b+ + ", and a2 ! + d+ " is not extendedrestrained ompetition, as f"; g � L((d; a1)) \ L((d; a2)).We onlude by noting that extended restrained ompetition is a tratablenotion.Theorem 20. It is deidable in ptime for an SDTD d whether it is extendedrestrained ompetition.7 ConlusionThe results of this paper show that its initial question has a simple answer.The regular tree languages whih admit 1-pass preorder typing are exatly thosewhih an be desribed by a restrained ompetition SDTD.From the proof of Theorem 12 ()) (a) it further follows that for eah suhlanguage a very simple and eÆient typing algorithm exists. It is basially adeterministi pushdown automaton with a stak the height of whih is boundedby the depth of the doument. For eah opening tag it pushes one symbol, foreah losing tag it pops one. Hene, it only needs a onstant number of steps perinput symbol. In partiular, it works in linear time in the size of the doument.It should be noted that suh automata have been studied in [18℄ and [9℄ in theontext of streaming XML douments. The sublass of the ontext-free languagesaepted by suh automata has reently been studied in [1℄.Further, the paper shows that restrained ompetition SDTDs an be eÆ-iently reognized (in nlogspae but also in quadrati time) and that from anSDTD without the restrained ompetition property an equivalent one with theproperty an e�etively (though not eÆiently, in general) be onstruted if itexists at all. 13

The 1-pass preorder typing onstraint an be seen as a generalization of thedeterminism onstraint on ontent models of DTDs (Appendix E in [4℄) to XSDs.In the ase of DTDs, the meaning of a tag is determined by the position in themathing regular expression. The determinism onstraint then spei�es that thismeaning should be omputed independent of the tags ourring to the right ofthe urrent tag. Similarly, in the ontext of XML Shema, the meaning of a tagorresponds to its type and should be omputed independent of the remainderof the nodes.Br�uggemann-Klein and Wood gave a lean formalization for the onept ofdeterminism needed for DTDs in terms of 1-unambiguous regular expressions [3℄.Intuitively, a regular expression is 1-unambiguous if, when proessing the inputfrom left to right, it is always determined whih symbol in the expression mathesthe next input symbol. Just as Br�uggemann-Klein and Wood ontributed to theformal underpinnings of DTDs, our haraterization ontributes to the founda-tion of XML Shema by providing a omplete notion for 1-pass preorder typeableshemas.How do these results relate to existing standards? The XML Shema spei�-ation requires XSDs to be single-type (end of Setion 4.5 in [6℄ and the ElementDelarations Consistent onstraint in Setion 3.8.6 in [7℄) and regular expressions(after dropping the supersripts desribing the types) to be deterministi or 1-unambiguous [3℄ (f. Setion 3.8.6 of [7℄, Unique Partile Attribution). Althoughsuh shemas are always restrained ompetition, it is easy to prove that theydo not apture the omplete lass of 1-pass preorder typeable shemas. Indeed,from a 1-ambiguous regular language a restrained ompetition expression an beeasily onstruted by giving to eah symbol the same supersript. The results inthe present paper, therefore, indiate that replaing the Element DelarationsConsistent and Unique Partile Attribution onstraints by the single requirementthat regular expressions are restrained ompetition allows for a larger expressivepower without (essential) loss in eÆieny. Indeed, for both lasses, validationand typing is possible in linear time, allowed shemas an still be reognized inquadrati time and an allowed shema an be onstruted in exponential time,if one exists [3℄. The latter would also eliminate the heavily debated restritionto 1-unambiguous regular expressions (f., e.g., pg 98 of [23℄ and [10, 20℄).On the negative side, both 1-unambiguous expressions and restrained om-petition expressions lak a omprehensive syntatial ounterpart. Whether suhan equivalent syntatial restrition exists remains open. It would also be inter-esting to �nd syntati restritions whih imply an eÆient onstrution of anequivalent restrained ompetition SDTD.We already mentioned that Murata, Lee, and Mani showed that DTD 6�SDTDst 6� SDTDr 6� SDTD. They exhibited onrete tree languages that arein one lass but not in the other. Our semantial haraterizations provide atoolbox to show inexpressibility for arbitrary tree languages. For instane, usingthe losure of restrained-ompetition SDTDs under anestor-guarded subtreeexhange, it is immediate that SDTDr annot de�ne the set of all Booleantree-shaped iruits evaluating to true.14

AknowledgmentsWe thank Geert Jan Bex, Christoph Koh, Niole Shweikardt, Lu Segou�nand Stijn Vansummeren for helpful disussions.Referenes1. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC 2004, pages202-211, 2004.2. A. Br�uggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedgelanguages over unranked alphabets: Version 1, april 3, 2001. Tehnial ReportHKUST-TCSC-2001-0, The Hongkong University of Siene and Tehnology, 2001.3. A. Br�uggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-mation and Computation, 142(2):182{206, 1998.4. World Wide Web Consortium. Extensible Markup Language (XML).http://www.w3.org/XML.5. World Wide Web Consortium. XML Shema. http://www.w3.org/XML/Shema.6. World Wide Web Consortium. XML Shema Part 0: Primer.http://www.w3.org/TR/xmlshema-0/.7. World Wide Web Consortium. XML Shema Part 1: Strutures.http://www.w3.org/TR/xmlshema-1/.8. H. Hosoya and B. C. Piere. XDue: A statially typed XML proessing language.ACM Transations on Internet Tehnology (TOIT), 3(2):117{148, 2003.9. C. Koh and S. Sherzinger. Attribute grammars for salable query proessing onXML streams. In DBPL, pages 233{256, 2003.10. M. Mani. Keeping hess alive - Do we need 1-unambiguous ontent models? InExtreme Markup Languages, Montreal, Canada, 2001.11. W. Martens and F. Neven. Typeheking top-down uniform unranked tree trans-duers. In ICDT 2003, pages 64{78, 2003.12. W. Martens and F. Neven. Frontiers of tratability for typeheking simple XMLtransformations. In PODS 2004, pages 23{34, 2004.13. W. Martens, F. Neven, and T. Shwentik. Complexity of deision problems forsimple regular expressions. In MFCS 2004, pages 889{900, 2004.14. M. Murata, D. Lee, and M. Mani. Taxonomy of XML shema languages usingformal language theory. In Extreme Markup Languages, Montreal, Canada, 2001.15. F. Neven. Automata, logi, and XML. In CSL 2002, pages 2{26. Springer, 2002.16. Y. Papakonstantinou and V. Vianu. DTD inferene for views of XML data. InPODS 2000, pages 35{46. ACM Press, 2000.17. Y. Papakonstantinou and V. Vianu. Inremental validation of XML douments.In ICDT 2003, pages 47{63. Springer, 2003.18. L. Segou�n and V. Vianu. Validating streaming XML douments. In PODS 2002,pages 53{64. ACM Press, 2002.19. H. Seidl. Deiding equivalene of �nite tree automata. SIAM Journal on Comput-ing, 19(3):424{437, 1990.20. C. M. Sperberg-MQueen. XML Shema 1.0: A language for doument grammars.In XML 2003 - Conferene Proeedings, 2003.21. L. J. Stokmeyer and A. R. Meyer. Word problems requiring exponential time:Preliminary report. In STOC 1973, pages 1{9, 1973.22. D. Suiu. Typeheking for semistrutured data. In DBPL 2001, 2001.23. E. van der Vlist. XML Shema. O'Reilly, 2002.24. E. van der Vlist. Relax NG. O'Reilly, 2003.15

A Appendix: Full ProofsFor the onveniene of the referees we give the full proofs of those theorems whihonly have proof skethes in the main text. The point where the proof in the maintext ended is indiated by � � � . We also restate the respetive theorems.Before that we �rst desribe some notions related to trees and tree automata.As an abstration of XML-douments, we de�ne douments over a set � oftags and a set � of basi symbols as follows. For w 2 � , haiwh=ai is a doument.If a 2 � and x1; : : : ; xk are douments then haix1 � � �xkh=ai is also a doument.We refer to the string enlosed by mathing tags as an element. Figure 1 showsan example of a doument. It also indiates how douments an be representedas trees.Of ourse, elements in XML douments an also ontain referenes to nodes.But as XML shema languages usually do not onstrain these and an onlyspeify the format of data values ourring at leaves (e.g., a string should betelephone number), it is safe to view shemas as simply de�ning douments overan empty alphabet � , i.e., where the only basi string is the empty word ".Formally, we assoiate an unranked �-tree t = t(x) with a doument x asfollows.(i) if x = hai"h=ai, for some a 2 �, then the set of nodes of t, denoted byDom(t), is f"g. The label labt(") is a;(ii) if x = haix1 � � �xnh=ai, then Dom(t) = f"g [Sni=1fiu j u 2 Dom(t(xi))g,labt(") = a, and for eah iu 2 Dom(t), labt(iu) = labt(xi)(u).We all a node ui a hild of u and u the parent of ui. If w = uv, for some v thenu is an anestor of w. A node ui, i < j, is a left sibling of uj.The set of all unranked �-trees is denoted by T� . A tree language is a setof trees. In the remainder of this paper we will identify douments with theirorresponding trees.In the remainder of the appendix, we denote by (d; ai) the speialized DTDd = (�;�0; (d; r); �), where we replae the DTD (d; r) by (d; ai).The robust notion of regular string and ranked tree languages, an easilybe generalized to the unranked ounterparts. The latter lass is usually de�nedin terms of non-deterministi tree automata and posses similar losure proper-ties [2℄.De�nition 21. A nondeterministi tree automaton (NTA) is a tuple B = (Q;�;Æ; F), where Q is a �nite set of states, F � Q is the set of �nal states, and Æ is afuntion Æ : Q� � ! 2Q� suh that Æ(q; a) is a regular string language over Qfor every a 2 � and q 2 Q.A run of B on a tree t is a labeling � : Dom(t) ! Q suh that for everyv 2 Dom(t) with n hildren, �(v1) � � ��(vn) 2 Æ(�(v); labt(v)): Note that whenv has no hildren, then the riterion redues to " 2 Æ(�(v); labt(v)). A run is16

aepting i� the root is labeled with an aepting state, that is, �(") 2 F . A treeis aepted if there is an aepting run. The set of all aepted trees is denotedby L(B). The lass of tree languages aepted by NTAs is alled the unrankedregular tree languages.An NTA is bottom-up deterministi i� Æ(q; a)\ Æ(q0; a) = ; for all q 6= q0. Forevery unranked regular tree language there is a bottom-up deterministi NTAwhih aepts it.Semanti Charaterizations of Single-Type and RestrainedCompetition SDTDsProof of Theorem 9. A trimmed SDTD d has preeding based types if andonly if it is restrained ompetition.The \if"-part of the statement is obvious. We show the \only if". Atually,it is easy to show that every trimmed SDTD d with anestor-sibling based typesis restrained ompetition. Otherwise, a ounterexample ould be onstruted ina straightforward manner. Hene, it only remains to show that eah SDTD withpreeding based types already has anestor-sibling based types.� � � Let d = (�;�0; d; �) be an SDTD whih has preeding based types.Towards a ontradition we assume that d has types whih are not anestor-sibling based. Hene, there are trees t1; t2 2 L(d) with nodes v1 2 t1 and v2 2 t2suh that an-sib-strt1(v1) = an-sib-strt2(v2) but v1 has a di�erent label int01 than v2 in t02. We all t1; t2; v1; v2 a ounterexample. Let t1; t2; v1; v2 be aounterexample for whih the length of an-sib-strt1(v1) is minimal.Let u1; : : : ; un be the nodes that are siblings of anestors of v1 in the orderin whih they appear in a depth-�rst left-to-right walk on t1. Let w1; : : : ; wn bethe orresponding nodes in t2. Beause the ounterexample is minimal, for eahi � n, the label of ui in t01 is the same as the label of wi in t02. Let s be thetree resulting from t1 by replaing, for every i, the subtree rooted at ui by thesubtree rooted at wi in t2.Let the labels in s0 be de�ned as in t02 for the nodes that ome into sby replaements and as in t01 for the others. Obviously, s0 2 L(d). But aspreedings(v1) = preedingt2(v1), v1 must have the same label in s0 as in t02.As it also has the same label in t01 as in s0 it follows that the labels in t01 and t02are the same whih leads to the desired ontradition. This ompletes the proofof the theorem. �Proof of Theorem 11. For a regular tree language T the following are equiv-alent:(a) T is de�nable by a single-type SDTD;(b) T is de�ned by an SDTD with anestor-based types;() T is losed under anestor-guarded subtree exhange;(d) T an be haraterized by anestor-based patterns; and,(e) T is de�nable by an anestor-guarded DTD.17

We show the following sequene of impliations.(a)) (e)) (d)) (b)) ()) (a).(a)) (e) : Let T be de�ned by a single-type SDTD d = (�;�0; (d; sd); �) with? 62 �0. Let A be a DFA over � with state set Q = �0 [f?g and let Æ(ai; b)equal the unique bj ourring in d(ai) if suh a symbol exists, otherwise ?. Notethat the single-type property ensures that A is deterministi.Now we de�ne a guarded DTD d0 = (d0; sd) by putting all triples (ra;i; a; �(d(ai)))into d0, where ra;i is a regular expression whih desribes the set fw j Æ�(sd; w) =aig of strings whih bringA into state ai. Of ourse, the languagesL(ra;1); : : : ; L(ra;ka)are all disjoint where fa1; : : : ; akag are the symbols mapped to a by �. � � � Itremains to show that d0 de�nes the same set of trees as d. Let t be in L(d).Hene, there is t0 in L(d) with �(t0) = t. It is easily shown by indution that, foreah node v of t0, labt0(v) = Æ�(sd; an-strt(v)). Hene, for eah node v labeledwith ai, the triple of d0 responsible for v is (ra;i; a; �(d(ai))) and an thereforebe applied. The proof of the opposite inlusion is similar.(e)) (d) : Let T be de�ned by the anestor-guarded DTD d = (d; sd). LetL be the set fua#v j ua 2 L(r); v 2 L(s); (r; a; s) 2 dg:� � � By de�nition, for every tree t 2 T it holds that Pan(t) � L. For the otherdiretion, let t be a tree whih is not in T . Hene, there is a node w in t with somelabel a suh that either there is no triple (r; a; s) 2 d with an-str(w) 2 L(r) orfor every suh triple h-str(w) 62 L(s). This implies that an-str#h-str(w) 62 L.Therefore, a tree t is in T if and only if Pan(t) � L whih shows (d).(d)) (b) : Let T be haraterized by anestor-based patterns using thelanguage L. Let A = (�;Q; Æ; s; F) be a DFA for L. Let d = (�;�0; d; �) bede�ned as follows. �0 is the set of all pairs (a; q), where a 2 � and q 2 Q.We let d((a; q)) be a regular expression whih desribes the set of all strings(b1; q1) � � � (bn; qn), for whih A aepts #b1 � � � bn when started from state q andqi = Æ(q; bi), for every i � n. � � � Obviously, d de�nes T . Furthermore, foreah node v in a tree t 2 T , (a; q) is uniquely determined and only depends onan-str(v). Hene, d has anestor-based types.(b)) () : Let T be de�ned by an SDTD d = (�;�0; d; �) with anestor-based types. Let t1; t2 be in T and let u1 and u2 be nodes in t1 and t2, respetively,with an-strt1(u1) = an-strt2(u2). Let t01 and t02 be the unique trees in L(d) with�(t01) = t1 and �(t02) = t2. As the labels of u1 in t01 and the label of u2 in t02are determined by an-strt1(u1) = an-strt2(u2), they are the same. Hene, byreplaing the subtree rooted at u1 in t01 with the subtree rooted at u2 in t02 we geta tree t0 2 L(d). Therefore, �(t0) = t1[u1 subtreet2(u2)℄ is in T , as required.()) (a) : The idea of the proof is as follows. In a sense, we lose a givenSDTD d for T with respet to the single-type property. Assume, e.g., that theregular expression d(ai) ontains two di�erent types bj and bk. Then, we re-plae all ourrenes of bj and bk by a new type bfj;kg obtaining a single-typeexpression with respet to b. Of ourse, we now need a new rule with bfj;kg on18

the left-hand side. This rule should apture the union of d(bj) and d(bk). Byapplying this step indutively, we arrive at an SDTD d1 whih is single-type butuses types of the form bS , for S � f1; : : : ; kbg and fb1; : : : ; bkbg are the types ofb in �0. In a seond step we prove that L(d1) = T unless T fails to ful�ll ().Let T be a tree language de�ned by an SDTD d = (�;�0; d; �). Let thealphabet �01 onsist of all symbols aS , where S � f1; : : : ; kag and fa1; : : : ; akagare the types of a in �0.We extend this notation to sets C � �0 in a natural way. We write aC forthe type aS with S = fi j ai 2 Cg. For example, for C = fa1; a2; b1; b3g, aC isthe type af1;2g. For a regular expression r over �0 and C � �0 let rC denote theexpression whih is obtained from r by replaing every symbol ai by aC .We de�ne the SDTD d1 = (�;�01; d1; �1) as follows. For eah symbol aS ,�1(aS) = a, and d1(aS) = [i2S d(ai)C(aS);where C(aS) is the set of all bj in [i2S d(ai).For instane, for S = f1; 2g, d(a1) = a1b1(a2 + b1) and d(a2) = (a3 +b3)a1, d1(aS) equals the expression (af1;2;3gbf1;3g(af1;2;3g+ bf1;3g))+((af1;2;3g+bf1;3g)af1;2;3g).Note that in d1(aS), for eah symbol b 2 �, there is at most one symbol ofthe form bS0 , hene d1 is a single-type SDTD. We show next that, if L(d) 6=L(d1), the language T is not losed under anestor-guarded subtree exhange.By ontraposition we get that () implies (a).� � � To this end, �rst observe that when moving from d to d1 no trees arelost. Indeed, let t0 2 L(d) be a witness for t 2 L(d). We get a tree t00 2 L(d1)with �1(t00) = t as follows. We assign to eah node v a type from �01 in a top-down fashion. If the root node has type ai in t0 it gets type afig. Let now v bea node with type ai in t0 and already assigned type aS in t00. Then a hild u ofv with label b gets the type bC(aS) in t00. Of ourse, the sequene of t00-types atthe hildren of u mathes d1(aS) beause the sequene of t0-types mathes d(ai).Hene, we have L(d) � L(d1).Consider now a tree t 2 L(d1) � L(d) and its extension t0 2 L(d1) with�1(t0) = t. Eah node u has a type aS in t0, and we write S(u) for S. For eahu, h-str(u) mathes d1(aS(u)). More preisely, it mathes d(ai)C(aS), for somei 2 S(u). Let g be a funtion, whih �xes one suh ai, for eah node u. Onthe other hand, as h-str(u) = v1; : : : ; vn mathes d(ai)C(aS) we an assign toeah node vi a type f(vi) 2 �0 suh that f(v1) � � � f(vn) is in L(d(ai)). Notethat f is de�ned for eah node besides the root. Furthermore, if the type of anode v in t0 is aS then f(v) is of the form ai, for some i 2 S. We all a nodev ritial, if f(v) 6= g(v). Note that t must ontain at least one ritial node,19

beause otherwise f and g would witness that t 2 L(d). By (t; f; g) we denoteXv ritialdepth(v).Now let t 2 L(d1)�L(d), t0 2 L(d1) and f and g be �xed suh that (t; f; g)is as small as possible. Let v be a ritial node in t suh that there is no otherritial node below v and let labt(v) = bS . Let bj = g(v), bk = f(v) and let tvbe the subtree of t rooted at v, so tv 2 L((d; bj)). Let t0 be an arbitrary treein L((d; bk)) and let t1 denote the tree resulting from t by replaing tv witht0. As j; k 2 S, it is easy to see that t1 2 L(d1) with f1 and g1, that an beobtained by extending f and g suh that no node below v in t1 is ritial andg1(v) = f1(v) = bk. Hene, (t1; f1; g1) < (t; f; g) and therefore t1 2 L(d).We onstrut another tree t2 from t as follows. Let u denote the parent ofv. Let aS0 be the label of u in t0. By our onstrution, there must be an a`,` 2 S0, suh that bj ours in d(a`). Hene, there is a string w = w1 � � �wk 2L(d(a`)) suh that wi = bj , for some i. For eah symbol wm, we pik a treetwm 2 L((d; wm)), in partiular let twi = tv . Let t2 result from t by plugging inthe trees tw1 ; : : : ; twk below u (and deleting all nodes that had been below u int). The node orresponding to wi is alled x.Let f2 and g2 be de�ned as f and g, respetively, for all nodes in t2 whihare not in the subtree rooted at u and let g2(u) = a`. Clearly, t2 2 L(d1). Assubtreet2(u) 2 L((d; a`)), the funtions f2 and g2 an be hosen suh that nonode below u is ritial. Hene, in t2 the node v is no longer ritial (beause itwas deleted) but the node u might have beome ritial. But, as the depth of uis smaller than the depth of v, (t2; f2; g2) < (t; f; g), therefore t2 2 L(d).Note that t an be obtained from t1 by replaing t0 by tx. Hene, as an-strt2(x) =an-strt1(v), losure of T under anestor-guarded subtree exhange would implyt 2 L(d), the desired ontradition. �Proof of Theorem 12. For a regular tree language T the following are equiv-alent:(a) T is de�nable by a restrained ompetition SDTD;(b) T is de�ned by an SDTD with anestor-sibling-based types;() T is losed under anestor-sibling-guarded subtree exhange;(d) T an be haraterized by anestor-sibling-based patterns; and(e) T is de�nable by an anestor-sibling-guarded DTD.Again we show (a)) (e)) (d)) (b)) ()) (a).(e)) (d), (d)) (b), (b)) () : These proofs are almost word for word thesame as for Theorem 11. Only anestor has to be replaed by anestor-sibling.In the proof (d)) (b), the states qi must be de�ned so that qi = Æ�(q; b1 � � � bi)for every i � n.()) (a) : The proof is similar as but a bit more involved than the orre-sponding proof in Theorem 11. Let T be a tree language de�ned by an SDTDd = (�;�0; d; �). 20

Let, for eah type ai of d, Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be an NFA forL(d(ai)). W.l.o.g. we assume that the sets Qa;i are pairwise disjoint.Let �01 be de�ned as in the proof of Theorem 11. We de�ne, for eah aS 2 �01a DFA Aa;S = (Qa;S ; �01; Æa;S ; sa;S; Fa;S) as follows.{ Qa;S = fq?g [Si2S 2Qa;i ;{ sa;S = fsa;i j i 2 Sg;{ Fa;S = fB 2 Qa;S j B \ Fa;i 6= ;; i 2 Sg;{ In order to de�ne Æa;S, let B 2 Qa;S and b 2 �. We setS0 := fj j Æa;i(p; bj) 6= ;; i 2 S; j � kb; p 2 Bgand Æa;S(B; bS0) := [i;p;j Æi(p; bj);where the latter union is over all i 2 S, p 2 B and j � kb. For all other setsS00, we set Æa;S(B; bS00) := q?.Intuitively, Aa;S an be seen as obtained in two steps from d. First, we take theprodut of the power set automata of the Aa;i, i 2 S. Then, for eah symbol b,for eah state of this intermediate automaton, all outgoing edges with label ofthe form bj are ombined into one transition whih ends in the (omponent-wise)union of the all possible target states. The transition is labeled by b to the unionof all outgoing b-labels.We now de�ne the SDTD d1 = (�;�01; d1; �1), where, for eah a and S,d1(aS) is a regular expression orresponding to Aa;S .Note that eah d1(aS) has restrained ompetition. Indeed, as Aa;S is deter-ministi, for eah string w, Aa;S enters a unique state. Furthermore, for eahb 2 � there is only one outgoing transition of the form bS0 that an lead toaeptane.� � � In analogy to the orresponding proof for Theorem 11 it is suÆientto show that, if L(d) 6= L(d1), the language T is not losed under anestor-sibling-guarded subtree exhange. Again, L(d) � L(d1). Therefore, for eaht 2 L(d1) � L(d) and its extension t0 2 L(d1), we an de�ne mappings gand f in orrespondene to the proof of Theorem 11. Let f and g be fun-tions whih assign to eah node of t a type from �0 suh that, for eah nodeu for whih g(u) = ai, with type aS in t0 and hildren v1; : : : ; vn it holds that,Æ�a;S(sa;S ; f(v1) � � � f(vn)) \ Fa;i 6= ;. Furthermore, if a node v has type aS in t0,and g(v) = aj and f(v) = ak, then fj; kg � S. Note that the onstrution ofAa;S guarantees the existene of suh funtions.Again, we all a node v ritial if f(v) 6= g(v), and we write (t; f; g) forPv ritial depth(v).Now let again t 2 L(d1) � L(d), t0 2 L(d1) and f and g be �xed suh that(t; f; g) is as small as possible. Let v be a ritial node in t suh that there is noother ritial node in the subtree tv rooted at v and suh that it is the leftmostritial hild of its parent node u. 21

Let aS be the label of u in t0, let v1; : : : ; vn be the hildren of u from left toright and let m be suh that v = vm. Let B 2 Qa;S be the state of Aa;S afterreading labt0(v1) � � � labt0(vm�1).Let bj = g(v), bk = f(v) and let t0 be an arbitrary tree in L((d; bk)). Let t1denote the tree resulting from t by replaing tv with t0. It is easy to see that t1 2L(d1) with g1(v) = f1(v) = bk and that g1 and f1 an be obtained by extendingf and g suh that no node below v is ritial. Hene, (t1; f1; g1) < (t; f; g) andtherefore t1 2 L(d).Let t2 be onstruted from t as follows. Reall that aS is the label of u int0. By our onstrution, there must be an a`, ` 2 S and a string zm+1 � � � znso that f(v1) � � � f(vm�1)bjzm+1 � � � zn 2 L(d(a`)), beause bj 2 S0, where S0is unique so that Æa;S(B; bS0) 6= q?. For eah symbol f(vi) for i < m, let sibe a tree in L((d; f(vi))), and for eah i > m we take a tree si in L((d; zi)).Let t2 result from t by deleting all nodes below u and plugging in the treess1; : : : ; sm�1; tv; sm+1; : : : ; sn below u.Let f2 and g2 be de�ned as f and g respetively, for all nodes in t2 whihare not in the subtree rooted at u, and let g2(u) = a`. Clearly, t2 2 L(d1).Below u, the funtions f2 and g2 an be hosen suh that no node below u isritial. Analogously as in Theorem 11, we have that (t2; f2; g2) < (t; f; g) andtherefore t2 2 L(d).But for them-th hild x of u in t2 it holds that an-sib-strt2(x) = an-sib-strt(v).Therefore t results from t1 2 T by replaing the subtree t0 rooted at v with thesubtree tv rooted at x in t2. Hene, if T was losed under anestor-sibling-guardedsubtree exhange, t would be in T too, a ontradition.(a)) (e) : Let T be de�ned by a restrained ompetition DTD d = (�;�0; d; �).For eah symbol ai in �0 let Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be a DFA for d(ai).We an modify Aa;i suh that it has exatly one state q? from whih no a-epting state is reahable and suh that it has no unreahable states (possiblybesides q?). From the restrained ompetition property it immediately followsthat in Aa;i, for eah state q, if Æ(q; ai) = q1, Æ(q; aj) = q2, q1 6= q2 and i 6= jthen q1 or q2 must be q?. We require that the sets Qa;i are pairwise disjoint.From these DFAs over the extended alphabet �0 we onstrut a DFA A =(QA; �; sA; ÆA; FA) as follows. The set QA onsists of all pairs (q; b), where q 2Qa;i, for some ai, and b 2 �0 [f#g. Intuitively, q is the urrent state of anautomatonAa;i and b is the last extended symbol or type that has been identi�ed.The initial state sA of A is (sa;i;#) for the initial symbol ai of d. The transitionfuntion ÆA is de�ned as follows. For eah q 2 Qa;i, 2 �0 and b 2 � we letÆA((q;); b) = (Æa;i(q; bj); bj), for the unique j with Æa;i(q; bj) 6= q?, if suh a jexists. Otherwise, ÆA((q;); b) = (q?;#). Furthermore, we let ÆA((q; bj);#) =(sb;j ;#). We set FA = fq j q 2 Fa;ig.Now we are ready to de�ne the anestor-sibling guarded DTD d0. It onsistsof all triples (r; a; s), for whih there is a state (q; ai) of A, suh that r desribesthe set of strings w with Æ�A(sA; w) = (q; ai) and s is �(d(ai)).� � � It only remains to show that d0 and d desribe the same tree language.By the onstrution it is obvious that every tree in L(d) is also in L(d0): indeed,22

for a tree t 2 L(d) and a node v, the automaton enters a state (q; ai) afterreading the symbol a orresponding to v if and only if v gets the label ai in theunique labeling with respet to d. Hene, h-str(v) is in �(d(ai)).Now let t 2 L(d0) and let v be a node of t. If an-sib-str(v) mathes r in(r; a; s) then, by onstrution, v an only be labeled by ai if a labeling of t withrespet to d exists. But then, as s is �(d(ai)), h-str(v) is in �(d(ai)). As thisholds for all nodes v, we an onlude that t mathes d. �Complexity of Basi Deision ProblemsProof of Theorem 13. It is deidable in nlogspae for an SDTD d whetherit is restrained ompetition.� � � We need to hek that every regular expression r ourring in a rulerestrains ompetition. We present a nondeterministi logspae algorithm whihaepts a regular expression if it does not restrain ompetition. As nlogspaeis losed under omplement, the theorem follows.Let Nr = (�0; Q; Æ; q0; F) be an NFA equivalent to r. The algorithm works asfollows. Let R denote the set fq j 9v 2 �0� suh that Æ�(q; v) \ F 6= ;g of statesfrom whih a �nal state an be reahed.1. it �rst guesses two states (q1; q2) of Nr;2. it veri�es that there is a string u suh that fq1; q2g � Æ�(q0; u);3. it veri�es that there are a; i; j suh that Æ(q1; ai)\R 6= ; and Æ(q2; aj)\R 6= ;;4. it aepts if all these veri�ations work out.Obviously, this algorithm aepts r, if and only if there are strings u; v; w suhthat uaiv and uajw are in L(r) as required. Furthermore, all steps an be donein logarithmi spae, as neither the NFA A nor the set R has to be omputed inadvane. Indeed, it an be heked in logarithmi spae that, for given p; q; bj ,whether q 2 R and whether q 2 Æ(p; bj). �Let NTA(REG) denote the lass of NTAs where the regular languages en-oding the transition funtion are represented by regular expressions.Lemma 22. Let a 2 � and let A be an NTA(REG), only having one aeptstate, suh that whenever t 2 L(A) then the root of t is labeled a. Then anSDTD d an be omputed in ptime suh that L(A) = L(d).Proof. Let A = (Q;� = fa1; : : : ; ang; Æ; F = fqFg) be an NTA(REG). Thende�ne d = (�;�0; d; �) as follows: �0 = fbq j b 2 �; q 2 Qg, �(bq) = b for everyb 2 �, sd = aqF , and d onsists of the rules d(bq) = rb;q where rb;q is the regularexpression obtained from Æ(b; q) by replaing every ourrene of a state p by(ap1 + � � � + apn). As every t 2 L(d) indues an aepting run of A on �(t), it isimmediate that A and d are equivalent. �Proof of Theorem 14. Eah of deiding whether an SDTD has an equivalentDTD, single-type SDTD or restrained ompetition SDTD is exptime-omplete.23

In all three ases, we make use of a redution from the universality problemfor NTAs, whih is known to be hard for exptime [19℄.� � � The latter even holds for NTA(REG) where automata only have one�nal state. Therefore, let A be an NTA(REG) over alphabet � = fa; bg. ByLemma 22, an equivalent SDTD d = (�;�0; d; �) an be onstruted in ptime.We now modify d into an SDTD d1 over the alphabet � = fa; b; �; �; rootgwhih aepts all trees t suh that t is of the form root(�(t0)) where � is � or �,t0 2 T� , and the tree obtained from t0 by deleting the right-most leaf is aeptedby A.Let d2 be the SDTD aepting all trees t of the form root(�(t0)) where theright-most leaf is a (respetively, b) when � is � (respetively, �).Finally, de�ne d3 as the SDTD aepting L(d1) [L(d2). Set S := L(d3).We show the following(a) if L(A) = T� then S is de�ned by a DTD; and,(b) if L(A) 6= T� then S is not de�ned by a restrained ompetition SDTD.Of ourse (a) and (b) together imply the statement of the theorem.(a) First note that when L(A) = T� , then L(d2) � L(d1) and S equalsfroot(�(t)) j � 2 f�; �g; t 2 T�g. The latter an learly be de�ned by a DTD.(b) Let L(A) 6= T� and let t be a tree not in L(A). Let ta and tb be thetrees obtained from t by adding an a and b respetively, to the right of theright-most leaf. Then t0a := root(�(ta)) 2 S while t0b := root(�(tb)) 62 S. Let t00bbe the tree obtained from t0b by adding an a-leaf as right-most hild of �, i.e.t00b := root(�(tba)). By de�nition of B, t00b 2 S. Let vn be the right-most leaf oft0a and let v be its parent. Then note that an-sib-strt0a(v) = an-sib-strt00b (v). So,by Theorem 12, t0a[v subtreet00b (v)℄ is in S when S is de�ned by a restrainedompetition SDTD. Hene, (b) follows.The exponential time upper bounds are shown as follows.� � �{ In the ase of single-type SDTDs we proeed as follows. Let d be a givenSDTD. We �rst onstrut the SDTD d2 as desribed in the proof of Theorem11 ()) (a). This an be done in exponential time and d2 might be ofexponential size in d. Then it has to be heked whether they are equivalent.Fortunately, as always L(d) � L(d2), we only have to hek whether L(d2)�L(d) is empty. This involves the omplementation of the tree automaton ford resulting in a tree automaton of possibly exponential size and in the testwhether the automata for L(d2) and the omplement of L(d) have a non-empty intersetion. The latter is polynomial in the size of the automata.Hene, we altogether get an exponential time algorithm.{ Testing whether a SDTD has an equivalent restrained ompetition SDTDan be done along the same lines, this time based on the proof of Theorem12 ()) (a). Note that, the size of the automata Aa;S is at most exponentialin the size of d. 24

{ Finally, we desribe how it an be tested whether a given SDTD d =(�;�0; d; �) has an equivalent DTD. Let, for eah ai 2 �0, ra;i be the regularexpression obtained from d(ai) by replaing every symbol bj by b. We de�nea DTD (d1; sd) with alphabet � simply by taking the rules a![i ra;i, forevery a 2 �. It remains to show that d has an equivalent DTD if and onlyif L(d) = L(d1).Analogously as in Theorem 11(())(a)), we have that L(d) � L(d1). To-wards a ontradition, suppose that d has an equivalent DTD and thatt 2 L(d1) � L(d). Aording to Lemma 2.10 in [16℄, L(d) is losed underparent-guarded subtree exhange. As t 62 L(d) there exists a node u in t suhthat subtreet(u) 62 L((d; ai)) for any ai 2 �0, but for every hild u1; : : : ; unof u, we have that subtreet(uj) 2 L((d; bijj)) for some bijj 2 �0. By de�ni-tion of d1, for every bijj , there exists an ak suh that bijj ours in d(ak).So, for every uj there exists a tree tj 2 L(d) with a v 2 Dom(t) suh thatlabtj (v) = bj , the parent of v is labeled a, and subtreetj (v) = subtreet(u).But this means that t an be onstruted from t1; : : : ; tn by parent-guardedsubtree exhange, whih is a ontradition as t 62 L(d). �Appliations of the CharaterizationsInlusion and Equivalene of ShemasProof of Theorem 15. Given two restrained ompetition SDTDs d1 and d2,deiding whether(a) L(d1) � L(d2), and whether(b) L(d1) = L(d2)is pspae-omplete in general, and ptime-omplete when d1 and d2 use deter-ministi regular expressions.� � � The theorem rather diretly follows from the pattern based harateri-zations of the di�erent sublasses.For the upper bounds, (b) follows from (a), hene we only show (a).It follows from Theorem 12 that for a tree language T de�ned by a restrainedompetition SDTD it holds that a tree t is in T if and only if Pan-sib(t) isin Pan-sib(T) := fPan-sib(s) j s 2 Tg. Hene, L(d1) � L(d2) if and only ifPan-sib(L(d1)) � Pan-sib(L(d2)).The statement of the theorem now follows from the fat that, for eah re-strained ompetition SDTD d = (�;�0; d; �), an NFA A for Pan-sib(L(d)) anbe omputed in polynomial time and equivalene of NFAs an also be hekedin polynomial spae. Also, A is deterministi if d uses deterministi regular ex-pressions. 25

The lower bounds are easy redutions of the inlusion and equivalene prob-lems of regular expressions, whih are pspae-omplete, and from the emptinessproblem of a language de�ned by a DTD, whih is ptime-omplete.For the upper bounds, it remains to show the onstrution of A = (QA; � [f#g; ÆA; sA; FA).Let for eah ai 2 �0, Aa;i = (Qa;i; �0; Æa;i; sa;i; Fai) be an NFA that de�nesd(ai) and has a unique state q? from whih no �nal state is reahable. We adaptAa;i so that it uses alphabet �, but remembers the types of the symbols that itreads, i.e., we de�ne A0a;i = (Q0a;i; �; Æ0a;i; s0a;i; F 0ai) where Q0a;i = Qa;i ��0. Foreah b 2 � and 2 �0 we de�ne Æ0a;i((q;); b) = f(p; bj) j p 2 Æa;i(q; bj)g. Notethat, as d is restrained ompetition, Æ0a;i((q;); b) ontains no (p1; bj1); (p2; bj2)for j1 6= j2. The start state and the set of �nal states are de�ned in the obviousway. W.l.o.g. we assume that all Q0a;i are pairwise disjoint. The NFA A0a;i anbe onstruted in ptime.We now formally de�ne A. The state set QA is the union of all Q0a;i. Its startstate is s0r, where r is the start symbol of d and the set of aept states is theunion of all F 0a;i. It remains to de�ne the transition funtion. For every b 2 �,ÆA((qa;i; j); b) = Æa;i((qa;i; j); b), where qa;i 2 Q0a;i. Finally, ÆA((qa;i; j);#) =s0;j . It is easy to see that the size of A is no larger than the sum of the sizes ofall A0a;i. This onludes the proof. �Minimization of SDTDsWe prove Theorem 16. In order to onstrut a unique minimal single-type orrestrained ompetition grammar, we use DFAs in DTDs instead of regular ex-pressions. We de�ne what it means for an SDTD to be single-type or restrainedompetition in this ontext.De�nition 23. A DFA D with alphabet �0 is single-type if L(D) ontains nostrings wbiv and w0bjv0 for i 6= j. A DFA D restrains ompetition if L(D)ontains no strings wbiv and wbjv0 for i 6= j. A SDTD is single-type, resp.restrained ompetition if all DFAs in its DTD are single-type, resp. restrainedompetition.An SDTD d = (�;�0; d; �) is bottom-up deterministi when for eah ai; aj 2�0, i 6= j, L(d(ai))\L(d(aj)) = ;. The size of an SDTD d is j�0j+Pai2�0 jd(ai)j,where we denote by jd(ai)j the number of states of the DFA representing d(ai).We show how to onstrut a minimal SDTDst from a given SDTDst. We notethat the minimization algorithm and uniqueness proof is entirely analogous forrestrained ompetition SDTDs. We merely need to replae anestor-based typesin the proof of Lemma 25 by anestor-sibling-based types. Let d = (�;�0; d; �)be an SDTDst. We reall that L((d; ai)) is the language de�ned by d, where thestart symbol of d is replaed by ai. The SDTDst dmin with L(d) = L(dmin) isbe onstruted as follows:1. Trim d, that is, remove all unreahable rules from d, and remove all ai 2 �0for whih L((d; ai)) = ;, and their orresponding rules.26

2. Test, for eah ai and aj in �0, i 6= j, whether L((d; ai)) = L((d; aj)).Aording to Theorem 15 this is in ptime. If L((d; ai)) = L((d; aj)), thenreplae all ourrenes of aj in d by ai, remove the rule in d that orrespondsto aj , and remove aj from �0.3. For eah ai 2 �0, minimize the DFA representing d(ai).Let dmin = (�;�0min; dmin; �min) be the SDTDst obtained by the above algo-rithm. It remains to show that dmin is the minimal SDTDst for L(d). Moreformally, we show that(a) L(dmin) = L(d); and that(b) every minimal SDTDst d0 for L(dmin) is isomorphi to dmin.The following lemma is easy to show.Lemma 24. The SDTD dmin an be omputed in ptime.Obviously (a) holds. We proeed with showing (b).Lemma 25. Let d1 = (�;�01; d1; �1) and d2 = (�;�02; d2; �2) be trimmed,equivalent single-type SDTDs. If there exist trees t01 2 L(d1), t02 2 L(d2) with�1(t01) = �2(t02) = t, and a node u suh that labt01(u) = ai and labt02(u) = aj,then L((d1; ai)) = L((d2; aj)).Proof. If jL((d1; ai))j = jL((d2; aj))j = 1, the proof is trivial. We show thatL((d1; ai)) � L((d2; aj)). The other inlusion is analogous. Let t01 2 L(d1),t02 2 L(d2) with that �1(t01) = �2(t02) = t, and u be a node suh that labt01(u) = aiand labt02(u) = aj . Towards a ontradition, assume that there exists a �1 2L((d1; ai))� L((d2; aj)).Let � 01 be the unique typed tree in L((d1; ai)) with �1(� 01) = �1. As d1 istrimmed, there exists a tree T 01 in L(d1), suh that � 01 is a subtree of T 01 at somenode v. As labt01(u) = ai and labT 01(v) = ai, the tree t[u �1℄ is also in L(d1).As L(d1) = L(d2), t[u �1℄ 2 L(d2). As d2 has anestor-based types andu has the same anestor string in t as in t[u �1℄, u gets the same type ajin the unique labeling. Therefore, �1 2 L((d2; aj)), whih leads to the desiredontradition. �The next lemma says that every minimal SDTDst has as many types as dmin.Lemma 26. Let d0 = (�;�0; d; �) be a minimal SDTDst for L(dmin), wheredmin = (�;�0min; dmin; �min). Then for every a 2 � we have jfai 2 �0 j �(ai) =agj = jfai 2 �0min j �min(ai) = agj.Proof. We �rst show that jfai 2 �0gj annot be larger than jfai 2 �0mingj.Towards a ontradition, assume that jfai 2 �0gj > jfai 2 �0mingj. For everyai 2 �0, let ti be an arbitrary tree so that ai is a label in the unique t0i;d0 forwhih �(t0i;d0) = ti. Also, let t0i;dmin be the unique tree for whih �min(t0i;dmin) = ti.Aording to the Pigeonhole Priniple, there must be two trees t0j;d0 and t0k;d0 sothat an aj-labeled node u in t0j;d0 and an ak-labeled node v in t0k;d0 are labeledby the same a` in both t0j;dmin and t0k;dmin .27

From Lemma 25, it now follows that L((d0; aj)) = L((dmin; ai)) = L((d0; ak)).Therefore, renaming all ak to aj in d0 results in an equivalent, stritly smallerSDTDst than d0. Contradition.The other diretion an be proved analogously, with the roles of d0 anddmin interhanged. Now the ontradition is that dmin annot be the outputof the minimization algorithm, as there still exist aj and ak in dmin so thatL((dmin; aj)) = L((dmin; ak)). �We now know that every minimal SDTDst for L((dmin)) has the same num-ber of types for eah alphabet symbol. We now argue that there exists a bije-tion I between �0 and �0min so that I(ai) is the unique aj 2 �0min for whihL((d0; ai)) = L((dmin; aj)). In other words, we only need to show that for everyai 2 �0, there exists an aj 2 �0min so that L((d0; ai)) = L((dmin; aj)). But thisimmediately follows from Lemma 25. It now follows that for eah ai 2 �0min,we have that L(dmin(ai)) = I�1(L(d(I(ai)))) (where we denoted by I the obvi-ous extension of I to string languages). As minimal DFAs for a given regularlanguage are unique up to isomorphisms, we have the following lemma:Lemma 27. Every minimal SDTDst d0 for L(dmin) is isomorphi to dmin.Theorem 16 now follows from Lemma 24 and Lemma 27.Subtree Based ShemasProof of Theorem 19. For a tree language T the following are equivalent:(a) T is de�nable by an extended restrained ompetition SDTD;(b) T is de�nable by an SDTD with preeding-subtree-based types;() T is regular.The diretions (a)) () and (b)) () are trivial. The proof of the oppositediretions uses the fat that regular languages an be validated by deterministibottom-up automata. ()) (a) and ()) (b):Let T be the tree language de�ned by a bottom-up deterministi tree automatonB = (Q;�; Æ; F). We an assume that transition funtions are represented byregular expressions. We onstrut an SDTD d = (�;�0; d; �) suh that L(d) =L(B) exatly as in Lemma 22. It is immediate that a tree t 2 L(d; aq) i� Æ�(t) =q, where labt(") = a. Here, Æ� is the anonial extension of Æ to trees. As B isdeterministi, L((d; aq))\L((d; aq0)) = ; for all a 2 � and q 6= q0 2 Q. Hene, dis extended restrained ompetition. By observing that there is only one aeptingrun for every tree and de�ning f(preeding-subtreet(u); u) = Æ�(subtreet(u)), itfollows that d has preeding-subtree-based types. �Proof of Theorem 20. It is deidable in ptime for an SDTD d whether it isextended restrained ompetition.Let d = (�;�0; d; �) be an SDTD.Let E be the set f(ai; aj) j L((d; ai)) \ L((d; aj)) 6= ;g. This set an beomputed in polynomial time by heking whether the non-deterministi tree28

automata for L((d; ai)) and L((d; aj)) have a non-empty intersetion [11℄. Here,(d; ai) denotes the SDTD d with start symbol ai.The algorithm now basially proeeds as in the proof of Theorem 13. In step3. it additionally has to hek that (ai; aj) 2 E. �

29

