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Abstract

We investigate the typechecking problem for XML transformations: statically ver-
ifying that every answer to a transformation conforms to a given output schema,
for inputs satisfying a given input schema. As typechecking quickly turns unde-
cidable for query languages capable of testing equality of data values, we return
to the limited framework where we abstract XML documents as labeled ordered
trees. We focus on simple top-down recursive transformations motivated by XSLT
and structural recursion on trees. We parameterize the problem by several restric-
tions on the transformations (deleting, non-deleting, bounded width) and consider
both tree automata and DTDs as input and output schemas. The complexity of the
typechecking problems in this scenario ranges from ptime to exptime.
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transducers, complexity

1 Introduction

XML has emerged as the lingua franca of the Web [1]. The main difference
with semi-structured data is the possibility to define schemas. In the context
of the Web, such schemas can be used to validate data exchange. In a typical
scenario, a user community agrees on a common schema and on producing only
XML data conforming to that schema. This raises the issue of typechecking:
verifying at compile time that every XML document which is the result of a
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specified query applied to a valid input, satisfies the output schema [29,30]. In
the present paper, we focus on typechecking of XML to XML transformations.
As types we adopt the usual Document Type Definitions (DTDs) and their
robust extension: regular tree languages [5,15,19] or, equivalently, specialized
DTDs [24,25]. The latter serve as a formal model for XML Schema [8].

Obviously, typechecking depends on the transformation language at hand. As
shown by Alon et al. [2,3], when transformation languages have the ability
to compare data values, the typechecking problem quickly turns undecidable.
However, Milo, Suciu, and Vianu argued that XML documents can be ab-
stracted by labeled ordered trees and that the capability of most XML trans-
formation languages can be encompassed by k-pebble transducers when data
values are ignored [19]. Further, the authors showed that the typechecking
problem in this context is decidable. More precisely, given two types τ1 and
τ2, represented by tree automata, and a k-pebble transducer T , it is decidable
whether T (t) ∈ τ2 for all t ∈ τ1. Here, T (t) is the tree obtained by running
T on input t. The complexity, however, is non-elementary and cannot be im-
proved [19].

In an attempt to lower the complexity, we consider much simpler tree trans-
formations: those defined by deterministic top-down uniform tree transducers
on unranked trees. Such transformations correspond to structural recursion
on trees [6] and to simple top-down XSLT transformations [4,7]. Such trans-
formations are merely used for restructuring and filtering, not for advanced
querying (cf. Example 7). The transducers are called uniform as they cannot
distinguish between the order of siblings. In brief, a transformation consists
of a single top-down traversal of the input tree where every node is replaced
by a new tree (possibly the empty tree).

The present paper gives an account of the complexity of the typechecking
problem in the latter setting. The complexity is measured in the sizes of the
input and output schema plus the size of the transducer. We parameterize the
typechecking problem by the kind of allowed schemas and tree transducers. For
instance, for DTDs we allow right-hand sides to be represented by DFAs, NFAs
or formulas from a logic SL specifying unordered languages. Tree automata
(abstracting XML schema) can be deterministic or non-deterministic.

In Section 3, we discuss typechecking without any restriction on transducers.
We show that even for very weak DTDs (e.g., DTDs that use DFAs to represent
regular languages) the typechecking problem is exptime-complete. The main
dominating factor is the ability of the transducer to delete interior nodes (cf.
Example 7 where intermediate section nodes are deleted). Therefore, we focus
on non-deleting transformations in the remainder of the paper. In Section 4, we
distinguish between tree automata and DTDs as schema languages. In the case
of tree automata, the complexity remains exptime-hard. When considering



NTA DTA

deleting + copying exptime exptime

non-deleting exptime exptime

non-deleting +
bounded copying exptime in exptime/pspace-hard

Table 1
The presented results for tree automata: the top row of the table shows the repre-
sentation of the input and output schemas and the left column shows the type of
tree transducer.

DTDs the complexity drops to pspace when NFAs or DFAs are used to specify
right-hand sides; when SL-formulas are used the complexity drops to conp.
The pspace lower bound crucially depends on the ability of a transducer to
make arbitrary copies of the input tree. However, in practice this ability is
rarely needed. Usually, the number of copies a transducer makes is rather
small (cf. Example 7 where the first rule makes two copies of every chapter).
Therefore, it makes sense to consider the class of transducers making at most k

copies where k is a number fixed in advance. We show in Section 5 that even on
this class, in the case of tree automata and DTDs with NFAs, the complexity
remains exptime and pspace-hard, respectively. Only when right-hand sides
of rules are represented by DFAs, the typechecking problem becomes tractable.

In conclusion, our inquiries reveal that the complexity of the typechecking
problem is determined by three features: (1) the ability of the transducer to
delete interior nodes; (2) the ability to make an unbounded number of copies
of subtrees; and, (3) non-determinism in the schema languages. Only when we
disallow all three features, we get a ptime complexity for the typechecking
problem.

An overview of our results is given in Tables 1 and 2. Unless specified otherwise,
all complexities are both upper and lower bounds. The top rows of the tables
show the representation of the input and output schemas and the left columns
show the type of tree transducer. NTA and DTA stand for non-deterministic
and deterministic tree automata, respectively. DTD(X) stands for DTDs that
use X to represent their regular languages. The exact definitions are given in
Section 2.

Related Work. A problem related to typechecking is type inference [18,24].
This problem consists in constructing a tight output schema, given an input
schema and a transformation. Of course, solving the type inference problem
implies a solution for the typechecking problem: check containment of the
inferred schema into the given one. However, characterizing output languages
of transformations is quite hard [24].

The transducers considered in the present paper are restricted versions of



DTD(NFA) DTD(DFA) DTD(SL)

deleting + copying exptime exptime exptime

non-deleting pspace pspace conp

non-deleting +
bounded copying pspace ptime conp

Table 2
The presented results for DTDs: the top row of the table shows the representation of
the input and output schemas and the left column shows the type of tree transducer.

the ones studied by Maneth and Neven [16]. They already obtained a non-
elementary upper bound on the complexity of typechecking (due to the use of
monadic second-order logic in the definition of the transducers).

Although the structure of XML documents can be faithfully represented by
unranked trees (these are trees without a bound on the number of children
of nodes), Milo, Suciu, and Vianu chose to study k-pebble transducers over
binary trees as there is an immediate encoding of unranked trees into binary
ones, as shown in Section 6. The top-down variants of k-pebble transducers
are well-studied on binary trees [13]. However, these results do not aid in the
quest to characterize precisely the complexity of typechecking transformations
on unranked trees. Indeed, as we show later in Section 6, the class of unranked
tree transductions can not be captured by ordinary transducers working on the
binary encodings. Macro tree transducers can simulate our transducers on the
binary encodings [16,11], but as very little is known about their complexity
this observation is not of much help. For these reasons, we chose to work
directly with unranked tree transducers.

Tozawa considered typechecking w.r.t. tree automata for a fragment of top-
down XSLT [31]. His framework is more general but he only obtains a double
exponential time algorithm. It is not clear whether that upper bound can be
improved.

2 Definitions

The material in this paper is sometimes quite technical. To improve readabil-
ity, we deferred definitions and lemmas that are only needed in proofs to an
appendix. In the present section, we provide background on trees, automata,
and uniform tree transducers which are necessary to understand the results in
this paper.

First we introduce some preliminary definitions. By N we denote the set of
natural numbers. We fix a finite alphabet Σ. A string w = w1 · · ·wn is a



finite sequence of Σ-symbols. The set of positions, or the domain, of w is
Dom(w) = {1, . . . , n}. The length of w, denoted by |w|, is the number of
symbols occurring in it. The label of position i in w is denoted by labw(i).
The size of a set S, is denoted by |S|.

As usual, a nondeterministic finite automaton (NFA) over Σ is a tuple N =
(Q, Σ, δ, I, F ) where Q is a finite set of states, δ : Q×Σ→ 2Q is the transition
function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. A run ρ on N for a string w ∈ Σ∗ is a mapping from Dom(w) to Q

such that ρ(1) ∈ δ(q, labw(1)) for q ∈ I, and for i = 1, . . . , |w| − 1, ρ(i + 1) ∈
δ(ρ(i), labw(i + 1)). A run is accepting if ρ(|w|) ∈ F . A string is accepted if
there is an accepting run. The language accepted by N is denoted by L(N).
The size of N is defined as |Q|+ |Σ|+

∑

q∈Q,a∈Σ |δ(q, a)|.

A deterministic finite automaton (DFA) is an NFA where |δ(q, a)| ≤ 1 for all
q ∈ Q and a ∈ Σ.

2.1 Trees and Hedges

The set of unranked Σ-trees, denoted by TΣ, is the smallest set of strings over
Σ and the parenthesis symbols ‘)’ and ‘(’ such that for σ ∈ Σ and w ∈ T ∗Σ ,
σ(w) is in TΣ. So, a tree is either ε (empty) or is of the form σ(t1 · · · tn) where
each ti is a tree. The latter denotes the tree where the subtrees t1, . . . , tn are
attached to the root labeled σ. We write σ rather than σ(). Note that there
is no a priori bound on the number of children of a node in a Σ-tree; such
trees are therefore unranked. In the following, whenever we say tree, we always
mean Σ-tree. A tree language is a set of trees.

Later, we will allow hedges in the right-hand side of transducer rules: a hedge
is a finite sequence of trees. So, the set of hedges, denoted by HΣ, is defined
as T ∗Σ .

For every hedge h ∈ HΣ, the set of nodes of h, denoted by Dom(h), is the
subset of N∗ defined as follows:

• if h = ε, then Dom(h) = ∅; (the empty hedge has no nodes)
• if h = t1 · · · tn where each ti ∈ TΣ, then Dom(h) =

⋃n
i=1{iu | u ∈ Dom(ti)};

(iu refers to node u in the ith tree) and,
• if h = σ(w), then Dom(h) = {ε} ∪ Dom(w) (if h is a tree then its domain

consists of the domain of the hedges in w and of the root ε).

In the sequel we adopt the following convention: we use t, t1, t2, . . . to denote
trees and h, h1, h2, . . . to denote hedges. Hence, when we write h = t1 · · · tn
we tacitly assume that all ti’s are trees. For every u ∈ Dom(h), we denote



by labh(u) the label of u in h. For a hedge h = t1 · · · tn, top(h) is the string
obtained by concatenating the root symbol of every ti.

2.2 DTDs

We use extended context-free grammars and tree automata to abstract from
DTDs and the various proposals for XML schemas. We further parameterize
the definition of DTDs by a class of representations M of regular string lan-
guages like, e.g., the class of DFAs or NFAs. For M ∈M, we denote by L(M)
the set of strings accepted by M .

Definition 1 LetM be a class of representations of regular string languages
over Σ. A DTD is a tuple (d, sd) where d is a function that maps Σ-symbols
to elements of M and sd ∈ Σ is the start symbol. For simplicity, we usually
denote (d, sd) by d.

A tree t satisfies d if labt(ε) = sd and for every u ∈ Dom(t) with n children
labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the tree language
accepted by d.

As we parameterize DTDs by the formalism used to represent the regular
languages, we denote by DTD(M) the class of DTDs where the regular string
languages are represented by elements of M. The size of a DTD is the sum
of the sizes of the elements ofM used to represent the function d.

To define unordered languages we make use of the specification language SL
inspired by [21] and also used in [2,3]. The syntax of the language is as follows.

Definition 2 For every a ∈ Σ and natural number i, a=i and a≥i are atomic
SL-formulas; true is also an atomic SL-formula. Every atomic SL-formula is
an SL-formula and the negation, conjunction, and disjunction of SL-formulas
are also SL-formulas.

A string w over Σ satisfies an atomic formula a=i if it has exactly i occurrences
of a; w satisfies a≥i if it has at least i occurrences of a. Further, true is satisfied
by every string. 1 Satisfaction of Boolean combinations of atomic formulas is
defined in the obvious way. By w |= φ, we denote that w satisfies SL-formula
φ.

As an example, consider the SL-formula co-producer≥1 → producer≥1. This
expresses the constraint that a co-producer can only occur when a producer
occurs. The size of an SL-formula is the number of symbols that occur in it

1 The empty string is obtained by
∧

a∈Σ a=0 and the empty set by ¬ true.



(every i in a=i or a≥i is written in binary notation).

So, by DTD(SL) we then denote DTDs where right-hand sides are represented
by SL-formulas.

2.3 Tree Automata

We recall the definition of non-deterministic tree automata from [5]. We refer
the unfamiliar reader to [20] for a gentle introduction.

Definition 3 A nondeterministic tree automaton (NTA) is a tuple B = (Q, Σ,

δ, F ), where Q is a finite set of states, F ⊆ Q is the set of final states, and δ is
a function δ : Q× Σ→ 2Q∗

such that δ(q, a) is a regular string language over
Q for every a ∈ Σ and q ∈ Q.

A run of B on a tree t is a labeling λ : Dom(t) → Q such that for every
v ∈ Dom(t) with n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that when
v has no children, then the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is
accepting iff the root is labeled with an accepting state, that is, λ(ε) ∈ F . A
tree is accepted if there is an accepting run. The set of all accepted trees is
denoted by L(B) and is called a regular tree language. When λ(v) = q, we
sometimes also say that B assigns q to v.

We extend the definition of δ to trees and hedges by defining a function δ∗(h) :
HΣ → (2Q)∗ as follows:

• δ∗(a) = {q | ε ∈ δ(q, a)};
• δ∗(a(t1 · · · tn)) = {q | ∃q1 ∈ δ∗(t1), . . . , ∃qn ∈ δ∗(tn) and q1 · · · qn ∈ δ(q, a)};
• δ∗(t1 · · · tn) = δ∗(t1) · · · δ

∗(tn).

Note that a tree t is accepted by B if δ∗(t) ∩ F 6= ∅.

A tree automaton is bottom-up deterministic if for all q, q′ ∈ Q with q 6= q′

and a ∈ Σ, δ(q, a)∩δ(q′, a) = ∅. We denote the set of bottom-up deterministic
NTAs by DTA. A tree automaton is top-down deterministic if for all q, q′ ∈ Q

with q 6= q′, a ∈ Σ, and n ≥ 0, δ(q, a) contains at most one string of length n.

Like for DTDs, we parameterize NTAs by the formalism used to represent
the regular languages in the transition functions δ(q, a). So, for a class M of
representations of regular languages, we denote by NTA(M) the class of NTAs
where all transition functions are represented by elements of M. The size of
an automaton B is then |Q| + |Σ| +

∑

q∈Q,a∈Σ |δ(q, a)|. Here, by |δ(q, a)| we
denote the size of the automaton accepting δ(q, a). Unless explicitly specified
otherwise, δ(q, a) is always represented by an NFA.



2.4 Transducers

We next define the tree transducers used in this paper. To simplify notation,
we restrict to one alphabet. That is, we consider transductions mapping Σ-
trees to Σ-trees. It is straightforward to define transductions where the input
alphabet differs from the output alphabet [16].

For a set Q, denote by HΣ(Q) (TΣ(Q)) the set of Σ-hedges (trees) where leaf
nodes can be labeled with elements from Q.

Definition 4 A uniform tree transducer is a tuple (Q, Σ, q0, R), where Q is a
finite set of states, Σ is the input and output alphabet, q0 ∈ Q is the initial
state, and R is a finite set of rules of the form (q, a)→ h, where a ∈ Σ, q ∈ Q,
and h ∈ HΣ(Q). When q = q0, h is restricted to TΣ(Q) \Q.

The restriction on rules with the initial state ensures that the output is always
a tree rather than a hedge. For the remainder of this paper, when we say tree
transducer, we always mean uniform tree transducer.

Example 5 Let T = (Q, Σ, p, R) where Q = {p, q}, Σ = {a, b}, and R con-
tains the rules

(p, a)→ d(e) (p, b)→ c(q p)

(q, a)→ c q (q, b)→ d(q)

Our definition of tree transducers corresponds to structural recursion [6] and
a fragment of top-down XSLT. For instance, the XSLT program equivalent to
the above transducer is given in Figure 1 (we assume the program is started
in mode p). Note that the right-hand side of (q, a)→ c q is a hedge, while the
other right-hand sides are trees. 2

The translation defined by T = (Q, Σ, q0, R) on a tree t in state q, de-
noted by T q(t), is inductively defined as follows: if t = ε then T q(t) := ε; if
t = a(t1 · · · tn) and there is a rule (q, a)→ h ∈ R then T q(t) is obtained from
h by replacing every node u in h labeled with p by the hedge T p(t1) · · ·T

p(tn).
Note that such nodes u can only occur at leaves. So, h is only extended down-
wards. If there is no rule (q, a) → h ∈ R then T q(t) := ε. Finally, define the
transformation of t by T , denoted by T (t), as T q0

(t).

For a ∈ Σ, q ∈ Q and (q, a) → h ∈ R, we denote h by rhs(q, a). We also use
the abbreviation rhs to stand for right-hand side. If q and a are not important,
we say that h is a rhs. The size of T is |Q|+ |Σ|+

∑

q∈Q,a∈Σ |rhs(q, a)|.

Example 6 In Figure 2 we give the translation of the tree t defined as



<xsl:template match="a" mode ="p">

<d>

<e/>

</d>

</xsl:template>

<xsl:template match="b" mode ="p">

<c>

<xsl:apply-templates mode="q"/>

<xsl:apply-templates mode="p"/>

</c>

</xsl:template>

<xsl:template match="a" mode ="q">

<c/>

<xsl:apply-templates mode="q"/>

</xsl:template>

<xsl:template match="b" mode ="q">

<d>

<xsl:apply-templates mode="q"/>

</d>

</xsl:template>

Fig. 1. The XSLT program equivalent to the transducer of Example 5.

b

b a

a a

b

a

by the transducer of Example 5. 2

We discuss two important features: copying and deletion. The rule (p, b) →
c(q p) in the above example copies the children of the current node in the
input tree two times: one copy is processed in state q and the other in state
p. The symbol c is the parent node of the two copies. So the current node in
the input tree corresponds to the latter node. The rule (q, a)→ c q copies the
children of the current node only once. However, no parent node is given for
this copy. So, there is no corresponding node for the current node in the input
tree. We, therefore, say that it is deleted. For instance, T q(a(b)) = c d where
d corresponds to b and not to a.

Example 7 We provide a less abstract example of a transformation. The
following DTD(DFA) defines a schema for books:



T p(t)
⇓

c

T q(b) T q(a(aa)) T q(b(a)) T p(b) T p(a(aa)) T p(b(a))
⇓

c

d

T q(ε)

c T q(a) T q(a) d

T q(a)

c

T q(ε) T p(ε)

d

e

c

T q(a) T p(a)
⇓

c

d c c T q(ε) c T q(ε) d

c T q(ε)

c d

e

c

c T q(ε) d

e
⇓

c

d c c c d

c

c d

e

c

c d

e

Fig. 2. The translation of t = b(b a(a a)b(a)) by the transducer T of Example 5.

book

title author chapter

title introduction section

title paragraph section

title paragraph

section

title paragraph

chapter

title introduction section

title paragraph

Fig. 3. A document conforming to the schema of Example 7.

book → title, author+, chapter+

chapter → title, introduction, section+

section → title, paragraph+, section∗

We use ’,’ to denote concatenation. Figure 3 depicts a document conform
to the given schema. The following transducer makes a table of contents by
generating for every chapter of the book a list of its section titles. In addition,
a summary of the book consisting of the title and introduction of each chapter
is added.



(q0, book)→ book(p summary q)

(p, chapter)→ chapter p

(p, title)→ title

(p, section)→ p

(q, chapter)→ q′

(q′, title)→ title

(q′, introduction)→ introduction

The rule (q0, book) → book(p q) makes two copies of each chapter, each of
which is processed in states p and q, respectively. State p recursively generates
a list of titles. The rule (p, chapter) → chapter p allows to list these titles
next to the chapter element rather than below. Note that state p deletes all
intermediate section nodes. State q generates a list of all chapter titles together
with their introductions. By using state q′, we make sure that the title of the
book is skipped.

The output of the transformation, applied to the document in Figure 3 is the
following tree:

book

title
chapter

title
title
title
title

chapter

title
title

summary

title
introduction

title
introduction

2

2.5 The Typechecking Problem

We define the problem central to this paper.



Definition 8 A tree transducer T typechecks w.r.t. to an input tree language
Sin and an output tree language Sout, if T (t) ∈ Sout for every t ∈ Sin.

Definition 9 Given Sin, Sout and T , the typechecking problem consists in
verifying whether T typechecks w.r.t. Sin and Sout.

Example 10 The transducer in Example 7 typechecks w.r.t. the input DTD
and the following output DTD:

book→ title, (chapter, title∗)∗, summary, (title, introduction)∗.

2

We parameterize the typechecking problem by the kind of tree transducers
and tree languages we allow. Let T be a class of transducers and S be a class
of tree languages. Then TC[T ,S] denotes the typechecking problem where
T ∈ T and Sin, Sout ∈ S. The size of the input of the typechecking problem is
the sum of the sizes of the input and output schema and the tree transducer.

Next, we define some classes of tree transducers based on the discussion on
deletion and copying following Example 6. A transducer is non-deleting if
no states occur at the top-level of a rhs. We denote by Tg the class of all
transducers and by Tnd the class of non-deleting transducers. A transducer T

has copying width k if there are at most k occurrences of states in a sequence of
siblings in a rhs. For instance, the copy width of the transducer in Example 7
is two. By BWk we denote the class of non-deleting transducers of copying
width k. For a class of representations of regular string languages M, we
write TC[T ,M] rather than TC[T ,DTD(M)].

3 The General Case

In the present section, we consider the complexity of the typechecking problem
in its most general setting. That is, without any restrictions on transducers:
both deletion and unbounded copying is allowed. We show that the problem is
in exptime for the most powerful schema languages, namely non-deterministic
tree automata. However, the problem remains hard for exptime even for the
weakest DTDs: DTDs where right-hand sides are specified by DFAs or SL-
formulas.

The lower bound is obtained through a reduction from the intersection empti-
ness problem of n deterministic tree automata which is known to be hard
for exptime [27]. The transducer starts by making n copies of the input tree.
Thereafter, it simulates a different tree automaton on each copy. All processed



nodes are deleted. The only generated output is an error symbol when an au-
tomaton rejects. So, the output DTD merely has to check that an error symbol
always appears. The latter can be done by a very simple DFA or SL-formula.

The exptime upper bound is obtained by a translation to typechecking of
non-deleting transducers. The latter is tackled in the next section.

Theorem 11 (1) TC[Tg,NTA] is in exptime;
(2) TC[Tg,SL] is exptime-hard;
(3) TC[Tg,DFA] is exptime-hard.

PROOF. (1) Let T = (QT , Σ, q0
T , RT ) be a transducer and let Ain and Aout =

(QA, Σ, δA, FA) be two NTAs representing the input and output schema, re-
spectively. We next describe a non-deleting transducer S and an NTA Bout

which can be constructed in logspace, such that T typechecks w.r.t. Ain and
Aout iff S typechecks w.r.t. Ain and Bout. From Theorem 12(1) it then follows
that TC[Tg ,NTA] is in exptime.

Intuitively, S outputs a # whenever T would process a deleting state. For
instance, the rule (q, a)→ c q is replaced by (q, a)→ c #(q). We assume that
# 6∈ Σ. Formally, S = (QS, Σ ∪ {#}, q0

S, RS) with QS = QT , q0
S = q0

T , and
for every rule (q, a) → t1 · · · tn in RT , RS contains the rule (q, a) → t′1 · · · t

′
n,

where for every i = 1, . . . , n, t′i = #(ti) if ti ∈ QT and t′i = ti otherwise. Then,
define the #-eliminating function γ as follows: γ(a(h)) is γ(h) when a = #
and a(γ(h)) otherwise; further, γ(t1 · · · tn) := γ(t1) · · ·γ(tn). So, clearly, for all
t ∈ TΣ, T (t) = γ(S(t)).

Next, we construct Bout such that γ(t) ∈ L(Aout) iff t ∈ L(Bout). The un-
derlying idea is quite simple. In a run on #(t1 · · · tn), Bout assigns a state
(q1, q2, q, a) to the root when the NFA for δA(q, a) halts in state q2 when pro-
cessing top(γ(#(t1 · · · tn))) starting in state q1. Here, q1, q2 are states of the
automaton for δA(q, a), q is a state of Aout and a ∈ Σ. The state q and the
label a are guessed. In a run on a(t1 · · · tn), with a 6= #, Bout assigns a state
q to the root when Aout assigns q to the root of γ(a(t1 · · · tn)).

Let for every a ∈ Σ and q ∈ QA, N q,a = (Qq,a, QA, δq,a, Iq,a, F q,a) be the NFA
such that δA(q, a) = L(N q,a). We tacitly assume that all Qq,a are disjoint.
Define Bout = (QB, Σ ∪ {#}, δB, FB), where QB = QA ∪ {(q1, q2, q, a) | q ∈
QA, a ∈ Σ, q1, q2 ∈ Qq,a}, and FB = FA.

It remains to define δB. Thereto, fix q ∈ QA and a ∈ Σ. Let I, F ⊆ Qq,a.
Let M q,a(I, F ) be the automaton behaving in the same way as N q,a with
the initial and final states replaced with I and F , respectively; further, when
reading a tuple (q1, q2, p, b) in state q1 the automaton jumps to state q2 when
p = q and b = a, and rejects otherwise. Clearly, M q,a(I, F ) is logspace



constructible from N q,a. We then simply define δB(q, a) := M q,a(Iq,a, F q,a)
and δB((q1, q2, p, b), #) := Mp,b({q1}, {q2}) for all states q, (q1, q2, p, b) ∈ QB

and a ∈ Σ. It is not difficult to see that γ(t) ∈ L(Aout) iff t ∈ L(Bout).

(2) We use a reduction from the intersection emptiness problem of top-down
deterministic ranked binary tree automata Ai (i = 1, . . . , n), which is known
to be hard for exptime [27]. The problem is stated as follows, given top-down
deterministic ranked binary tree automata A1, . . . , An, is

⋂n
i=1 L(Ai) = ∅? We

define a transducer T and two DTDs din and dout such that
⋂n

i=1 L(Ai) = ∅ iff
T typechecks w.r.t. din and dout. In the construction, we exploit the copying
power of transducers to make n copies of the input tree: one for each Ai. By
using deleting states, we can execute each Ai on its copy of the input tree
without producing output. When an Ai does not accept, we output an error
symbol under the root of the output tree. The output DTD should then only
check that an error symbol always appears.

Top-down deterministic ranked binary tree automata are NTAs which operate
on an alphabet that is partitioned in internal labels and leaf labels. If a label a

is an internal label, the regular languages δ(q, a) are empty or only contain one
string of length two and if it is a leaf label, the regular languages δ(q, a) are
empty or only contain the empty string. So, such automata are defined over
full binary trees, that is, all inner nodes have precisely two children. Further,
there is only one start state. Let for i = 1, . . . , n, the top-down deterministic
ranked binary tree automata be Ai = (Qi, Σ, δi, {q

i
0}).

First, we define the alphabet of the transducer. Let Σ = {a1, . . . , ak} and define
Σi = {aj,i | aj ∈ Σ}, for i = 1, 2. The transducer is defined over the alphabet
ΣT = Σ1 ∪ Σ2 ∪ {$, error, ok}. The intuition is as follows, the root symbol of
the input tree is labeled with $ and has only one child, which corresponds
to the root of a possible input for the n binary tree automata. Every other
internal node has two children: a left and a right child labeled with an element
of Σ1 and Σ2, respectively. Using labels from Σ1 and Σ2 allows the transducer
to distinguish a left from a right child by simply inspecting its label. Note
that the partitioning of leaf nodes and internal nodes in Σ also allows us to
distinguish leaf labels from internal labels in ΣT .

Next, we define the input DTD. Formally, for every internal symbol a ∈ ΣT \
{error, ok}, define din(a) =

∨k
i,j=1(C

1
i ∧C2

j ). Here, (C1
i ∧C2

j ) is the SL-formula
expressing that there are two children, one labeled with ai,1 and one with aj,2

meaning that the first child is ai and the second is aj . Formally, for i, j =
1, . . . , k,

C1
i =

(

∧

ℓ=1,...,k

(a=δℓi

ℓ,1 )
)

and C2
j =

(

∧

ℓ=1,...,k

(a
=δℓj

ℓ,2 )
)

where δℓi is the Kronecker delta (δℓi = 1 if ℓ = i and δℓi = 0 otherwise).
Further, for every leaf symbol a ∈ ΣT \ {error, ok}, define din(a) as the empty



string. Finally, the start symbol of din is $ and define din($) =
∨k

i=1 C1
i . The

size of din(a) is O(|Σ|3).

The transducer T = (QT , ΣT , q0
T , RT ) simulates in parallel the n tree automata

on the input tree. When an automaton rejects, the transducer produces an
error symbol. However, using deleting states, it only produces output when
a leaf node is reached. In this way only a very simple DTD is needed to
check whether an error occurred. The transducer is defined as follows: QT =
⋃n

i=1(Q
1
i ∪ Q2

i ), where Q
j
i = {qj | q ∈ Qi} for j = 1, 2. The intuition is that

states in Q
j
i should only be used to process the j-th child. We tacitly assume

that the sets Qi are disjoint. RT consists of the following rules:

• (q0
T , $) → $(q1

0 · · · q
n
0 ). Recall that qi

0 is the initial state of Ai. So, this rule
puts a $ as the root symbol of the output tree and starts the in-parallel
simulation of the Ai’s.
• For all m, m′ ∈ {1, 2} with m 6= m′ and j ∈ {1, . . . , k}, add the rule

(qm, aj,m′) → ε. Left children cannot be processed by right states and vice
versa.
• Let m ∈ {1, 2}, j ∈ {1, . . . , k}, i ∈ {1, . . . , n}, and qm ∈ Qm

i . If aj is an
internal symbol and δi(q, aj) = ℓr, then we add the rule (qm, aj,m) → ℓ1r2.
If aj is a leaf symbol and δi(q, aj) = ε, then we add the rule (qm, aj,m)→ ok.
In both cases, if δi(q, aj) is empty, we add the rule (qm, aj,m)→ error.

Finally, define dout($) := error≥1. Here, $ is the start symbol. It remains to
verify the correctness. Suppose t ∈

⋂

i=1...n L(Ai), then t′ ∈ L(din) and T (t′)
contains no error-labeled node where t′ is obtained from $(t) by changing
the label of every first (second) child labeled aj by aj,1 (aj,2). Conversely, if
t ∈ L(din) and T (t) does not contain an error symbol, then t′ ∈

⋂

L(Ai) where
t′ is obtained from t by dropping the $-labeled symbol, rearranging children
according to their index-number and then dropping the indices.

The proof of (3) follows from the one for (2) as the used SL can easily be
expressed by DFAs of the same sizes. 2

4 Non-deleting Transformations

The lower bound of the previous section severely depends on the ability of
transducers to delete interior nodes and to make an unbounded number of
copies of subtrees. In an attempt to lower the complexity, we restrict to non-
deleting transformations in the present section. We observe that when schemas
are represented by tree automata, the complexity remains exptime-hard.
When tree languages are represented by DTDs, the complexity of the type-



checking problem drops to pspace and is hard for pspace even when right-
hand sides of rules are represented by DFAs. When employing SL-formulas
the complexity is conp. In summary, we prove the following results:

Theorem 12 (1) TC[Tnd,NTA] is exptime-complete;
(2) TC[Tnd,DTA] is exptime-complete;
(3) TC[Tnd,NFA] is pspace-complete;
(4) TC[Tnd,DFA] is pspace-complete;
(5) TC[Tnd,SL] is conp-complete.

We prove the different parts of the above theorem in the following subsections.

4.1 Tree Automata

The proof establishing the upper bound is similar in spirit to a proof in [22],
which shows that containment of Query Automata is in exptime.

Theorem 12(1). TC[Tnd,NTA] is exptime-complete.

PROOF. Hardness is immediate as containment of NTAs is already hard for
exptime [26]. We, therefore, only prove membership in exptime. Let T =
(QT , Σ, q0

T , RT ) be a non-deleting tree transducer and let Ain = (Qin, Σ, δin, Fin)
and Aout = (Qout, Σ, δout, Fout) be the NTAs representing the input and output
schema, respectively.

In brief, our algorithm computes the set

P = {(S, f) | S ⊆ Qin, f : QT → (2Qout)∗, ∃t such that

S = δ∗in(t) and ∀q ∈ QT , f(q) = δ∗out(T
q(t))}.

Note that since f(q) = δ∗out(T
q(t)) and t is a tree, 2 the length of f(q) is

bounded by the size of the largest rhs in T . Therefore, the number of functions
f we consider is bounded by (2|Qout|)|T ||QT |. Intuitively, in the definition of P ,
t can be seen as a witness of (S, f). Indeed, S is the set of states reachable
by Ain at the root of t, while for each state q of the transducer, f(q) is the
sequence of sets of states reachable by Aout at the root of T q(t). So, the given
instance does not typecheck iff there exists an (S, f) ∈ P such that Fin∩S 6= ∅
and Fout ∩ f(q0

T ) = ∅. As T q0

T (t) is always a tree, f(q0
T ) is a subset of Qout. In

Figure 4, an algorithm for computing P is depicted. We will show that this
algorithm is in exptime. Hence, typechecking is in exptime. We explain the

2 Recall that T q(t) is the translation of t started in state q.



notation in Figure 4. By rhs(q, a)[p ← f1(p) · · ·fn(p) | p ∈ QT ], we denote
the hedge obtained from rhs(q, a) by replacing every occurrence of a state p

by the sequence f1(p) · · ·fn(p). By δ̂out : HΣ(2Qc) → (2Qc)∗ we denote the
transition function extended to hedges in HΣ(2Qout). To be precise, for a ∈ Σ,
δ̂out(a) := {q | ε ∈ δout(q, a)}; for P ⊆ Qout, δ̂out(P ) := P ; for h = a(t1 · · · tn),
δ̂out(h) := {q | ∀i = 1, . . . , n, ∃qi ∈ δ̂out(ti) : q1 · · · qn ∈ δ̂out(q, a)}; and for
h = t1 · · · tn, δ̂out(h) = δ̂out(t1) · · · δ̂out(tn). The correctness of the algorithm
follows from the following lemma which is proved by induction on the number
of iterations of the while loop.

Lemma 13 A pair (S, f) has a witness tree of depth i iff (S, f) ∈ Pi.

PROOF. Immediate for i = 1.

For the induction step, suppose that, for some i, every pair is in Pi−1 iff it
has a witness of depth i − 1. Let (S, f) ∈ Pi, then, by definition, there is an
a ∈ Σ and a string (S1, f1) · · · (Sn, fn) ∈ P ∗i−1 so that S := {p | ∃rj ∈ Sj, j =

1, . . . , n, r1 · · · rn ∈ δin(p, a)} and for every q ∈ QT , f(q) := δ∗out

(

rhs(q, a)[p←

f1(p) · · ·fn(p) | p ∈ QT ]
)

. Hence, a(t1 · · · tn) is a witness of (S, f), where each

tj is a witness for (Sj , fj).

Conversely, suppose that (S, f) has a witness tree a(t1 · · · tn) of depth i. By
the induction hypothesis, there exist tuples (S1, f1), . . . , (Sn, fn) ∈ Pi−1 such
that tj is a witness for (Sj , fj) for each j = 1, . . . , n. Considering the definition

of δ̂out, it is then clear that the algorithm of Figure 4 puts (S, f) in Pi. 2

It remains to show that the algorithm is in exptime. The set P1 can be
computed in time polynomial in the sizes of Ain, Aout, and T . As Pi ⊆ Pi+1 for
all i, and there are 2|Qin| · (2|Qout|)|T ||QT | pairs (S, f), the loop can only make
an exponential number of iterations. So, it suffices to show that each iteration
can be done in exptime. Actually, we argue that it can be checked in pspace

whether a tuple (S, f) ∈ Pi.

Let (S, f) be a pair. We describe separately how S and f are checked. It should
be clear how the two algorithms can be merged into one pspace algorithm.
We start with S.

(1) For every q ∈ Qin and a ∈ Σ, let N q,a be the NFA accepting those strings
R1 · · ·Rk ∈ (2Qin)∗ for which there are ri ∈ Ri such that r1 · · · rk ∈
δin(q, a). It is too expensive to actually construct the automaton N q,a as
the alphabet is exponentially bigger than the one of δin(q, a). However,
the set of states is the same. It is important to note that given a set Ri



and a state q, the set of all states reachable from q by reading Ri can be
computed in pspace.

So, we need to check the existence of an a ∈ Σ and a string Z :=
S1 · · ·Sn that is accepted (rejected) by N q,a for all q ∈ S (q ∈ Qin \ S).
The latter can be achieved in pspace by guessing an a ∈ Σ and then
guessing Z one symbol at a time while executing all N q,a’s in parallel
for every q ∈ Qin. Indeed, for every automaton we remember the set of
states that can be reached by reading the prefix of Z seen so far. Initially,
these sets are the respective initial states. Then, whenever a new Si is
guessed, for each automaton the set of states reachable from a state from
the remembered set by reading Si, is computed. By the discussion above
the latter is in pspace.

(2) Checking f is more technical. We use the a guessed in the previous step.
Denote rhs(q, a)[p ← f1(p) · · ·fn(p) | p ∈ QT ] by ξq,a. Now, we need to

check for all q ∈ QT whether f(q) = δ̂out(ξq,a). For all p ∈ Qout and b ∈ Σ,
let Mp,b be the NFA accepting strings R1 · · ·Rk ∈ (2Qout)∗ for which there
are ri ∈ Ri, i = 1, . . . , k, such that r1 · · · rk ∈ δout(p, b). Again, we will not
construct the latter automata. It is enough to realize that given a state
and an R ⊆ Qout, the set of states reachable from this state by reading
R can be computed in pspace.

First, assume every rhs(q, a) is of the form b(q1 · · · qℓ). Then, ξq,a is
of the form b(w1 · · ·wℓ) with wj = f1(qj) · · ·fn(qj). So, to check that

f(q) = δ̂out(ξq,a), we need to verify that w = w1 · · ·wℓ is accepted (re-
jected) by Mp,b for all p ∈ f(q) (p 6∈ f(q)). However, like in (1), our
algorithm successively guesses new fi’s while forgetting the previous ones
and should, hence, be able to run the automata on w in this way. As w

consists of ℓ parts we guess ℓ sets of states P
p,b
i , i = 0, . . . , ℓ, where P

p,b
0 is

the set of initial states of Mp,b. The meaning of these sets is the following:
every automaton Mp,b reaches precisely the states in P

p,b
i after reading

w1 · · ·wi−1. The algorithm can verify the latter criterion by running Mp,b

on each wi separately started in the states P
p,b
i−1 and verifying whether

P
p,b
i is reached. Running Mp,b on wi can be done in pspace as described

in (1).
When right-hand sides of rules can be arbitrary trees in T (QT ), we

guess for every inner node u in a rhs(q, a) a subset Rq,a
u of Qout. When

u is the root, then Rq,a
u = f(q). Intuitively, these sets represent precisely

the sets of states that can be reached at a node u by Aout. For leaf nodes
u, we define Rq,a

u as δ∗out(c) and as the sequence f1(p) · · ·fn(p) when u

is labeled with c and p, respectively. We then need to verify for every
inner node u labeled with b with n children, that R

q,a
u1 · · ·R

q,a
un is accepted

(rejected) by Mp,b for all p ∈ Rq,a
u (p 6∈ Rq,a

u ). Again, the latter is checked
as described above.

Finally, when right-hand sides of rules can be hedges, one needs to take
into account that f(q) can be a sequence of sets of states. 2



P0 := ∅;
i := 1;
P1 :=

{

(δ∗in(a), f) | a ∈ Σ, ∀q ∈ QT : f(q) = δ∗out(T
q(a))

}

;
while Pi 6= Pi−1 do

Pi :=
{

(S, f) | ∃(S1, f1) · · · (Sn, fn) ∈ P ∗i−1, ∃a ∈ Σ :

S = {p | ∃rk ∈ Sk, k = 1, . . . , n, r1 · · · rn ∈ δin(p, a)},

∀q ∈ QT : f(q) = δ̂out

(

rhs(q, a)[p← f1(p) · · ·fn(p) | p ∈ QT ]
)}

;
i := i + 1;

end while
P := Pi;

Fig. 4. The algorithm of Theorem 12(1) computing P .

In the remainder of this section, we examine what happens when tree automata
are restricted to be deterministic. From the above result, it is immediate that
TC[Tnd,DTA] is in exptime. Hardness is obtained through a reduction from
the intersection emptiness problem of top-down deterministic ranked binary
tree automata and is similar to the one in Theorem 11(2): Ain defines the same
set of trees as din does with the exception that Ain enforces an ordering of the
children. The transducer in the proof of Theorem 11(2) starts the in parallel
simulation of the n automata, but then, using deleting states, delays the output
until it has reached the leaves of the input tree. In the present setting, we can
not use deleting states. Instead, we copy the input tree and overwrite the
leaves with error symbols when an automaton rejects. The output automaton
then checks whether at least one error occurred.

Theorem 12(2) TC[Tnd,DTA] is exptime-complete.

PROOF. For i = 1, . . . , n, let Ai = (Qi, Σ, δi, {q
i
0}) be top-down determinis-

tic ranked binary tree automata. The transducer is defined over the alphabet
ΣT = Σ1 ∪ Σ2 ∪ {$, error, ok}. Here, Σi = {ai | a ∈ Σ}, for i = 1, 2.

First, we define Ain = (Qin, ΣT , δin, {q
1
in}), where Qin = {q1

in, q
2
in}. The intuition

is that Ain accepts all trees $(t) where each node in u in t has a left and a right
child labeled with elements of Σ1 and Σ2 respectively if labt(u) is an internal
label, and u has no children if labt(u) is a leaf label. The transition function
is defined as follows:

• δin(q
1
in, $) = q1

in.
• δin(q

i
in, ai) = q1

inq
2
in for i = 1, 2 if ai ∈ Σi is an internal label.

• δin(q
i
in, aj) = ∅ for all aj ∈ Σj , i 6= j.

• δin(q
i
in, ai) = ε for i = 1, 2 if ai ∈ Σi is a leaf label.

Note that Ain is bottom-up deterministic.



The transducer T = (QT , ΣT , q0
T , RT ) is defined similarly as in Theorem 11(2):

QT =
⋃n

i=1(Q
1
i ∪ Q2

i ), where Qk
i = {qk | q ∈ Qi}. Again, the intuition is that

states in Q
j
i should only be used to process the j-th child. RT consists of the

following rules:

• (q0
T , $)→ $(q1

0 · · · q
n
0 ). So, this rule puts a $ as the root symbol of the output

tree and starts the in-parallel simulation of the Ai’s.
• For all j, j′ ∈ {1, 2} with j 6= j′, add the rule (qj, a′j)→ ε.

• Let j ∈ {1, 2}, i ∈ {1, . . . , n}, and qj ∈ Q
j
i . If aj is an internal symbol and

δi(q, a) = ℓr, then we add the rule (qj, aj)→ aj(ℓ
1r2). If aj is a leaf symbol

and δi(q, a) = ε, then we add the rule (qj, aj)→ ok. In both cases, if δi(q, a)
is empty, we add the rule (qj, aj)→ error.

Finally, we define the output automaton Aout = (Qout, ΣT , δout, {qe}) which
accepts all trees with at least one error-labeled leaf. Formally, Qout = {qo, qe}
and δout is defined as follows: i ∈ {1, 2},

• δout(qo, $) = q∗o .
• δout(qe, $) = Q∗outqeQ

∗
out.

• δout(qo, ai) = q∗o for all ai ∈ Σi.
• δout(qe, ai) = Q∗outqeQ

∗
out for all ai ∈ Σi.

• δout(qe, error) = ε.
• δout(qo, ok) = ε.

Again, Aout is bottom-up deterministic. 2

4.2 DTDs

When we consider DTD(NFA)s to represent input schemas the complexity
drops to pspace. We reduce the typechecking problem to the emptiness prob-
lem of NTAs where transition functions are represented by loop-free two-way
alternating string automata, denoted 2AFAlf. The complexity of the latter
problem is in pspace (Theorem 19 in the appendix). Alternating and string
automata are discussed in the appendix (Section A.1). In particular, the con-
structed NTA accepts precisely those trees which satisfy the input DTD but
are transformed by the transducer to trees outside the output DTD. Hence,
the instance typechecks if and only if the NTA accepts the empty language.
The proof makes use of two-way non-deterministic string automata, denoted
2NFA, which are also defined in the appendix.

Theorem 12(3) TC[Tnd,NFA] is pspace-complete.



PROOF. The hardness result is immediate as containment of regular ex-
pressions is known to be pspace-hard [28]. For the other direction, let T be a
non-deleting tree transducer. Let din and dout be the input and output DTDs,
respectively. We construct an NTA(2AFAlf) B such that L(B) = {t ∈ L(din) |
T (t) 6∈ L(dout)}. Moreover, the size of B is polynomial in the size of T , din, and
dout. Thus, L(B) = ∅ iff T typechecks w.r.t. din and dout. By Theorem 19(2),
the former is in pspace.

To explain the operation of the automaton, we introduce the following notions.
Let q be a state of T and a ∈ Σ then define q(a) = top(rhs(q, a)). For a string
w = a1 · · ·an, we define q(w) := q(a1) · · · q(an). For a hedge h and a DTD d,
we say that h partly satisfies d if for every u ∈ Dom(h), labh(u1) · · · labh(un) ∈
L(d(labh(u))) where u has n children. Note that there is no requirement on
the root nodes of the trees in h. Hence, the term partly.

Intuitively, the automaton B works as follows on t ∈ TΣ: (1) B checks that
t ∈ L(din); (2) at the same time, B non-deterministically picks a node v ∈
Dom(t) and a state q in which v is processed; B then accepts if h does not
partly satisfy dout, where h is obtained from rhs(q, a) by replacing every state
p by the string p(labt(v1) · · · labh(vn)). Here, we assume that v is labeled a

and has n children. As dout is specified by NFAs and we have to check that
dout is not partly satisfied, we need to check membership in the complement
of a regular expression. We therefore use alternation to specify the transition
function of B. Additionally, as T can copy its input, it is convenient to use
two-way automata. The latter will become clear in the actual construction.

Formally, let T = (QT , Σ, q0
T , RT ). Define B = (QB, Σ, FB, δB) as follows. The

set of states QB is the union of the following sets: Σ, {(a, q) | a ∈ Σ, q ∈ QT},
and {(a, q, check) | a ∈ Σ, q ∈ QT}. If there is an accepting run on a tree t,
then a node v labeled with a state of the form a, (a, q), (a, q, check) has the
following meaning:

a: v is labeled with a and the subtree rooted at v partly satisfies din.
(a, q): same as in previous case with the following two additions: (1) v is

processed by T in state q; and, (2) a descendant of v will produce a tree
that does not partly satisfy dout.

(a, q, check): same as the previous case only now v itself will produce a tree
that does not partly satisfy dout.

The set of final states is FB := {(a, q0
T ) | a ∈ Σ}. The transition function is

defined as follows: for all a, b ∈ Σ, q ∈ QT :

(1) δB(a, b) = δB((a, q), b) = δB((a, q, check), b) = ∅ for all a 6= b;
(2) δB(a, a) = din(a) and δB((a, q), a) consists of those strings a1 · · ·an such

that there is precisely one index j ∈ {1, . . . , n} for which aj = (b, p)
or aj = (b, p, check) where p occurs in rhs(q, a) and for all i 6= j, ai ∈



Σ; further, a1 · · ·aj−1baj+1 · · ·an ∈ L(din(a)). Note that δB((a, q), a) is
defined in such a way that it ensures that all subtrees partly satsify din and
that at least one subtree will generate a violation of dout. Clearly, δB(a, a)
and δB((a, q), a) can be represented by NFAs whose size is polynomial in
the size of the input.

(3) Finally, δB((a, q, check), a) = {a1 · · ·an | a1 · · ·an ∈ din(a) and h does not
partly satisfy L(dout)}. Here, h is obtained from rhs(q, a) by replacing
every state p by p(a1 · · ·an).

It remains to argue that δB((a, q, check), a) can be computed by a 2AFAlf A

of polynomial size. We sketch the construction of this automaton. First, for
every b ∈ Σ and m ∈ {out, in}, let Ab

m be the NFA accepting dm(b).

For every v in rhs(q, a), let sv be concatenation of the labels of the children
of v. Define the 2NFA Nv as follows: suppose sv is of the form z0p1z1 · · ·pℓzℓ

where zi ∈ Σ∗ and pi ∈ QT , then a1 · · ·an ∈ L(Nv) if and only if

z0p1(a1 · · ·an)z1 · · · pℓ(a1 · · ·an)zℓ ∈ L(A
labh(v)
out ).

As sv is fixed, Nv can recognize this language by reading a1 · · ·an ℓ times

while simulating A
labh(v)
out . More precisely, the automaton simulates A

labh(v)
out on

zi−1pi(a1 · · ·an) on the (i + 1)-th pass. Note that Nv does not loop.

It remains to describe the construction of the 2AFAlf A. On input a1 · · ·an,
A first checks whether a1 · · ·an ∈ L(Aa

in) by simulating Aa
in. Hereafter, A goes

back to the beginning of the input string, guesses an internal node v in rhs(q, a)
and simulates the complement of Nv. As Nv is a 2NFA that does not loop,
A is a 2AFAlf whose size is linear in the size of the Nv’s. This completes the
construction of B. 2

The next result shows that typechecking remains pspace-hard even when
NFAs are replaced by DFAs. The main source of complexity is the ability of
transducers to make an arbitrary number of copies.

Theorem 12(4) TC[Tnd,DFA] is pspace-complete.

PROOF. The intersection emptiness problem of deterministic finite automata
is stated as follows: given a sequence of DFAs Mi = (Qi, Σ, δi, si, Fi), i =
1, . . . , n, is

⋂n
i=1 L(Mi) = ∅? This problem is known to be pspace-hard [12].

We define a transducer T = (QT , Σ∪{#0, . . . , #n}, q
0
T , RT ) and two DTDs din

and dout such that T typechecks w.r.t. din and dout iff
⋂n

i=1 L(Mi) = ∅.

The DTD din has as start symbol s and defines a tree of depth one where



the string formed by the children of the root is an arbitrary string in Σ∗.
The transducer makes n copies of this string separated by the delimiters #i:
QT = {q, q0

T} and RT contains the rules (q0
T , s)→ s(#0q#1q · · ·#n−1q#n) and

(q, a)→ a, for every a ∈ Σ. Finally, dout defines a tree of depth one with start
symbol s such that dout(s) =

{#0w1#1w2#2 · · ·#n−1wn#n |

∃j ∈ {1, . . . , n} such that Mj does not accept wj}.

Clearly, dout(s) can be represented by a DFA whose size is polynomial in
the sizes of the Mi’s. Indeed, the DFA just simulates every Mi on the string
following #i−1 till it encounters #i. It verifies that at least one Mi rejects. 2

Next, we focus on SL-expressions as right-hand sides of DTDs. The complexity
drops to conp. Lemmas 17 and 18 are stated and proven in the appendix.

Theorem 12(5) TC[Tnd, SL] is conp-complete.

PROOF. First, we prove the hardness result by a reduction from validity of
propositional formulas which is known to be complete for conp [23]. Let φ be
a propositional formula over the variables v1, . . . , vn. Set Σ := {a1, . . . , an}.
Define din as the DTD with start symbol a1 defining depth one trees where the
string formed by the children of the root can be arbitrary. Intuitively, every
string w is a truth assignment: vi is true iff at least one ai occurs in w. The
transducer T is the identity, and dout(a1) = φ′ where φ′ is the formula obtained
from φ where every occurrence of vi is replaced by a≥1

i for i = 1, . . . , n. Clearly,
this instance typechecks iff φ is valid.

Next, we prove the upper bound. Let T = (QT , Σ, q0
T , RT ) and let (din, sin)

and (dout, sout) be the input and output DTD respectively. We describe an np

algorithm guessing a counterexample. In brief, we would like to guess an input
tree t satisfying din, a node v ∈ Dom(t) labeled with a and a state q ∈ QT in
which v is processed such that T q(a(w)) does not satisfy dout. Here, w is the
string obtained by concatenating the labels of the children of v. An immediate
problem is that we cannot simply guess a whole tree t as the size of the latter
might be exponential in the size of din. Therefore, we simply guess a path
ending in v which can be extended to a tree satisfying din and a string of
children w with the desired property. We explain this next.

First, we introduce some notation. For a DTD (d, sd) and a ∈ Σ, we denote by
da the DTD d with start symbol a, that is, (d, a). Let k be the largest number
occurring in any SL-formula in din or dout. Set r := (k + 1) · |Σ|.

The algorithm consists of three main parts:



(1) First, we sequentially guess a subset D of the derivable symbols {b ∈ Σ |
L(db

in) 6= ∅}.
(2) Next, we guess a path of a tree in din. In particular, we guess a sequence

of pairs (ai, qi) ∈ D ×QT , i = 0, . . . , m, with m ≤ |Σ| · |QT |, such that
(a) a0 = sin and q0 = q0

T ;
(b) there is a tree t ∈ L(din) and a node v ∈ Dom(t) such that a0 · · ·am

is the concatenation of the labels of the nodes on the path from the
root to v; and,

(c) for all i = 0, . . . , m: T visits ai in state qi.
(3) Finally, we guess a string w ∈ D∗ of length at most r such that T qm(am(w))

does not partly satisfy dout. As r can be exponentially large, we do not
guess w itself, but a representation of w. Here, partly satisfaction is as
defined in the proof of Theorem 12(3).

We describe in detail how the three parts can be implemented and show that
the verification of the guesses can be done in ptime. As all the guesses can
be done at the beginning, we obtain an np algorithm.

(1) We compute D as follows.
(a) Guessing phase: guess a sequence of different symbols b1,. . . , bm′ in Σ.

So, m′ ≤ |Σ|. Guess vectors v1, . . . , vm′ where each vi = (ℓi
1, . . . , ℓ

i
i−1)

∈ {0, . . . , k+1}i−1. Intuitively, the vector vi corresponds to the string

b
ℓi
1

1 · · · b
ℓi
i−1

i−1 . So, we interchangeably talk about the vector and the
string vi. Note that some ℓi

j may be zero.
(b) Checking phase. For each i = 1, . . . , m′, test that the string vi satisfies

din(bi). Note that this can be done in ptime.
Let Si = {bj | j ≤ i}. From Lemma 17, it follows that if there is a string
w in S∗i such that w satisfies din(bi) then there is one such that each
symbol occurs at most k + 1 times. Hence, it suffices to guess vectors in
{0, . . . , k + 1}i−1. Finally, a simple induction shows that D ⊆ {b ∈ Σ |
L(db

in) 6= ∅}.
(2) The requirement (a) can easily be checked. (c) can be checked by verifying

that qi+1 ∈ rhs(qi, ai) for all i. Let D = {b1, . . . , b|D|}. To test (b), it
suffices to guess a vector vi = (ℓ1, . . . , ℓ|D|) ∈ {0, . . . , k + 1}|D| for every
i ∈ {0, . . . , m − 1} such that ℓj 6= 0 when ai+1 = bj and test whether

bℓ1
1 · · · b

ℓ|D|

|D| satisfies din(ai). As every symbol is in D, the path can be
expanded to a tree satisfying din. By Lemma 17, it follows that guessing
vectors of that size suffices. The upper bound |Σ| · |QT | on m can be
obtained by a simple pumping argument.

(3) Before we describe the last part of the algorithm, we make the link ex-
plicit between the transducer T , the function f and the c’s described in
Lemma 18. We start with some notation. Let q be a state of T and a ∈ Σ
then define q(a) := top(rhs(q, a)). For a string w = a1 · · ·an, we define
q(w) := q(a1) · · · q(an). For a ∈ Σ and w ∈ Σ∗, we also define #a(w) to be



the number of a’s occurring in w. Let q ∈ QT , a ∈ Σ and let u be a node
in rhs(q, a). Let z = z0p1z1 · · · pℓzℓ be the concatenation of the labels of
the children of u, such that pi ∈ QT and zi ∈ Σ∗. For every s ∈ Σ∗, define
f q,a

u (s) as the string obtained from z by replacing every pi by the string
pi(s). Now, we define the c’s corresponding to f q,a

u (s). For every b ∈ Σ,
set cb := #b(z) and for every e ∈ Σ, set cb

e :=
∑ℓ

j=1 #b(pj(e)). Clearly, for
every b ∈ Σ and every s ∈ Σ∗, #b(f

q,a
u (s)) = cb +

∑

e∈Σ(cb
e ·#e(s)).

So, the algorithm guesses a node u in rhs(qm, am). We do not guess a
string w but rather a vector in {1, . . . , k+1}|Σ| representing such a string
(as in the previous bullets). We check whether f qm,am

u (w) does not satisfy
dout(a) where the label of u is a. Take f as f qm,am

u , φ1 as din(am), and
φ2 as dout(a). Then from Lemma 18, it follows that it suffices to guess
a string represented by a vector in {1, . . . , k + 1}|Σ|. This completes the
description of the algorithm. 2

5 Transducers of Bounded Width

As can be inferred from Theorem 12, disallowing deleting lowers the com-
plexity of the typechecking problem in the presence of DTDs. Unfortunately,
the problem still remains intractable. In the context of DTD(DFA)s, the high
complexity is a consequence of the copying power of transducers (cf. the proof
of Theorem 12(4)). Therefore, we bound in advance the width of transducers
by only considering transducers in the class BWk for a fixed k (cf. Section 2.5).
In the case of DTD(DFA)s we then finally obtain a tractable scenario.

Theorem 14 (1) TC[BWk,NTA] is exptime-complete;
(2) TC[BWk,NFA] is pspace-complete;
(3) TC[BWk,DFA] is ptime-complete;
(4) TC[BWk,SL] is conp-complete.

The lower bounds of (1), (2), and (4) follow immediately from the construction
in the proofs of Theorem 12(1), (3), and (5).

Theorem 14(3) TC[BWk,DFA] is ptime-complete.

PROOF. A ptime lower bound is obtained by a reduction from path sys-

tems [9]. path systems is the following decision problem. Given a set P ,
a set A ⊆ P of axiomas, a set R ⊆ P 3 of inference rules and some p ∈ P ,
is p provable from A using R? Let p be the start symbol of din. Further, for
every (a, b, c) ∈ R, din(c) = {ab}; for every a ∈ A, din(a) = {ε}. Let L(dout)
be empty and let T be the transducer that copies the input tree. Then T



typechecks w.r.t. din and dout iff p has no proof.

In the proof of Theorem 12(3), TC[Tnd,NFA] is reduced to the emptiness of
NTA(2AFAlf)s. In that proof, alternation was needed to express negation of
NFAs; two-wayness was needed because T could make arbitrary copies of the
input tree. However, when transducers can make only a bounded number of
copies and DFAs are used, TC[BWk,DFA] can be logspace-reduced to empti-
ness of NTA(NFA)s. From Theorem 19(1), it then follows that TC[BWk,DFA]
is in ptime. 2

6 Ranked Versus Unranked

We briefly motivate why we use unranked transducers rather than their more
deeply studied ranked counterparts.

It is known that unranked trees can be uniformly encoded as binary trees.
However, we argue that unranked tree transducers cannot be simulated by de-
terministic top-down ranked tree transducers on binary trees using the stan-
dard encoding. As mentioned in the introduction, macro tree transducers can
simulate our transducers on the binary encodings [11,16], but as very little is
known about their complexity this observation is not of much help.

For an illustration of the standard encoding, see, e.g., Figure 5. The encoding
is denoted by enc and the decoding by dec. Intuitively, the first child of a
node remains the first child of that node in the encoding, but it is explicitly
encoded as a left child. The remaining children are right descendants of the
first child. Note that we allow a node to have a right child without having a
left child, but this issue can easily be resolved by inserting dummy symbols in
the encoding.

A formal definition of deterministic top-down ranked tree transducers can be
found in [13]. In Figure 6, we show two tree languages (n is arbitrary) and their
binary encodings. Let L1, L2, L3 and L4 be the tree languages represented by
the trees in Figure 6(a), 6(b), 6(c) and 6(d) respectively.

The language L1 can be transformed to L2 by the tree transducer T =
(Q, Σ, q0, R) where Q = {q0, qb, qc}, Σ = {a, b, c}, and R contains the rules

(q0, a)→ a(qbqc) (qb, b)→ b (qc, b)→ c.

Basically, bn is transformed to bncn. However, as we argue next, L3 cannot
be transformed to L4 by a deterministic top-down ranked tree transducer.
For a tree t, let path(t) be the set of all strings formed by concatenating
the labels of a path in t from the root to a leaf. For a tree language L,
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Fig. 5. An unranked tree and its binary encoding.
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Fig. 6. 6(a) and 6(b) are unranked trees. 6(c) and 6(d) are their binary encodings
respectively.

define the string language path(L) = {path(t) | t ∈ L}. Given a regular
tree language L and a deterministic top-down ranked tree transducer R, the
language path(R(L)), where R(L) = {R(t) | t ∈ L}, is regular [13] (Corollary
20.13). Since path(L4) = {abncn | n ≥ 1} and L3 is a regular tree language,
L4 cannot be the result of applying a deterministic top-down ranked tree
transducer to L3.

7 Conclusion

Motivated by simple transformations obtained by using structural recursion
or XSLT, we studied typechecking for top-down XML transformers in the



presence of both DTDs and tree automata. In this setting the complexity
of the typechecking problem ranges from ptime to exptime. In particular,
when tree automata are used in specifying schema languages, there is no hope
for tractable algorithms. Indeed, in all considered scenarios, the typechecking
problem remains exptime-hard. The situation differs when we look at DTDs.
We identified three sources of complexity: (1) deletion; (2) unbounded copy-
ing; and, (3) non-determinism in schema languages. Hence, we only obtained
a ptime typechecking algorithm when no deletion is allowed, the amount
of copying is fixed in advance, and when DTD(DFA) are used to represent
schemas.

Though the presented results shed some light on precisely which features de-
termine the complexity of typechecking, it fails to identify relevant fragments
for which typechecking is tractable. Indeed, although it makes sense to limit
copying in advance, disallowing deleting completely is not very sensible as
deleting occurs in many simple transformations (cf. Example 7).

Establishing tractable and practically relevant fragments is the topic of a
subsequent paper [17]. Building further on the results of this paper, we obtain
relevant tractable scenarios by enforcing combined restrictions on the deleting
and copying power of transducers and by considering restricted DTDs. We
also incorporate XPath expressions. As a byproduct of our new results we
obtain that the complexity of TC[BWk,DTA] is exptime-hard.
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A Appendix

A.1 Alternating String Automata

We discuss two-way alternating string automata [14]. To prevent automata
falling off the input string, we use delimiters ⊲ and ⊳ not occurring in Σ. By
Σ⊲⊳ we denote Σ ∪ {⊲, ⊳}. We tacitly assume that ⊲ and ⊳ only occur on the
left and right end of the string, respectively.

Definition 15 A two-way alternating automaton is a tuple A = (Q, Σ⊲⊳, δ, I, F,

r, U) where



• Q is a finite set of states;
• I, F, U are subsets of Q and are the sets of initial, final and universal states,

respectively;
• r ∈ Q \ F is the rejecting state;
• δ : Q× Σ⊲⊳ → 2Q×{←,−,→} is the transition function.

A configuration of A on a string w = ⊲w2 · · ·wn−1⊳ is a pair (j, q), where
j ∈ Dom(w) and q ∈ Q. Intuitively, j is the current tape position and q is
the current state. A configuration (j, q) is initial (accepting) if q ∈ I (q ∈ F )
and j = 1 (j = |w|). A configuration (j, q) is universal (existential) if q ∈ U

(q ∈ Q−U). Given γ = (j, q) and γ′ = (j′, q′), we define the step-relation ⊢ on
configurations as follows: γ ⊢ γ′ iff (q′, d) ∈ δ(q, a), labw(j) = a, and j′ = j−1,
j′ = j, or j′ = j + 1 iff d =←, d = −, or d =→, respectively. We assume that
an automaton never attempts to move to the left (right) of a delimiter ⊲ (⊳).
Further, we assume that A only reaches a final state at the delimiter ⊳ and
that a computation branch of A only rejects by reaching r at the delimiter ⊳.
Note that because of this last convention, the transition function of a two-way
alternating finite automaton is complete, that is, for all a ∈ Σ ∪ {⊲}, q ∈ Q,
δ(q, a) 6= ∅ and for all q ∈ Q \ ({r} ∪ F ), δ(q, ⊳) 6= ∅. For a configuration γ, a
γ-run of A on a string w is a (possibly infinite) tree where nodes are labeled
with configurations as follows:

(1) the root is labeled with γ;
(2) every inner node labeled with an existential configuration γ has exactly

one child γ′ and γ ⊢ γ′; and,
(3) let for any universal configuration γ, {γ1, . . . , γm} := {γ′ | γ ⊢ γ′}, then

every inner node labeled with γ has exactly m children labeled γ1, . . . , γm.

An accepting γ-run is a γ-run which does not contain an infinite path and
where every leaf node is labeled with an accepting configuration. A run is
a γ-run where γ is an initial configuration. The language accepted by A is
defined as L(A) := {w ∈ Σ∗ | there is an accepting run of A on ⊲w⊳}. The
size of a A is |Σ|+ |Q|+

∑

q∈Q,a∈Σ |δ(q, a)|.

We denote by 2AFA the class of all two-way alternating finite automata. We
say that A loops on w if there is a run on w which contains an infinite path. An
automaton is then loop-free when it never loops. We denote the class of loop-
free two-way alternating finite automata by 2AFAlf. Note that 2AFAlf accept
only regular string languages [14]. A two-way non-deterministic automaton,
denoted 2NFA, is a 2AFA where U = ∅.

The construction in the next lemma is a slight adaptation of a construction
from Vardi [32]. In Theorem 19, we use an on-the-fly construction of the
automaton N constructed in this proof. Although the lemma appears in the
literature without a restriction to loop-free automata [10], it is not clear how



to adapt it to an on-the-fly algorithm.

Lemma 16 Let A be an 2AFAlf, then there exists an NFA N whose size is
exponential in the size of A such that L(N) = L(A).

PROOF. Let A = (QA, Σ⊲⊳, δA, IA, FA, rA, UA) be an 2AFAlf. We construct
an NFA N = (QN , Σ⊲⊳, δN , IN , FN) with QN = (2QA × 2QA), IN = {(∅, U) |
U ∩ IA 6= ∅}, FN = {(U, ∅) | U ∩ FA 6= ∅ and rA 6∈ U}. For ease of exposition,
N also operates over delimited strings. Intuitively, when N is in state (U, V )
when processing the jth symbol of input w = w1 · · ·wn, then for every state
p ∈ V , A must accept w1 · · ·wn when started in p on position j. Note that
w1 = ⊲ and wn = ⊳. The set U is the set V of position j − 1. Initial and
final states are of the form (∅, U) and (U, ∅) as the two-way automaton cannot
move past the left and right delimiter, respectively.

The transition function is defined as follows. For every (U, V ), (T, U) ∈ QN

and a ∈ Σ⊲⊳, (U, V ) ∈ δA((T, U), a) iff for every p in U − FA the following
holds:

• if p is an existential state then there exists a pair (p′, d′) ∈ δA(p, a) such
that p′ ∈ T if d′ =←, p′ ∈ U if d′ = −, and p′ ∈ V if d′ =→; and,
• if p is a universal state then for all pairs (p′, d′) ∈ δ(p, a), p′ ∈ T if d′ =←,

p′ ∈ U if d′ = −, and p′ ∈ V if d′ =→.

Clearly, the size of N is exponential in the size of A. It remains to show
that L(A) = L(N). Clearly, ⊲ε⊳ ∈ L(A) iff ⊲ε⊳ ∈ L(N). Therefore, let w =
⊲w1 · · ·wn⊳ for n > 0. Suppose that there is an accepting run r of A on
input w. Define Q0 = ∅, Qi = {p | (i, p) is a label in r} for i = 1, . . . , n + 1,
Qn+2 = {p | (n+2, p) is a leaf label in r}, and Qn+3 = ∅. It is easy to check that
(Q0, Q1) ∈ IN and ρ is an accepting run for N on w where ρ(i) = (Qi, Qi+1)
for i = 1, . . . , n + 2.

For the other direction, suppose ρ is an accepting run of N on w. Then, let
(Qi, Qi+1) = ρ(i) for every i ∈ Dom(w). For i ∈ Dom(w), define md(i) as
i− 1, i, and i + 1, when d is ←, −, →, respectively. We define the depth of a
configuration (i, q) where q ∈ Qi, denoted depth(i, q), inductively as follows:
if q ∈ FA then depth(i, q) = 0; otherwise, depth(i, q) is

max{depth(j, q′) + 1 | (q′, d) ∈ δA(q, labw(i)), q′ ∈ Qj and md(i) = j}.

As A does not loop this notion is well-defined. By induction on the depth
of configurations γ = (i, q), it is easy to construct an accepting γ-run of
height depth(i, q). The claim then follows for an initial configuration (1, q)
with q ∈ Q1 ∩ IA.



When a 2AFA is not loop-free, then the depth(i, q) is not well-defined for all
strings, and the construction of a run for the 2AFA from a run of the NFA
might lead to an infinite tree. 2

A.2 Unordered String Languages

By #x(y) we denote the number of x’s occurring in y for x ∈ Σ and y ∈ Σ∗.
The following Lemma is a useful tool in proving results about SL.

Lemma 17 Let φ be an SL-formula and let k be the largest integer occurring
in φ. Let s, s′ ∈ Σ∗ be as follows:

• if #a(s) > k then #a(s
′) > k;

• otherwise, #a(s) = #a(s
′).

Then s |= φ iff s′ |= φ.

PROOF. We can assume that negations in φ only occur in front of atomic
formulas. We call an atomic SL-formula or a negation of an atomic SL-formula
a literal.

To prove the lemma, simply observe that for each a ∈ Σ, such that #a(s) > k,
s satisfies all literals of the form a≥i and ¬a=j and s violates all literals of the
form ¬a≥i and a=j where i, j ∈ {0, . . . , k}. The same holds for s′. 2

We make use of the next Lemma in the proof of Theorem 12(5).

Lemma 18 Let φ1 and φ2 be SL-formulas and let k be the largest integer
occurring in φ1 or φ2. Let f : Σ∗ → Σ∗ be a function so that for every
b ∈ Σ there exists a fixed sequence of natural numbers cb, (cb

a)a∈Σ for which
#b(f(s)) = cb +

∑

a∈Σ(cb
a×#a(s)) for every s ∈ Σ∗. If there is a string s |= φ1

then there is a string s′ ∈ Σ∗ such that

• s′ |= φ1

• f(s′) |= φ2 iff f(s) |= φ2, and
• each symbol occurs maximally k + 1 times in s′.

PROOF. Intuitively, the function f characterizes the effect of our tree trans-
formations on a string of siblings in the input tree. Let s be a string such that
s |= φ1 and there exists a symbol that occurs more than k + 1 times in s. We
construct s′ from s by deleting x arbitrary occurrences of every symbol a that
occurs k +1+x times in s. So, k +1 occurrences remain. Since by Lemma 17,



R1 := {q ∈ Q | ∃a ∈ Σ, ε ∈ δ(q, a)};
for i := 2 to |Q| do

Ri := {q ∈ Q | ∃a ∈ Σ, δ(q, a) ∩ R∗i−1 6= ∅};
end for
R := R|Q|;

Fig. A.1. Computing the set R of reachable states.

s′ |= φ1, we only need to show that f(s′) |= φ2 iff f(s) |= φ2. Therefore, take
an arbitrary symbol b ∈ Σ. Then #b(f(s)) = cb +

∑

a∈Σ(cb
a ·#a(s)). If for all

a ∈ Σ that occur more than k times in s, cb
a = 0, then #b(f(s)) = #b(f(s′)). If

this is not the case, take a ∈ Σ that occurs more than k times in s and cb
a 6= 0.

Then #b(f(s)) ≥ #a(s) > k and #b(f(s′)) ≥ #a(s
′) > k, so, according to

Lemma 17, f(s) |= φ2 iff f(s′) |= φ2. 2

A.3 Complexity of Tree Automata

We prove the following theorem which is a useful tool for obtaining upper
bounds on the complexity of the typechecking problem.

Theorem 19 (1) Emptiness of NTA(NFA) is in ptime;
(2) Emptiness of NTA(2AFAlf) is in pspace.

PROOF. (1) Let B = (Q, Σ, δ, F ) be an NTA(NFA). The algorithm in Fig-
ure A.1 computes the set of reachable states R := {q | ∃t ∈ TΣ : q ∈ δ∗(t)} in
a bottom-up manner. Clearly, L(B) = ∅ iff R ∩ F = ∅. Note that Ri ⊆ Ri+1

and R1 = {δ∗(a) | a ∈ Σ}. We argue that the algorithm is in ptime. Clearly,
R1 can be computed in ptime. Further, the for-loop makes a linear number
of iterations. Every iteration is a linear number of non-emptiness tests of the
intersection of an NFA with R∗i−1 where Ri−1 ⊆ Q. Clearly, the latter is in
ptime.

(2) From the proof of Theorem 19(1), it follows that emptiness of an NTA can
be reduced to a polynomial number of tests of the following form:

(i) ε ∈ δ(q, a); and,
(ii) δ(q, a) ∩R∗i−1 6= ∅.

We show that when δ(q, a) is represented by a 2AFAlf, both tests can be done
in pspace.

Let B = (Q, Σ, δ, F ) be an NTA(2AFAlf) and let for every q ∈ Q and a ∈ Σ,
Aq,a = (Qq,a, Q⊲⊳, δ

q,a, Iq,a, F q,a, rq,a, U q,a) be the 2AFAlf representing δ(q, a).



Denote by N q,a the NFA equivalent to Aq,a given by the construction of
Lemma 16. Of course, we cannot construct N q,a in polynomial space as it
is exponentially bigger than Aq,a. Therefore, we will construct N q,a on the fly.
We denote the transition function of N q,a by δ

q,a
N .

We first argue that given a b ∈ R∗i−1 and two states (T, U), (U, V ) of N q,a,
we can check in pspace that (U, V ) ∈ δ

q,a
N ((T, U), b). Indeed, we just have to

check for all elements p ∈ U the constraints mentioned in Lemma 16. That is,
if p is existential, we check that there is a (p′, d′) ∈ δ

q,a
N (p, b) such that p′ ∈ T ,

p′ ∈ U , or p′ ∈ V depending on d′. If p is a universal state, we have to verify
that for all (p′, d′) ∈ δ

q,a
N (p, b), p′ ∈ T , p′ ∈ U , or p′ ∈ V depending on d′. These

two tests merely involve set membership and require only constant space.

We first describe the algorithm to check (i). We need to check whether ⊲⊳

is accepted by N q,a. To this end, we guess states (T1, U1), (T2, U2), (T3, U3)
such that the first state is an initial state; the last state is an accepting state;
and, (T2, U2) ∈ δ

q,a
N ((T1, U1), ⊲) and (T3, U3) ∈ δ

q,a
N ((T2, U2), ⊳). By the previous

discussion, the latter can be done in pspace.

Next, we describe the algorithm to check (ii). Given Ri−1 ⊆ Q, q ∈ Q and
a ∈ Σ, we need to check whether q ∈ Ri. The latter reduces to verifying
whether there is some string b1 · · · bn in R∗i−1 that is accepted by Aq,a or,
equivalently, N q,a.

(1) Initialization step: We start by guessing an initial state (T, U) and a state
(U, V ) such that (U, V ) ∈ δ

q,a
N ((T, U), ⊲). We write the state (U, V ) on the

tape.
(2) Iteration step: Let (U, V ) be the state written on the tape. We guess

a state (U ′, V ′) such that (U ′, V ′) ∈ δ
q,a
N ((U, V ), ⊳). If (U ′, V ′) is final,

then we know that R∗i−1 ∩ Aq,a 6= ∅ and accept. Otherwise, we erase
(U ′, V ′) and guess a symbol b ∈ Ri−1 and a state (U ′′, V ′′) such that
(U ′′, V ′′) ∈ δ

q,a
N ((U, V ), b). We erase (U, V ), write (U ′′, V ′′) on the tape

and resume at at the beginning of the iteration step.

Clearly, R∗i−1∩Aq,a 6= ∅ iff there is a run of the algorithm that accepts. Further,
by the discussion above, the algorithm only uses polynomial space. 2


