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ABSTRACTTypeheking onsists of statially verifying whether theoutput of an XML transformation is always onform to anoutput type for douments satisfying a given input type.We fous on omplete algorithms whih always produe theorret answer. We onsider top-down XML transforma-tions inorporating XPath expressions and abstrat dou-ment types by grammars and tree automata. By restritingshema languages and transformations, we identify severalpratial settings for whih typeheking is in polynomialtime. Moreover, the resulting framework provides a ratheromplete piture as we show that most senarios an notbe enlarged without rendering the typeheking problem in-tratable. So, the present researh sheds light on when touse fast omplete algorithms and when to reside to soundbut inomplete ones.
1. INTRODUCTIONIn a typial XML data exhange senario on the web, auser ommunity reates a ommon shema and agrees onproduing only XML data onforming to that shema. Thisraises the issue of typeheking: verifying at ompile timethat every XML doument whih is the result of a spei�edquery or doument transformation applied to a valid inputdoument, satis�es the output shema [32, 33℄.The main goal of this paper is to determine relevant senar-ios for whih typeheking beomes tratable. Additionally,we also want to identify the frontier of tratability for thesesenarios. As typeheking quikly beomes intratable [2,21, 25℄, we fous on simple but pratial XML transforma-tions where only little restruturing is needed, like for in-stane in �ltering of douments. Transformations that anfor example be expressed by strutural reursion [5℄ or bya top-down fragment of XSLT [3℄. As is austomed, weabstrat suh transformations by unranked tree transdu-ers [19, 21℄. As types we adopt the usual Doument Type
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004 June 14-16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . .$5.00.

De�nitions (DTDs) and their robust extension: regular treelanguages [25, 18℄ or, equivalently, speialized DTDs [28, 29℄.The latter serve as a formal model for XML Shema [9℄.In earlier work, we identi�ed three soures of omplexityfor the typeheking problem in the above setting: non-determinism in the regular expressions in the output DTD,the ability of the transformation to make arbitrary opies ofsubtrees, and the apability to delete (rather than renameor replae) nodes of the input doument [21℄. In fat, theonly ptime typeheking instane we obtained, was by disal-lowing all three parameters. As the latter senario is overlyrestritive, espeially sine it exludes every form of dele-tion, we investigate in this paper larger and more exiblelasses for whih the omplexity of the typeheking prob-lem remains in ptime.We �rst note that the senario studied in [21℄ is very gen-eral: both the shemas and the transduer were determinedto be part of the input. However, for some exhange senar-ios it makes sense to �x the input and/or output shema:for instane, when onsidering a ommon shema within aommunity or when translating data from one ommunityto another. Therefore, we �rst revisit the various instanesof the typeheking problem onsidered in [21℄ and deter-mine the omplexity in the presene of �xed input and/oroutput shemas. The obtained results are summarized inTable 2 and explained in Setion 3. In partiular, we showthat for non-deleting transduers and �xed input and out-put shemas, we an allow arbitrary opying and still havea tratable typeheking algorithm. Unfortunately, we alsoshow that in all new settings the typeheking problem re-mains intratable when allowing deletion or using tree au-tomata.As illustrated by Example 3, deletion of an arbitrary numberof interior nodes is quite typial for �ltering transformations.Indeed, many simple transformations selet spei� partsof the input while deleting the non-interesting ones. Wetherefore explore ways to preserve tratability but admitrestrited forms of deletion.First, we investigate deletion in the setting where DTDs useDFAs to de�ne right-hand sides of rules and transduersan only make a bounded number of opies of nodes in theinput tree. By proving a general lemma whih quanti�esthe ombined e�et of opying and deletion on the om-



plexity of typeheking, we derive onditions under whihtypeheking beomes tratable. In partiular, these ondi-tions allow arbitrary deletion when no opying ours (likein Example 3), but at the same time permit limited opyingfor those rules that only delete in a limited fashion. Thisresult is relevant in pratie as in ommon �ltering trans-formations arbitrary deletion almost never ours togetherwith opying.We then show that the present setting annot be enlargedwithout inreasing the omplexity. In partiular, we showthat ombining arbitrary deletion with the ability of opy-ing the input only twie, or a slight relaxation of the lim-ited deletion restrition makes typeheking intratable. Fi-nally, we briey examine tree automata to de�ne shemasand show that in the ase of deterministi tree automata, noopying but arbitrary deletion, we get a ptime algorithm.The �rst ptime result still relies on a uniform bound on thenumber of opies a rule of the transduer an make. Al-though this number will always be fairly small in pratie,it would still be more elegant to have an algorithm whihis tratable for any transduer. Thereto, we have to re-strit the shema languages. In fat, we show that only forvery weak DTDs, those where all regular expressions areonatenations of symbols a and a+, typeheking beomestratable, and that obvious extensions of suh expressionsmake the problem at least onp-hard. So, the prie for ar-bitrary deletion and opying is very high.As an alternative to deletion, one an skip nodes in the inputtree by by adding XPath expressions to the transformationlanguage. In the ase where DTDs use DFAs, we obtaina tratable fragment by translating the transformation lan-guage to transduers without XPath expressions. As XPathontainment in the presene of DTDs [27, 36℄ an easilybe redued to the typeheking problem, lower bounds es-tablishing intratability readily follow for XPath fragmentsontaining �lter and disjuntion. We leave one ase open.We only prove an initial result for the ase where DTDs useRE+ expressions.Finally, we address how to generate ounterexamples whenan instane fails to typehek and onsider a slight adapta-tion of the typeheking problem: almost always typehek-ing. The latter problem was �rst disussed by Engelfrietand Maneth [16℄ and asks whether there exist only a �nitenumber of ounterexample trees for a given instane. Weargue that the ptime algorithms in Setion 4 an also beused for almost always typeheking.Complete vs. Inomplete. Our work studies sound andomplete typeheking algorithms, an approah that shouldbe ontrasted with the work on general purpose XML pro-gramming languages like XDue [15℄ and CDue [11℄, forinstane, where the main objetive is fast and sound butsometimes inomplete typeheking. So, sometimes trans-formations are typesafe but are rejeted by the typeheker.As we only onsider very simple and by no means Turing-omplete transformations, it makes sense to ask for ompletealgorithms. In fat, the present paper sheds light on pre-isely when we an get fast omplete algorithms and whenwe should start looking for inomplete ones.

Related Work. The researh on typeheking XML trans-formations is initiated by Milo, Suiu, and Vianu [25℄. Theyobtained the deidability for typeheking of transforma-tions realized by k-pebble transduers via a redution tosatis�ability of monadi seond-order logi. Unfortunately,in this general setting, the latter non-elementary algorithmannot be improved [25℄. Interestingly, typeheking of k-pebble transduers has reently been related to typehekingof ompositions of maro tree transduers [16℄. Alon et al. [1,2℄ investigated typeheking in the presene of data valuesand show that the problem quikly turns undeidable. Aproblem related to typeheking is type inferene [24, 28℄.This problem onsists in onstruting a tight output shema,given an input shema and a transformation. Of ourse,solving the type inferene problem implies a solution for thetypeheking problem: hek ontainment of the inferredshema into the given one. However, haraterizing outputlanguages of transformations is quite hard [28℄. The trans-duers onsidered in the present paper are restrited versionsof the ones studied by Maneth and Neven [19℄. They alreadyobtained a non-elementary upper bound on the omplexityof typeheking (due to the use of monadi seond-orderlogi in the de�nition of the transduers). Tozawa onsid-ered typeheking w.r.t. tree automata for a fragment oftop-down XSLT [34℄. His framework is more general but heonly obtains a double exponential time algorithm. It is notlear whether that upper bound an be improved.Organization. The remainder of the paper is organized asfollows. In Setion 2, we provide the neessary de�nitions.In Setion 3, we disuss typeheking in the restrited set-tings of �xed output and/or input shemas. In Setion 4,we onsider deleting transduers. In Setion 5, we disussDTDs with RE+ expressions. In Setion 6, we disuss theaddition of XPath. In Setion 7, we present some observa-tions. We onlude in Setion 8. Complete proofs an befound in [20℄.
2. DEFINITIONSIn this setion we provide the neessary bakground on trees,automata, and tree transduers. We �x a �nite alphabet �.
2.1 Trees, Hedges, DTDs, and Tree AutomataThe set of unranked �-trees, denoted by T�, is the smallestset of strings over � and the parenthesis symbols `)' and `('suh that for � 2 � and w 2 T �� , �(w) is in T�. So, a treeis either " (empty) or is of the form �(t1 � � � tn) where eahti is a tree. The latter denotes the tree where the subtreest1; : : : ; tn are attahed to the root labeled �. We write �rather than �(). Note that there is no a priori bound onthe number of hildren of a node in a �-tree; suh trees aretherefore unranked. In the following, whenever we say tree,we always mean �-tree. A tree language is a set of trees.Later, in the right-hand side of transduer rules we will allowhedges: a hedge is a �nite sequene of trees. The set ofhedges, denoted by H�, is de�ned as T �� .For every hedge h 2 H�, the set of nodes of h, denotedby Dom(h), is the subset of N� de�ned as follows: (i) ifh = ", then Dom(h) = ;; (ii) if h = t1 � � � tn where eahti 2 T�, then Dom(h) = Sni=1fiu j u 2 Dom(ti)g; and, (iii)



if h = �(w), then Dom(h) = f"g[Dom(w). In the sequel weadopt the following onvention: we use t; t1; t2; : : : to denotetrees and h; h1; h2; : : : to denote hedges. Hene, when wewrite h = t1 � � � tn we taitly assume that all ti's are trees.For every u 2 Dom(h), we denote by labh(u) the label of uin h. For a hedge h = t1 � � � tn, top(h), is the string obtainedby onatenating the root symbol of every ti.We use extended ontext-free grammars and tree automatato abstrat from DTDs and the various proposals for XMLshemas. Further, we parameterize the de�nition of DTDsby a lass of representations M of regular string languageslike, e.g., the lass of DFAs or NFAs. ForM 2 M, we denoteby L(M) the set of strings aepted by M .De�nition 1. LetM be a lass of representations of regu-lar string languages over �. A DTD is a tuple (d; sd) whered is a funtion that maps �-symbols to elements of M andsd 2 � is the start symbol. For simpliity, we usually denote(d; sd) by d.A tree t satis�es d if labt(") = sd and for every u 2 Dom(t)with n hildren labt(u1) � � � labt(un) 2 L(d(labt(u))). ByL(d) we denote the tree language aepted by d. 2We denote by DTD(M) the lass of DTDs where the regularstring languages are represented by elements ofM. The sizeof a DTD is the sum of the sizes of the elements of M usedto represent the funtion d.We reall the de�nition of non-deterministi tree automatafrom [4℄. We refer the unfamiliar reader to [26℄ for a gentleintrodution.De�nition 2. A nondeterministi tree automaton (NTA)is a tuple B = (Q;�; Æ; F ), where Q is a �nite set of states,F � Q is the set of �nal states, and Æ is a funtion Æ :Q � � ! 2Q� suh that Æ(q; a) is a regular string languageover Q for every a 2 � and q 2 Q. 2A run of B on a tree t is a labeling � : Dom(t) ! Q suhthat for every v 2 Dom(t) with n hildren, �(v1) � � ��(vn) 2Æ(�(v); labt(v)): Note that when v has no hildren, then theriterion redues to " 2 Æ(�(v); labt(v)). A run is aeptingi� the root is labeled with an aepting state, that is, �(") 2F . A tree is aepted if there is an aepting run. The set ofall aepted trees is denoted by L(B) and is alled a regulartree language.A tree automaton is bottom-up deterministi if for all q; q0 2Q with q 6= q0 and a 2 �, Æ(q; a) \ Æ(q0; a) = ;. We denotethe set of bottom-up deterministi NTAs by DTA.Like for DTDs, we parameterize NTAs by the formalismused to represent the regular languages in the transitionfuntions Æ(q; a). So, for a lass of representations of regularlanguages M, we denote by NTA(M) the lass of NTAswhere all transition funtions are represented by elementsof M. The size of an automaton B is then jQj + j�j +Pq2Q;a2� jÆ(q; a)j. Here, by jÆ(q; a)j we denote the size ofthe automaton aepting Æ(q; a). Unless expliitly spei�edotherwise, Æ(q; a) is always represented by an NFA.

2.2 TransducersWe adhere to transduers as a formal model for simple trans-formations orresponding to strutural reursion [5℄ and afragment of top-down XSLT. Like in [25℄, the abstrationfouses on struture rather than on ontent. We next de-�ne the tree transduers used in this paper. To simplifynotation, we restrit to one alphabet. That is, we onsidertransdutions mapping �-trees to �-trees. Of ourse onean de�ne transdutions where the input alphabet di�ersfrom the output alphabet.For a set Q, denote by H�(Q) (resp. T�(Q)) the set of �-hedges (resp. trees) where leaf nodes an be labeled withelements from Q.De�nition 3. A tree transduer is a tuple (Q;�; q0; R),where Q is a �nite set of states, � is the input and outputalphabet, q0 2 Q is the initial state, and R is a �nite setof rules of the form (q; a) ! h, where a 2 �, q 2 Q, andh 2 H�(Q). When q = q0, h is restrited to T�(Q) nQ. 2The restrition on rules with the initial state ensures thatthe output is always a tree rather than a hedge. Transduersare required to be deterministi: for every pair (q; a) thereis at most one rule in R.Example 1. Let T = (Q;�; p; R) where Q = fp; qg, � =fa; bg, and R ontains the rules(p; a)! d(e) (p; b)! d(q)(q; a)!  p (q; b)! (p q)The XSLT program equivalent to the above transduer isgiven in Figure 1 (we assume the program is started in modep). Note that the right-hand side of (q; a)!  p is a hedge,while the other right-hand sides are trees. 2The translation de�ned by T = (Q;�; q0; R) on a tree t instate q, denoted by T q(t), is indutively de�ned as follows:if t = " then T q(t) := "; if t = a(t1 � � � tn) and there isa rule (q; a) ! h 2 R then T q(t) is obtained from h byreplaing every node u in h labeled with state p by the hedgeT p(t1) � � �T p(tn). Note that suh nodes u an only our atleaves. So, h is only extended downwards. If there is norule (q; a) ! h 2 R then T q(t) := ". Finally, de�ne thetransformation of t by T , denoted by T (t), as T q0(t).For a 2 �, q 2 Q and (q; a) ! h 2 R, we denote h byrhs(q; a). If q and a are not important, we say that h is arhs. The size of T is jQj+ j�j+Pq2Q;a2� jrhs(q; a)j. In thesequel, we always use p; p1; p2; : : : and q; q1; q2; : : : to denotestates.Example 2. In Figure 2 we give the translation of the treet de�ned as bb ba b ab



<xsl:template math="a" mode ="p"><d><e/></d></xsl:template><xsl:template math="b" mode ="p"><d><xsl:apply-templates mode="q"/></d></xsl:template><xsl:template math="a" mode ="q"></><xsl:apply-templates mode="p"/></xsl:template><xsl:template math="b" mode ="q"><> <xsl:apply-templates mode="p"/><xsl:apply-templates mode="q"/></></xsl:template>Figure 1: The XSLT program equivalent to thetransduer of Example 1.by the transduer of Example 1. In order to save spae, wedid not list T q(") and T p("). 2
2.3 Copying and DeletionWe disuss two important features: opying and deletion.In Example 1, the rule (q; b)! (p q) opies the hildren ofthe urrent node in the input tree two times: one opy isproessed in state p and the other in state q. The symbol is the parent node of the two opies. So the urrent nodein the input tree orresponds to the latter node. The rule(q; a) !  p opies the hildren of the urrent node onlyone. However, no parent node is given for this opy. So,there is no orresponding node for the urrent node in theinput tree. We therefore say that it is deleted. For instane,T q(a(b)) =  d where d orresponds to b and not to a.We illustrate the funtionality of opying and deleting bymeans of a typial �ltering example.Example 3. The following DTD(DFA) de�nes a shemafor books:book ! title, author+, hapter+hapter ! title, introdution, setion+setion ! title, paragraph+, setion�Here, omma denotes onatenation. Figure 3 depits adoument onforming to the given shema. The followingtransduer generates a table of ontents: that is, for everyhapter of the book a list of its setion titles.(q; book)! book(q)(q; hapter)! hapter q(q; title)! title(q; setion)! q

The doument in Figure 3 is transformed into the treebooktitle hapter title title title title hapter title titleThe example illustrates the usefulness of deleting states: allintermediate setions are skipped. Further, the rule(q; hapter)! hapter qallows to list all setion titles next to the hapter elementrather than below.Next, we illustrate opying. The following transduer ex-tends the previous one by adding a summary of the bookto the table of ontents. The summary is given by listingthe title and introdution of eah hapter. By using the twostates p and p0, we make sure that the title of the book isnot printed in the summary.(q; book)! book(q p)(q; hapter)! hapter q(q; title)! title(q; setion)! q(p; hapter)! hapter(p0)(p0; title)! title(p0; introdution)! introdutionThe output of the transformation, applied to the doumentin Figure 3 is the following tree. Here, we replaed thepart of the output that is also generated by the previoustransformation with dots.book� � � haptertitle introdution haptertitle introdution 2We de�ne some relevant lasses of transduers. A transdueris non-deleting if no states our at the top-level of a rhs.We denote by Tnd the lass of non-deleting transduers andby Td the lass of transduers where we allow deletion. Fur-ther, a transduer T has opying width k if there are at mostk ourrenes of states in every sequene of siblings in theright-hand sides of rules of T . For instane, the transduerin Example 1 has opying width two. By Tb we denote thelass of transduers for whih there is a natural number ksuh that all transduers have opying width k. We leavek impliit. We denote the intersetions of these lasses byombining the indexes. For instane, Tnd;b is the lass ofnon-deleting transduers with bounded opying. To empha-size that we allow unbounded opying, we also write Tnd;rather than Tnd.
2.4 The Typechecking ProblemA tree transduer T typeheks w.r.t. to an input tree lan-guage Sin and an output tree language Sout, if T (t) 2 Soutfor every t 2 Sin.



T p(t) ) dT q(b) T q(b(ab)) T q(a(b))+d de d   d ( d T p(a) T p(b) T q(a) T q(b) T p(b)Figure 2: The translation of t = b(b b(a b)a(b)) by the transduer T of Example 1.booktitle author haptertitle introdution setiontitle paragraph setiontitle paragraph setiontitle paragraph haptertitle introdution setiontitle paragraphFigure 3: A doument onforming to the shema of Example 3.Example 4. The seond transduer of Example 3 type-heks w.r.t. the input shema and the following DTD:book ! title; (hapter; title�)�; hapter�hapter ! title; introdution j " 2We de�ne the problem entral to this paper.De�nition 4. Given Sin, Sout, and T , the typehekingproblem onsists in verifying whether T typeheks w.r.t.Sin and Sout. 2The size of the input is the sum of the sizes of Sin, Sout,and T . We parameterize the typeheking problem by thekind of tree transduers and tree languages we allow. LetT be a lass of transduers and S be a lass of tree lan-guages. Then TC[T ;S℄ denotes the typeheking problemwhere T 2 T and Sin; Sout 2 S. Examples of lasses of treelanguages, are those de�ned by tree automata or DTDs.Classes of transduers are disussed in the previous setion.The omplexity of the problem is measured in terms of thesum of the sizes of the input and output shemas and thetransduer.Table 1 summarizes the results obtained in [21℄. All prob-lems are omplete for the mentioned omplexity lasses. Inthe setting of [21℄, typeheking is only tratable when re-striting to non-deleting and bounded opying transduersin the presene of DTDs with DFAs. In the remainder ofthe paper, we obtain more general lasses for whih type-heking is in ptime.
3. FIXING SCHEMA LANGUAGESAs argued in the introdution, for some senarios it makessense to onsider the input and/or output shema not as

part of the input. From a omplexity theory point of view,it is important to note here that the input and/or outputalphabet then also beomes �xed. In this setion, we revisitthe results of [21℄ in that respet. Surprisingly, the newsettings do not result in a spetaular improvement of theomplexity.The results are summarized in Table 2. We explain the no-tation used in the table. The seond olumn spei�es thekind of tree transduer: d stands for deleting,  for opy-ing, nd for non-deleting, and b for bounded opying. Theleftmost olumn lists whih shema languages are �xed. Inthe ase of deleting transformations, the di�erent possibili-ties are grouped as all omplexities oinide. The remainingolumns show the allowed shema languages. As some re-sults already follow from proofs in [21℄, we printed the newresults in bold. The entries where the omplexity was low-ered are underlined.We disuss the obtained results: for non-deleting transfor-mations, we get two new tratable ases: (1) �xed outputshema, bounded opying and DTD(NFA)s; and, (2) �xedinput and output, unbounded opying and all DTDs. It isstriking, however, that in the presene of deletion or treeautomata (even deterministi ones) typeheking remainsexptime-hard for all senarios. So, the relaxed setting stilldisallows to ombine tratability with the desirable abilityto delete. We therefore fous on deletion in the next setion.Mostly, we only needed to strengthen the lower bound proofsof [21℄. A partiularly interesting non-trivial ase, is thepspae lower bound of TCo[Tnd;,DTD(DFA)℄. The rest ofthe proofs an be found in [20℄.Proposition 3.1. TCo[Tnd;; DTD(DFA)℄ is pspae-hard.Proof. We use a redution from the orridor tiling prob-



TT NTA DTA DTD(NFA) DTD(DFA)d, exptime exptime exptime exptimend, exptime exptime pspae pspaend,b exptime exptime pspae ptimeTable 1: Results of [21℄ (upper and lower bounds).�xed TT NTA DTA DTD(NFA) DTD(DFA)in, out, d, EXP EXP EXP EXPin+out d,b EXP EXP EXP EXPin nd, EXP EXP PSPACE PSPACEnd,b EXP EXP PSPACE PTIMEout nd, EXP EXP PSPACE PSPACEnd,b EXP EXP PTIME ptimein+out nd, EXP EXP NL NLnd,b EXP EXP NL NLTable 2: Complexities of the typeheking problem in the new setting (upper and lower bounds).lem [6℄. Let (D; V;H; �t;�b) be a tiling system, where D =ft1; : : : ; tkg is the set of tiles, V � D2 and H � D2 are thesets of vertial and horizontal onstraints respetively, and�t and �b are the top and bottom row, respetively. Let n bethe width of �t and �b. The tiling system has a solution ifthere is an m 2 N, suh that the spae m� n (m rows andn olumns) an be orretly tiled (w.r.t. H and V ) with theadditional requirement that the bottom and top row are �band �t, respetively.We de�ne the input DTD din over the alphabet � := f(i; tj) jj 2 f1; : : : ; kg; i 2 f1; : : : ; ngg [ frg; r is the start symbol.De�ne din(r) = #�t#��1 ��2 � � ��n#���b#; where we denoteby �i the set f(i; tj) j j 2 f1; : : : ; kgg. Here, # funtionsas a row separator. For all other alphabet symbols a 2 �,din(a) = ". So, din enodes all possible tilings that start andend with the bottom row �b and the top row �t, respetively.We now onstrut a tree transduer T = (QT ;�; q0T ; RT )and an output DTD dout suh that the tiling system has noorret orridor tiling if and only if T typeheks w.r.t. dinand dout. Intuitively, the transduer and the output DTDhave to work together to determine errors in input tilings.There an only be two types of error: two tiles do not mathhorizontally or two tiles do not math vertially. The maindiÆulty is that the output DTD is �xed and an, there-fore, not depend on the tiling system. The transduer isonstruted in suh a way that it prepares in parallel theveri�ation for all horizontal and vertial onstraints by theoutput shema. In partiular, the transduer outputs spe-i� symbols from a �xed set independent of the tiling sys-tem allowing the �xed output shema to determine whetheran error ourred.The state set QT is partitioned into two sets: (1) one forthe horizontal onstraints: for every i 2 f1; : : : ; n � 1g andt 2 D, qi;t 2 QT transforms the rows in the tiling suhthat it is possible to hek that when position i arries at, position i + 1 arries a t0 suh that (t; t0) 2 H; and, (2)one for the vertial onstraints: for every i 2 f1; : : : ; ng andt 2 D, pi;t 2 QT transforms the rows in the tiling suh that

it is possible to hek that when position i arries a t, thenext row arries a t0 on position i suh that (t; t0) 2 V .The tree transduer T always starts its transformation withthe rule (q0T ; r)! r(w); where w is the onatenation of allof the above states, separated by the delimiter $. The otherrules are of the following form:� Horizontal onstraints: for all (j; t) 2 � add the rule(qi;t; (j; t0))! � where� = 8>>><>>>: a if j = i and t = t0e if j = i and t 6= t0a if j = i + 1 and (t; t0) 2 Hb if j = i + 1 and (t; t0) 62 He if j 6= i and j 6= i+ 1Finally, (qi;t;#) ! hor. The intuition is as follows:if the i-th position in a row is labeled with t, thenthis position is transformed into a. Position i + 1 istransformed to a when it arries a tile that mathest horizontally. Otherwise it is transformed to b. Allother symbols are transformed into an e. So, a row,delimited by two hor-symbols, is wrong i� there is ana immediately followed by a b. When there is no a,then position i was not labeled with t. So, the label aats as a trigger for the output automaton.� Vertial onstraints: for all (j; t) 2 �, add the rule(qi;t; (j; t0))! � where� = 8>>><>>>: a if (j; t0) = (i; t) and (t; t) 2 Vb if (j; t0) = (i; t) and (t; t) 62 V if j = i, t 6= t0, and (t; t0) 2 Vd if j = i, t 6= t0, and (t; t0) 62 Ve if j 6= iFinally, (qi;t;#) ! ver. The intuition is as follows:if the i-th position in a row is labeled with t, thenthis position is transformed into a when (t; t) 2 Vand to b when (t; t) 62 V . Here, both a and b at asa trigger for the output automaton: they mean that



position i was labeled with t. But no a and b anour in the same transformed row. When position iis labeled with t0 6= t, then we transform this positioninto  when (t; t0) 2 V , and in d when (t; t0) 62 V . Allother positions are transformed into e. The outputDFA works as follows. If a position is labeled a then itaepts if there is a d ourring after the next ver. Ifa position is labeled b, then it aepts if there is a b ora d ourring after the next ver. Otherwise, it rejetsthat row.By making use of the delimiters ver and hor, both abovedesribed automata an be ombined into one taking areof the vertial and the horizontal onstraints. Note thatthe output automaton is de�ned over the �xed alphabetfa; b; ; d; e; hor; ver; $g.In the remainder of the paper, we denote by TCi[T ;S℄,TCo[T ;S℄ and TCi=o[T ;S℄ the typeheking problem wherethe input shema, output shema and both input and out-put shema are �xed respetively. So, the size of the inputof the typeheking problem is the sum of the sizes of theinput and output shema and the tree transduer, minus thesize of the �xed parameter(s).
4. DELETION, BOUNDED COPYING, AND

DFASAlthough deletion has an enormous impat on the omplex-ity of typeheking, as is exempli�ed by the �rst two rowsof Table 2, more often than not, the ability to skip nodesin the input tree is ritial. Indeed, many simple transfor-mations like the ones in Example 3 selet spei� parts ofthe input while deleting the non interesting ones. Moreover,suh deletion an be unbounded. That is, the number ofdeleted nodes on a path depends only on the input tree andnot on the shema.In this setion, we fous on DTD(DFA)s and on boundedopying transduers. We prove a general lemma whih quan-ti�es the ombined e�et of opying and deletion on theomplexity of typeheking. From this lemma we then de-rive onditions under whih typeheking beomes tratable.Interestingly, these onditions allow arbitrary deletion whenno opying ours, but at the same time permit boundedopying for those rules that only delete in a bounded fash-ion. We further show that these onditions annot be re-laxed without inreasing the omplexity. Finally, we disusstypeheking in the ontext of shemas represented by de-terministi tree automata.
4.1 A Tractable CaseWe start by introduing some terminology. Let T = (Q;�; q0;R) be a transduer. A deletion path is a sequene of statesq1; : : : ; qn suh that qi ours in top(rhs(qi�1; ai�1)) for ev-ery i = 2; : : : ; n, where a1; : : : ; an�1 2 �. A state q is re-ursively deleting if it ours twie in some deletion path;otherwise, q is said to be non-reursively deleting. The dele-tion width of q is the maximum number of ourrenes ofstates in top(rhs(q; a)) for all a 2 �. For instane, if Rontains the rules (q; a) ! aq1bq2q3 and (q; b) ! q1a, thenthe deletion width of q is three. The deletion width of a

deletion path q1; : : : ; qn is the produt of the deletion widthsof q1; : : : ; qn�1 (qn is not ounted). A deleting state q hasdeletion depth k if all deletion paths starting with q ontainat most k + 1 states. If there exists no suh k, we say thatq has in�nite deletion depth. In partiular, all reursivelydeleting states have in�nite deletion depth.Example 5. Suppose that T is a tree transduer with statesq1; : : : ; q8 and the following rewrite rules:(q1; a)! q2 a q2 a (q5; a)! q6 aa q6(q2; a)! a q3 q3 a q3 (q6; a)! q7 q7 q7(q3; a)! q4 (q7; a)! a q8 a(q4; a)! a (q8; a)! aa q7The deletion depths and widths are given as follows:state q1 q2 q3 q4 q5 q6 q7 q8deletion depth 3 2 1 0 1 1 1 1deletion width 2 3 1 0 2 3 1 1The sequenes q1; q2; q3; q4 and q5; q6; q7; q8; q7 are examplesof deletion paths in T . Both paths have deletion width six.Note that the deletion path q5; q6; q7; q8; q7; q8; q7; q8 also hasdeletion width six. The reason is that the deletion widthsof q7 and q8 themselves are one. Would there be a rule(q7; b) ! q8q8 then paths of arbitrary large deletion widthould be onstruted. 2We are now ready to de�ne the lass of transduers that isof interest to us.De�nition 5. By T C;Ktra , we denote the lass of transduersthat (i) have opying bound C, and (ii) for whih everydeletion path has deletion width at most K. 2When C and K are not important, we simply write Ttrainstead of T C;Ktra .Note that the lass T C;Ktra allows reursive deleting, but onlyfor those states that do not opy at the same time. Oth-erwise the width of deletion paths annot be bounded. So,if a state of a T C;Ktra transduer is reursively deleting thenevery right-hand side is of the form hqg where q is a stateand h and g are hedges ontaining no states on their toplevel and whose opying width is at most C. When a stateis non-reursively deleting, then simultaneous opying anddeleting is allowed but only in a bounded fashion. That is,every deletion path ontaining that state is of deletion widthat most K and rhs(q; a) has opying width at most C.Example 6. The �rst transduer in Example 3 belongs toT 1;1tra while the seond is in T 2;1tra. The transduer of Exam-ple 5 is in T 3;6tra. 2The next lemma provides a detailed analysis of the om-plexity of typeheking in terms of opying and deletion



power. Its proof is a non-trivial generalization from non-deleting to deleting transduers of the redution in [21℄ fromTC[Tnd;; DTD(DFA)℄ to emptiness of unranked tree au-tomata, followed by an analysis of the size of the obtainedautomaton.Lemma 4.1. The omplexity of TC[T C;Ktra ; DTD(DFA)℄is O�(jdinjjT jCK jdoutjCK)��; where jdinj and jdoutj are thesizes of the input and output shema, respetively; jT j is thesize of the tree transduer T ; and � is a onstant.Proof sketh. For a transduer T = (QT ;�; q0T ; RT ) 2T C;Ktra , and input and output shemas din and dout, we on-strut a nondeterministi unranked tree automaton A a-epting all ounterexample trees. That is, L(A) = ft 2L(din) j T (t) 62 L(dout)g. So, L(A) = ; i� T typeheksw.r.t. din and dout. The size of A isO((jdinjjT jCK jdoutjCK)�)for some onstant �. As emptiness NTAs is in ptime, thereis a onstant � suh that the omplexity of the typehekingproblem is O�(jdinjjT jCK jdoutjCK)��.Cheking whether the input of A is onform to the inputshema an be done by a simple produt onstrution oftree automata. We therefore fous on verifying whether theoutput of the transformation is not onform to the outputshema. Intuitively, the tree automaton non-deterministi-ally loates a node v in the input tree that generates asubtree �(a01(t01) � � � a0m(t0m))in the output suh that a01 � � � a0m 62 dout(�). More spei�-ally, A simulates T on the subtree rooted at v and runs theDFA D representing dout(�) on a01 � � � a0n.Let a(t1 � � � tn) be the tree rooted at v and suppose thatT proesses v in state q. Suppose that rhs(q; a) ontainsthe subtree �(z0q1z1 � � � qkzk), where z0; : : : ; zk 2 �� andq1; : : : ; qk 2 QT . Then, A needs to simulate D onz0 top�T q1 (t1) � � �T q1(tn)� � � � top�T qk (t1) � � �T qk(tn)� zkand aept if D rejets. Note that k is bounded by C. Foreah ti, the automaton A guesses k pairs of states of D,(p1i;1; p1i;2); : : : ; (pki;1; pki;2), so that top(T qj (ti)) takes D fromstate pji;1 to state pji;2. We always make sure that1. z0 takes D from its initial state to p11;1;2. zk takes D from pkn;2 to a rejeting state;3. for eah j = 1; : : : ; k� 1, zj takes D from pjn;2 to pj+11;1 ;and4. for eah i = 1; : : : ; n � 1 and j = 1; : : : ; k, we havepji;2 = pji+1;1.Note that for this step, A needs to remember at most 2Cstates of D for eah subtree.The most hallenging part remains: testing whether for eahti, and j = 1; : : : ; k, the string top(T qj (ti)) takes D fromstate pji;1 to state pji;2. We only sketh the idea. If rhs(qj ; �i),

where �i is the root of ti, ontains no deleting states, thentop(T qj (ti)) only depends on rhs(qj ; �i) and not on ti and weare done. When rhs(qj ; �i) ontains only one deleting state,then we just need to guess k new pairs (pi;1; pi;2) and proeedas before. So, for reursively deleting states that do not opywe only need to remember k pairs of states. Otherwise,when rhs(qj ; �i) ontains say ` deleting states, then we needto guess k � ` pairs of states. As long as the transduerdeletes, eah of these requires guessing new states. As Kis an upper bound for this number, CK is the maximumnumber of pairs that need to be remembered at all time tohek whether for every i, top(T qj (ti)) takes D from statepji;1 to state pji;2. We refer the interested reader to [20℄ for afull proof.From Lemma 4.1 the following tratability result then read-ily follows.Theorem 4.2. TC[Ttra; DTD(DFA)℄ is in ptime.So, not only do we obtain a ptime algorithm, Lemma 4.1also provides a lear view on the onrete omplexity interms of the di�erent parameters.Link with pratie. At �rst sight, Lemma 4.1 seems tobe bad news as C and K our in the exponent. Never-theless, we believe these numbers to be small in pratialtransformations. The good news, hidden in the de�nitionof K, is that there is no penalty for the reursive deletionwithout opying that ours in many �ltering transforma-tions. In ontrast to our previous results that abandoneddeletion ompletely, the present result shows that transfor-mations with small C and K but arbitrary deletion withoutopying an still be eÆiently typeheked.
4.2 Lower Bounds for ExtensionsWe address the question whether there are obvious exten-sions of Ttra for whih typeheking remains tratable. Firstof all, we annot allow arbitrary opying as even withoutdeletion typeheking is pspae-hard (see Table 1). How-ever, the restrition on deletion for Ttra transformations isvery severe: the number of onseutive deletions is �xed inadvane and does not even depend on the transduer. Asa generalization, we an therefore onsider the lass Tnrd ofnon-reursively deleting transduers for whih no transdueris reursively deleting. Note that now the length of a dele-tion path is bounded by the number of states in the trans-duer. Unfortunately, the next theorem gives little hope fora tratable typeheking algorithm for that lass.Theorem 4.3. TCi[Tnrd;b; DTD(DFA)℄ is pspae-hard.In a Ttra transduer, a reursively deleting state an notopy. A legitimate question is whether that restrition isneessary. We show that even in the ase of �xed input andoutput shema, an inrease to deletion width two for reur-sively deleting states results in an exptime lower bound fortypeheking. We denote the lass where every state anhave at most deletion width k by Tdw=k.



Theorem 4.4. TCi=o[Tdw=2;b; DTD(DFA)℄ is exptime-hard.
4.3 Tree AutomataIn the last part of this setion, we turn to shemas de�nedby unranked tree automata. We show that when we �xthe opying width to one, denoted by w = 1, then reur-sively deleting of width one remains tratable in the preseneof DTA(DFA)s but not when DTA(NFA)s are used. Suhtransformations are mild generalizations of relabelings. It ishene not surprising that the output type of a transduer inTdw=1;w=1 an be aptured by a tree automaton. The latterobservation is a generalization of the orresponding result forranked tree transduers [13℄ (Proposition 7.8(b)). We onlyhave to show that the onstrution of the unranked tree au-tomaton an be done in ptime. Typeheking then reduesto ontainment heking of NTA(NFA)s in DTA(DFA)s. Forompleteness, we also mention here that typeheking isexptime-hard when we extend the opying width to two.Theorem 4.5. 1. TC[Tdw=1;w=1; DTA(DFA)℄ isptime-omplete;2. TCi[Tdw=1;w=1; DTA(NFA)℄ is pspae-hard; and3. TCi=o[Tnd;w=2; DTA(DFA)℄ is exptime-hard.
5. DELETION, UNBOUNDED COPYING,

AND RE+All tratable fragments of the previous setting assume a uni-form bound on the opying and deletion width of a trans-duer. Although in pratie these bounds will usually besmall and Lemma 4.1 provides a detailed aount of theire�et, the restritions remain somewhat arti�ial. In thepresent setion we therefore investigate fragments in whihthere are no restritions on the opying or deletion powerof the transduer. This implies that we have to restritshemas, e.g., by restriting the regular expressions in rules.We onsider the following regular expressions. Let RE+ bethe set of regular expressions of the form �1 � � ��k whereevery �i is ", a, or a+ for some a 2 �. An example is titleauthor+ hapter+. In this setion, we show that type-heking for arbitrary tree transduers w.r.t. DTD(RE+) isin ptime. We note that every DTD(RE+) is either non-reursive (i.e. an a-labeled node has no a-labeled desen-dants) or de�nes the empty language. However, the tratabil-ity of typeheking remains non-trivial, as in general type-heking is already pspae-omplete when using DTD(DFA)sonly de�ning trees of depth one [21℄.Let T = (QT ;�; q0T ; RT ) be a tree transduer, and denotethe input and output DTD by din and dout, respetively.We'll present a sketh of the proof. To this end, we intro-due some terminology. For an RE+ expression e and DTDd, we denote by de the hedge language fa1(h1) � � � an(hn) ja1 � � � an 2 L(e) and for every i = 1; : : : ; n, ai(hi) 2 (d; ai)g.So, if t1 � � � tn 2 de then top(t1) � � � top(tn) 2 L(e) and ev-ery ti is a derivation tree of (d; top(ti)). Reall that (d; ai)denotes DTD d with start symbol ai. For a state q 2 QTand an alphabet symbol a 2 �, we say that the pair (q; a) isreahable if there exists a tree t in din suh that T proesses

at least one node of t labeled with a in state q. The latterset an be omputed in ptime.To verify that the instane typeheks, we have to hekthat for every reahable pair (q; a) and for every node u inrhs(q; a) thatfz0top(T q1(h))z1 � � � zk�1top(T qk(h))zk j h 2 deing � dout(�);where e = din(a), z0q1z1 � � � qkzk is the onatenation of u'shildren, and � is the label of u. In the above, for h =t1 � � � tn, we denote by T q(h) the hedge T q(t1) � � �T q(tn).We denote the above language ourring to the left of � byLq;a;u. Note that the latter is not neessarily regular, oreven ontext-free. We onstrut an extended ontext-freegrammar Gq;a;u suh that L(Gq;a;u) � dout(�) i� Lq;a;u �dout(�). More spei�ally, Gq;a;u = (V;�; P; S), where V =fhp; bi j p 2 QT ; b 2 �g is the set of non-terminals, � is theset of terminals, P is the set of prodution rules and S isthe start symbol. Intuitively, eah non-terminal hp; bi or-responds to the string language ftop(T p(t)) j t 2 (din; b)g.It remains to de�ne the prodution rules P . For the startsymbol S, we have the ruleS ! z0hq1; e1i�1 � � � hq1; eni�nz1 � � �� � � zk�1hqk; e1i�1 � � � hqk; eni�nzk;where dout(�) = e�11 � � � e�nn , every ei 2 � and �i is either +or ". For a non-terminal hp; bi let din(b) = b�11 � � � b�mm andlet top(rhs(p; b)) = s0p1s1 � � � p`s`. Then we add the rulehp; bi ! s0hp1; b1i�1 � � � hp1; bmi�ms1 � � �� � � s`�1hp`; b1i�1 � � � hp`; bmi�ms`to P . If there is no rhs(p; b) in RT , we add hp; bi ! " toP . Note that Gq;a;u is an extended ontext-free grammar,polynomial in the size of din and T . It is easy to see thatsine din is not reursive, Gq;a;u is also non-reursive.It follows from the next lemma that Lq;a;u � dout(�) i�L(Gq;a;u) � dout(�). For a non-terminal hp; bi 2 V , we de-note by L(hp; bi) the language that is generated by (V;�; P;hp; bi), i.e. the grammar Gq;a;u with start symbol hp; bi.Lemma 5.1. Let e and f be RE+ expressions, with e =e�11 � � � e�nn , d a DTD(RE+) and T = (QT ;�; ÆT ; RT ) a treetransduer. For z0; : : : ; zk 2 �� and q1; : : : ; qk 2 QT , de�neLe = fz0top(T q1(h))z1 � � � zk�1top(T qk(h))zk j h 2 L(de)g;L0e = fz0top(T q1(h1))z1 � � � zk�1top(T qk(hk))zk jh1; : : : ; hk 2 L(de)g;andL00e = fz0s1z1 � � � zk�1skzk jsi 2 L(hqi; e1i)�1 � � �L(hqi; eni)�n ; i 2 f1; : : : ; kgg:Then, Le � L(f), L0e � L(f), L00e � L(f):



Finally, testing whether L(Gq;a;u) � L(dout(�)) an thenbe done in ptime using standard tehniques. We have thusobtained the following theorem.Theorem 5.2. TC[Td;; DTD(RE+)℄ is in ptime.The simpliity of RE+-expressions seems to be the prie topay for a tratable algorithm for arbitrary transduers. In-deed, the inlusion problem for a lass of regular expressionsC an readily be redued to typeheking with DTD(C)s.As it is shown in [22℄ that inlusion of obvious extensionsof RE+-expressions is onp-hard, typeheking for the or-responding fragment is onp-hard. In partiular, [22℄ dis-usses expressions of the form �1 � � ��n where all �i belongto lasses (1) a or a?, and (2) a or a�. By using similar teh-niques as in [22℄, it an also be shown that inlusion is onp-hard for expressions where all �i belong to lasses (3) a or(a+1 + � � �+a+n ), (4) a or (a1 � � � an)+ (5) a or (a1+ � � �+an)+and (6) (a1 + � � �+ an) or a+.An interesting question is whether we an also obtain aptime typeheking algorithm if we allow expressions of theform � and �+ " where � is an RE+ expression. This prob-lem remains open. The following simple example shows whyLemma 5.1 does not hold anymore for suh expressions.Example 7. Consider the DTD din with rules r ! a + "and a ! ", and let T be a tree transduer with start stateq0 and rules(q0; r)! r(q1 q2) (q1; a)! a (q2; a)! b:Then Lr = f"; abg and L0r = ftop(T q1(t1)T q2 (t2)) j t1; t2 2da+"in g = f"; a; b; abg. But Lr � L(a+b+ + "), while L0r 6�L(a+b+ + "). 2
6. XPATH EXPRESSIONSAn approah omplementary to deletion, is the use of XPathexpressions to skip nodes of the input tree. We only on-sider XPath expressions for downward navigation and there-fore restrit attention to the following axes and prediates:hild (=), desendant (==), wildard (�), disjuntion (j), and�lter ([ ℄). We allow node tests and either the hild ordesendant axis in every fragment of XPath we onsider.We use the following notational onvention: for a sequeneX of axes and prediates, we denote by XPathfXg theXPath expressions that only use the axes and prediates infXg. We assume that the semantis of XPath is known (see,e.g., [7℄). Reall that an XPath pattern de�nes a funtiont�Dom(t)! 2Dom(t).Let P be a set of patterns. We explain how the syntax andthe semantis of transduers is extended to patterns in P .We denote the latter fragment by T P . Rules are now of theform (q; a)! h where h 2 H�((Q�P )[Q). That is, state-pattern pairs hq;  i an now also our at leaves. Previously,all hildren of the urrent node were proessed; now, onlythe nodes seleted by  starting from the urrent node (indoument order). We denote state-pattern pairs with angledparentheses to avoid onfusion in the string representationof trees. In our framework, we only use XPath expressionsthat start with � , i.e. always start from the ontext node.

So, if T is a tree transduer, t = a(t1 � � � tn) and there isa rule (q; a) ! h 2 RT then T q(t) is obtained from h byreplaing every node u in h labeled with hp; i by the hedgeT p(t=u1) � � � T p(t=un) where  (t; ") = fu1; : : : ; ung and thesequene u1; : : : ; un ours in doument order. Here, wedenote by t=u the subtree of t rooted at u. Note that theontext node is always set to the root of the subtree that isto be proessed by T .Example 8. When making use of XPath expressions, wean write the �rst doument transformation in Example 3more suintly as follows:(q; book)! book(q)(q; hapter)! hapter hq; �==titlei(q; title)! title 2Via a redution to Theorem 4.2, we show that for very sim-ple XPath expressions added to the formalism typehekingremains in ptime.Theorem 6.1. TC[T XPathf=;�gtra ; DTD(DFA)℄ is in ptime.Proof. We will show that for any tree transduer T 2T XPathf=;�gtra , we an onstrut an equivalent tree transduerT 0 2 Ttra suh that size(T 0) is O(size(T )) and T and T 0have the same opying width and deletion path width.Intuitively, we onvert every XPath-expression x ourringin T to a DFA, whih we simulate by using deleting statesin T 0. The simulation of suh DFAs only introdues non-reursively deleting states of deleting width one.Formally, let T = (QT ;�; q0T ; RT ) and let XT be the XPathexpressions ourring in T . For eah XPath-expression x 2XT , let Ax = (Qx;�; Æx; fqIxg; fqFx g) be the DFA represent-ing it. Aording to [14℄, eah Ax is linear in the size of x.Further, Ax is ayli, only aepts a �nite language, andall strings in L(Ax) are of the same length. Without loss ofgenerality, we assume that the sets Qx are pairwise disjointand disjoint from QT .We onstrut T 0 = (QT 0 ;�; q0T ; RT 0) as follows. Its state setis QT [ Sx2XT QX . For every rule (q; a) ! h in RT , andfor every hp; xi ourring in h we have the following set ofrules in RT 0� (q; a) ! h0 where h0 is the hedge obtained from h byreplaing every ourrene of hp; xi by qIx;� (px; b) ! Æx(px; b) for every px 2 Qx and b 2 � suhthat Æx(px; b) 6= qFx ; and� (px; b) ! rhs(p; b) for every px 2 Qx and b 2 � suhthat Æx(px; b) = qFx .We only need to argue that the XPath expressions in T areevaluated orretly in T 0. To this end, it easy to see that



we only use deleting states for nodes that are skipped in theinput tree by the XPath expressions, and that we ontinue inthe orret state in QT in the nodes that are seleted by theXPath expressions. Further, only deleting states of widthone are introdued. So, T 0 2 T C;Ktra whenever T 2 T C;Ktra .Although the fragment XPathf=; �g is very limited, the nexttheorem shows that there is not muh room for improve-ment. The lower bounds in the �rst bullet follow from a re-dution from XPath ontainment in the presene of DTDs [27,36℄. The lower bound in the seond bullet follows from a re-dution from the intersetion emptiness problem for DFAsover a unary alphabet.Theorem 6.2. The following problems are onp-hard.1. TC[T Xnd;b; DTD(DFA)℄, for X amongXPathf=; jg;XPathf==; jg;XPathf=; [℄g and XPathf==; [℄g;and2. TC[T XPathf==gtra ; DTD(DFA)℄.We denote by T DFA the fragment where patterns are spe-i�ed by DFAs (every node that is reahed in a �nal stateis seleted). When we ompletely disallow deletion, we stillhave tratability when patterns are spei�ed by DFAs.Theorem 6.3. TC[T DFAnd;b ; DTD(DFA)℄ is in ptime.Using the link between DFAs and XPath expressions thatwas laid in [14℄, we immediately obtain that typehekingis in ptime for T XPathf=;==;�gnd;b where patterns are suh thatthe number of wildards ourring between two desendantaxes is bounded by a onstant. It remains open whethertypeheking for T XPathf=;==;�gnd;b is in ptime in general.Finally, we disuss XPath in onnetion with the RE+ ex-pressions of the previous setion. As DFA-patterns an berather diretly simulated by deleting states, we obtain thattypeheking is also in ptime when we allow the transduerto use suh expressions.Corollary 6.4. TC[T DFAd; ; DTD(RE+)℄ is in ptime.
7. REMARKSIn pratie it is relevant that typeheking algorithms angenerate ounterexample trees (or a desription of them) forinstanes that it rejets. As our main upper bound theoremredues the typeheking problem to the emptiness problemfor a NTA(NFA) of polynomial size, and sine it is possi-ble to generate a desription of a tree in the language of anNTA(NFA) in polynomial time, we an also generate a oun-terexample tree for the typeheking algorithm in polyno-mial time. Further, the algorithm for TC[Td;; DTD(RE+)℄an also be adapted to generate a desription of a ounterex-ample tree.Corollary 7.1. If an instane of TC[Ttra; DTD(DFA)℄or TC[Td;; DTD(RE+)℄ does not typehek, we an generatea ounterexample in ptime.

We say that an instane of the typeheking problem type-heks almost always i� the set ft 2 din j T (t) 62 doutg is�nite. The latter notion is introdued by Engelfriet andManeth [16℄. Sine the �niteness problem of NTA(NFA) isdeidable in ptime, we have obtained the following.Corollary 7.2. Almost always typeheking of Ttra trans-duers w.r.t. DTD(DFA)s is in ptime.
8. CONCLUSIONWe provided a rather omplete overview of how the di�er-ent parameters inuene the omplexity of the typehekingproblem. As the main fous of the paper is on tratable se-narios, we did not investigate upper bounds for intratableases.First, we onsidered the omplexity of typeheking in thepresene of �xed input and/or output shemas. In om-parison with the results in [21℄, �xing input and/or outputshemas only lowers the omplexity in the presene of DTDsand when deletion is disallowed.In the remainder of the paper we identi�ed several interest-ing pratial tratable ases that an be lassi�ed depend-ing on the strength of the shema languages. The mostliberal setting is where RE+ expressions suÆe to de�neshema languages: we have ptime typeheking for all trans-duers in our framework. In fat, any fragment of XPathwhose patterns an be translated in polynomial time toDFAs an be added to the transformations. Sometimes,however, one needs more expressive regular expressions inshema languages. For instane, to express hoie like in(setion + table + figure)�. Our results show that thereis still a ptime algorithm when those expressions an betranslated in ptime to DFAs and when one an bound si-multaneous opying and deletion. Interestingly, arbitrarydeletion without opying an be allowed. As opying is usu-ally fairly limited in the simple transformations for whihXSLT is used, but unbounded deleting without opying isrequired for so-alled �ltering transformations, our resultidenti�es a tratable fragment with potential in pratie.Further, we obtained that the XPath axes = and � an beadded without inreasing the omplexity. Finally, when de-terministi tree automata are required, no opying an beallowed but arbitrary deletion is permitted.Though we left some questions open, we also showed thatnone of the above restritions an be severely relaxed with-out rendering the typeheking problem intratable. So, forthese larger lasses of transformations or shema languages,it is more appropriate to develop inomplete or approximatealgorithms.In future work we will try to settle the remaining questionsonerning the XPath fragments, look at how �xed inputand/or output shemas inuene the omplexity of type-heking w.r.t. DTD(RE+)s, and onsider data values.
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