
Frontiers of Tractability for Typechecking Simple XML
Transformations

Wim Martens
Limburgs Universitair Centrum

Universitaire Campus
B-3590 Diepenbeek, Belgium

wim.martens@luc.ac.be

Frank Neven
Limburgs Universitair Centrum

Universitaire Campus
B-3590 Diepenbeek, Belgium

frank.neven@luc.ac.be

ABSTRACTType
he
king
onsists of stati
ally verifying whether theoutput of an XML transformation is always
onform to anoutput type for do
uments satisfying a given input type.We fo
us on
omplete algorithms whi
h always produ
e the
orre
t answer. We
onsider top-down XML transforma-tions in
orporating XPath expressions and abstra
t do
u-ment types by grammars and tree automata. By restri
tings
hema languages and transformations, we identify severalpra
ti
al settings for whi
h type
he
king is in polynomialtime. Moreover, the resulting framework provides a rather
omplete pi
ture as we show that most s
enarios
an notbe enlarged without rendering the type
he
king problem in-tra
table. So, the present resear
h sheds light on when touse fast
omplete algorithms and when to reside to soundbut in
omplete ones.
1. INTRODUCTIONIn a typi
al XML data ex
hange s
enario on the web, auser
ommunity
reates a
ommon s
hema and agrees onprodu
ing only XML data
onforming to that s
hema. Thisraises the issue of type
he
king: verifying at
ompile timethat every XML do
ument whi
h is the result of a spe
i�edquery or do
ument transformation applied to a valid inputdo
ument, satis�es the output s
hema [32, 33℄.The main goal of this paper is to determine relevant s
enar-ios for whi
h type
he
king be
omes tra
table. Additionally,we also want to identify the frontier of tra
tability for theses
enarios. As type
he
king qui
kly be
omes intra
table [2,21, 25℄, we fo
us on simple but pra
ti
al XML transforma-tions where only little restru
turing is needed, like for in-stan
e in �ltering of do
uments. Transformations that
anfor example be expressed by stru
tural re
ursion [5℄ or bya top-down fragment of XSLT [3℄. As is a

ustomed, weabstra
t su
h transformations by unranked tree transdu
-ers [19, 21℄. As types we adopt the usual Do
ument Type
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004 June 14-16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . .$5.00.

De�nitions (DTDs) and their robust extension: regular treelanguages [25, 18℄ or, equivalently, spe
ialized DTDs [28, 29℄.The latter serve as a formal model for XML S
hema [9℄.In earlier work, we identi�ed three sour
es of
omplexityfor the type
he
king problem in the above setting: non-determinism in the regular expressions in the output DTD,the ability of the transformation to make arbitrary
opies ofsubtrees, and the
apability to delete (rather than renameor repla
e) nodes of the input do
ument [21℄. In fa
t, theonly ptime type
he
king instan
e we obtained, was by disal-lowing all three parameters. As the latter s
enario is overlyrestri
tive, espe
ially sin
e it ex
ludes every form of dele-tion, we investigate in this paper larger and more
exible
lasses for whi
h the
omplexity of the type
he
king prob-lem remains in ptime.We �rst note that the s
enario studied in [21℄ is very gen-eral: both the s
hemas and the transdu
er were determinedto be part of the input. However, for some ex
hange s
enar-ios it makes sense to �x the input and/or output s
hema:for instan
e, when
onsidering a
ommon s
hema within a
ommunity or when translating data from one
ommunityto another. Therefore, we �rst revisit the various instan
esof the type
he
king problem
onsidered in [21℄ and deter-mine the
omplexity in the presen
e of �xed input and/oroutput s
hemas. The obtained results are summarized inTable 2 and explained in Se
tion 3. In parti
ular, we showthat for non-deleting transdu
ers and �xed input and out-put s
hemas, we
an allow arbitrary
opying and still havea tra
table type
he
king algorithm. Unfortunately, we alsoshow that in all new settings the type
he
king problem re-mains intra
table when allowing deletion or using tree au-tomata.As illustrated by Example 3, deletion of an arbitrary numberof interior nodes is quite typi
al for �ltering transformations.Indeed, many simple transformations sele
t spe
i�
 partsof the input while deleting the non-interesting ones. Wetherefore explore ways to preserve tra
tability but admitrestri
ted forms of deletion.First, we investigate deletion in the setting where DTDs useDFAs to de�ne right-hand sides of rules and transdu
ers
an only make a bounded number of
opies of nodes in theinput tree. By proving a general lemma whi
h quanti�esthe
ombined e�e
t of
opying and deletion on the
om-

plexity of type
he
king, we derive
onditions under whi
htype
he
king be
omes tra
table. In parti
ular, these
ondi-tions allow arbitrary deletion when no
opying o

urs (likein Example 3), but at the same time permit limited
opyingfor those rules that only delete in a limited fashion. Thisresult is relevant in pra
ti
e as in
ommon �ltering trans-formations arbitrary deletion almost never o

urs togetherwith
opying.We then show that the present setting
annot be enlargedwithout in
reasing the
omplexity. In parti
ular, we showthat
ombining arbitrary deletion with the ability of
opy-ing the input only twi
e, or a slight relaxation of the lim-ited deletion restri
tion makes type
he
king intra
table. Fi-nally, we brie
y examine tree automata to de�ne s
hemasand show that in the
ase of deterministi
 tree automata, no
opying but arbitrary deletion, we get a ptime algorithm.The �rst ptime result still relies on a uniform bound on thenumber of
opies a rule of the transdu
er
an make. Al-though this number will always be fairly small in pra
ti
e,it would still be more elegant to have an algorithm whi
his tra
table for any transdu
er. Thereto, we have to re-stri
t the s
hema languages. In fa
t, we show that only forvery weak DTDs, those where all regular expressions are
on
atenations of symbols a and a+, type
he
king be
omestra
table, and that obvious extensions of su
h expressionsmake the problem at least
onp-hard. So, the pri
e for ar-bitrary deletion and
opying is very high.As an alternative to deletion, one
an skip nodes in the inputtree by by adding XPath expressions to the transformationlanguage. In the
ase where DTDs use DFAs, we obtaina tra
table fragment by translating the transformation lan-guage to transdu
ers without XPath expressions. As XPath
ontainment in the presen
e of DTDs [27, 36℄
an easilybe redu
ed to the type
he
king problem, lower bounds es-tablishing intra
tability readily follow for XPath fragments
ontaining �lter and disjun
tion. We leave one
ase open.We only prove an initial result for the
ase where DTDs useRE+ expressions.Finally, we address how to generate
ounterexamples whenan instan
e fails to type
he
k and
onsider a slight adapta-tion of the type
he
king problem: almost always type
he
k-ing. The latter problem was �rst dis
ussed by Engelfrietand Maneth [16℄ and asks whether there exist only a �nitenumber of
ounterexample trees for a given instan
e. Weargue that the ptime algorithms in Se
tion 4
an also beused for almost always type
he
king.Complete vs. In
omplete. Our work studies sound and
omplete type
he
king algorithms, an approa
h that shouldbe
ontrasted with the work on general purpose XML pro-gramming languages like XDu
e [15℄ and CDu
e [11℄, forinstan
e, where the main obje
tive is fast and sound butsometimes in
omplete type
he
king. So, sometimes trans-formations are typesafe but are reje
ted by the type
he
ker.As we only
onsider very simple and by no means Turing-
omplete transformations, it makes sense to ask for
ompletealgorithms. In fa
t, the present paper sheds light on pre-
isely when we
an get fast
omplete algorithms and whenwe should start looking for in
omplete ones.

Related Work. The resear
h on type
he
king XML trans-formations is initiated by Milo, Su
iu, and Vianu [25℄. Theyobtained the de
idability for type
he
king of transforma-tions realized by k-pebble transdu
ers via a redu
tion tosatis�ability of monadi
 se
ond-order logi
. Unfortunately,in this general setting, the latter non-elementary algorithm
annot be improved [25℄. Interestingly, type
he
king of k-pebble transdu
ers has re
ently been related to type
he
kingof
ompositions of ma
ro tree transdu
ers [16℄. Alon et al. [1,2℄ investigated type
he
king in the presen
e of data valuesand show that the problem qui
kly turns unde
idable. Aproblem related to type
he
king is type inferen
e [24, 28℄.This problem
onsists in
onstru
ting a tight output s
hema,given an input s
hema and a transformation. Of
ourse,solving the type inferen
e problem implies a solution for thetype
he
king problem:
he
k
ontainment of the inferreds
hema into the given one. However,
hara
terizing outputlanguages of transformations is quite hard [28℄. The trans-du
ers
onsidered in the present paper are restri
ted versionsof the ones studied by Maneth and Neven [19℄. They alreadyobtained a non-elementary upper bound on the
omplexityof type
he
king (due to the use of monadi
 se
ond-orderlogi
 in the de�nition of the transdu
ers). Tozawa
onsid-ered type
he
king w.r.t. tree automata for a fragment oftop-down XSLT [34℄. His framework is more general but heonly obtains a double exponential time algorithm. It is not
lear whether that upper bound
an be improved.Organization. The remainder of the paper is organized asfollows. In Se
tion 2, we provide the ne
essary de�nitions.In Se
tion 3, we dis
uss type
he
king in the restri
ted set-tings of �xed output and/or input s
hemas. In Se
tion 4,we
onsider deleting transdu
ers. In Se
tion 5, we dis
ussDTDs with RE+ expressions. In Se
tion 6, we dis
uss theaddition of XPath. In Se
tion 7, we present some observa-tions. We
on
lude in Se
tion 8. Complete proofs
an befound in [20℄.
2. DEFINITIONSIn this se
tion we provide the ne
essary ba
kground on trees,automata, and tree transdu
ers. We �x a �nite alphabet �.
2.1 Trees, Hedges, DTDs, and Tree AutomataThe set of unranked �-trees, denoted by T�, is the smallestset of strings over � and the parenthesis symbols `)' and `('su
h that for � 2 � and w 2 T �� , �(w) is in T�. So, a treeis either " (empty) or is of the form �(t1 � � � tn) where ea
hti is a tree. The latter denotes the tree where the subtreest1; : : : ; tn are atta
hed to the root labeled �. We write �rather than �(). Note that there is no a priori bound onthe number of
hildren of a node in a �-tree; su
h trees aretherefore unranked. In the following, whenever we say tree,we always mean �-tree. A tree language is a set of trees.Later, in the right-hand side of transdu
er rules we will allowhedges: a hedge is a �nite sequen
e of trees. The set ofhedges, denoted by H�, is de�ned as T �� .For every hedge h 2 H�, the set of nodes of h, denotedby Dom(h), is the subset of N� de�ned as follows: (i) ifh = ", then Dom(h) = ;; (ii) if h = t1 � � � tn where ea
hti 2 T�, then Dom(h) = Sni=1fiu j u 2 Dom(ti)g; and, (iii)

if h = �(w), then Dom(h) = f"g[Dom(w). In the sequel weadopt the following
onvention: we use t; t1; t2; : : : to denotetrees and h; h1; h2; : : : to denote hedges. Hen
e, when wewrite h = t1 � � � tn we ta
itly assume that all ti's are trees.For every u 2 Dom(h), we denote by labh(u) the label of uin h. For a hedge h = t1 � � � tn, top(h), is the string obtainedby
on
atenating the root symbol of every ti.We use extended
ontext-free grammars and tree automatato abstra
t from DTDs and the various proposals for XMLs
hemas. Further, we parameterize the de�nition of DTDsby a
lass of representations M of regular string languageslike, e.g., the
lass of DFAs or NFAs. ForM 2 M, we denoteby L(M) the set of strings a

epted by M .De�nition 1. LetM be a
lass of representations of regu-lar string languages over �. A DTD is a tuple (d; sd) whered is a fun
tion that maps �-symbols to elements of M andsd 2 � is the start symbol. For simpli
ity, we usually denote(d; sd) by d.A tree t satis�es d if labt(") = sd and for every u 2 Dom(t)with n
hildren labt(u1) � � � labt(un) 2 L(d(labt(u))). ByL(d) we denote the tree language a

epted by d. 2We denote by DTD(M) the
lass of DTDs where the regularstring languages are represented by elements ofM. The sizeof a DTD is the sum of the sizes of the elements of M usedto represent the fun
tion d.We re
all the de�nition of non-deterministi
 tree automatafrom [4℄. We refer the unfamiliar reader to [26℄ for a gentleintrodu
tion.De�nition 2. A nondeterministi
 tree automaton (NTA)is a tuple B = (Q;�; Æ; F), where Q is a �nite set of states,F � Q is the set of �nal states, and Æ is a fun
tion Æ :Q � � ! 2Q� su
h that Æ(q; a) is a regular string languageover Q for every a 2 � and q 2 Q. 2A run of B on a tree t is a labeling � : Dom(t) ! Q su
hthat for every v 2 Dom(t) with n
hildren, �(v1) � � ��(vn) 2Æ(�(v); labt(v)): Note that when v has no
hildren, then the
riterion redu
es to " 2 Æ(�(v); labt(v)). A run is a

eptingi� the root is labeled with an a

epting state, that is, �(") 2F . A tree is a

epted if there is an a

epting run. The set ofall a

epted trees is denoted by L(B) and is
alled a regulartree language.A tree automaton is bottom-up deterministi
 if for all q; q0 2Q with q 6= q0 and a 2 �, Æ(q; a) \ Æ(q0; a) = ;. We denotethe set of bottom-up deterministi
 NTAs by DTA.Like for DTDs, we parameterize NTAs by the formalismused to represent the regular languages in the transitionfun
tions Æ(q; a). So, for a
lass of representations of regularlanguages M, we denote by NTA(M) the
lass of NTAswhere all transition fun
tions are represented by elementsof M. The size of an automaton B is then jQj + j�j +Pq2Q;a2� jÆ(q; a)j. Here, by jÆ(q; a)j we denote the size ofthe automaton a

epting Æ(q; a). Unless expli
itly spe
i�edotherwise, Æ(q; a) is always represented by an NFA.

2.2 TransducersWe adhere to transdu
ers as a formal model for simple trans-formations
orresponding to stru
tural re
ursion [5℄ and afragment of top-down XSLT. Like in [25℄, the abstra
tionfo
uses on stru
ture rather than on
ontent. We next de-�ne the tree transdu
ers used in this paper. To simplifynotation, we restri
t to one alphabet. That is, we
onsidertransdu
tions mapping �-trees to �-trees. Of
ourse one
an de�ne transdu
tions where the input alphabet di�ersfrom the output alphabet.For a set Q, denote by H�(Q) (resp. T�(Q)) the set of �-hedges (resp. trees) where leaf nodes
an be labeled withelements from Q.De�nition 3. A tree transdu
er is a tuple (Q;�; q0; R),where Q is a �nite set of states, � is the input and outputalphabet, q0 2 Q is the initial state, and R is a �nite setof rules of the form (q; a) ! h, where a 2 �, q 2 Q, andh 2 H�(Q). When q = q0, h is restri
ted to T�(Q) nQ. 2The restri
tion on rules with the initial state ensures thatthe output is always a tree rather than a hedge. Transdu
ersare required to be deterministi
: for every pair (q; a) thereis at most one rule in R.Example 1. Let T = (Q;�; p; R) where Q = fp; qg, � =fa; bg, and R
ontains the rules(p; a)! d(e) (p; b)! d(q)(q; a)!
 p (q; b)!
(p q)The XSLT program equivalent to the above transdu
er isgiven in Figure 1 (we assume the program is started in modep). Note that the right-hand side of (q; a)!
 p is a hedge,while the other right-hand sides are trees. 2The translation de�ned by T = (Q;�; q0; R) on a tree t instate q, denoted by T q(t), is indu
tively de�ned as follows:if t = " then T q(t) := "; if t = a(t1 � � � tn) and there isa rule (q; a) ! h 2 R then T q(t) is obtained from h byrepla
ing every node u in h labeled with state p by the hedgeT p(t1) � � �T p(tn). Note that su
h nodes u
an only o

ur atleaves. So, h is only extended downwards. If there is norule (q; a) ! h 2 R then T q(t) := ". Finally, de�ne thetransformation of t by T , denoted by T (t), as T q0(t).For a 2 �, q 2 Q and (q; a) ! h 2 R, we denote h byrhs(q; a). If q and a are not important, we say that h is arhs. The size of T is jQj+ j�j+Pq2Q;a2� jrhs(q; a)j. In thesequel, we always use p; p1; p2; : : : and q; q1; q2; : : : to denotestates.Example 2. In Figure 2 we give the translation of the treet de�ned as bb ba b ab

<xsl:template mat
h="a" mode ="p"><d><e/></d></xsl:template><xsl:template mat
h="b" mode ="p"><d><xsl:apply-templates mode="q"/></d></xsl:template><xsl:template mat
h="a" mode ="q"><
/><xsl:apply-templates mode="p"/></xsl:template><xsl:template mat
h="b" mode ="q"><
> <xsl:apply-templates mode="p"/><xsl:apply-templates mode="q"/></
></xsl:template>Figure 1: The XSLT program equivalent to thetransdu
er of Example 1.by the transdu
er of Example 1. In order to save spa
e, wedid not list T q(") and T p("). 2
2.3 Copying and DeletionWe dis
uss two important features:
opying and deletion.In Example 1, the rule (q; b)!
(p q)
opies the
hildren ofthe
urrent node in the input tree two times: one
opy ispro
essed in state p and the other in state q. The symbol
 is the parent node of the two
opies. So the
urrent nodein the input tree
orresponds to the latter node. The rule(q; a) !
 p
opies the
hildren of the
urrent node onlyon
e. However, no parent node is given for this
opy. So,there is no
orresponding node for the
urrent node in theinput tree. We therefore say that it is deleted. For instan
e,T q(a(b)) =
 d where d
orresponds to b and not to a.We illustrate the fun
tionality of
opying and deleting bymeans of a typi
al �ltering example.Example 3. The following DTD(DFA) de�nes a s
hemafor books:book ! title, author+,
hapter+
hapter ! title, introdu
tion, se
tion+se
tion ! title, paragraph+, se
tion�Here,
omma denotes
on
atenation. Figure 3 depi
ts ado
ument
onforming to the given s
hema. The followingtransdu
er generates a table of
ontents: that is, for every
hapter of the book a list of its se
tion titles.(q; book)! book(q)(q;
hapter)!
hapter q(q; title)! title(q; se
tion)! q

The do
ument in Figure 3 is transformed into the treebooktitle
hapter title title title title
hapter title titleThe example illustrates the usefulness of deleting states: allintermediate se
tions are skipped. Further, the rule(q;
hapter)!
hapter qallows to list all se
tion titles next to the
hapter elementrather than below.Next, we illustrate
opying. The following transdu
er ex-tends the previous one by adding a summary of the bookto the table of
ontents. The summary is given by listingthe title and introdu
tion of ea
h
hapter. By using the twostates p and p0, we make sure that the title of the book isnot printed in the summary.(q; book)! book(q p)(q;
hapter)!
hapter q(q; title)! title(q; se
tion)! q(p;
hapter)!
hapter(p0)(p0; title)! title(p0; introdu
tion)! introdu
tionThe output of the transformation, applied to the do
umentin Figure 3 is the following tree. Here, we repla
ed thepart of the output that is also generated by the previoustransformation with dots.book� � �
haptertitle introdu
tion
haptertitle introdu
tion 2We de�ne some relevant
lasses of transdu
ers. A transdu
eris non-deleting if no states o

ur at the top-level of a rhs.We denote by Tnd the
lass of non-deleting transdu
ers andby Td the
lass of transdu
ers where we allow deletion. Fur-ther, a transdu
er T has
opying width k if there are at mostk o

urren
es of states in every sequen
e of siblings in theright-hand sides of rules of T . For instan
e, the transdu
erin Example 1 has
opying width two. By Tb
 we denote the
lass of transdu
ers for whi
h there is a natural number ksu
h that all transdu
ers have
opying width k. We leavek impli
it. We denote the interse
tions of these
lasses by
ombining the indexes. For instan
e, Tnd;b
 is the
lass ofnon-deleting transdu
ers with bounded
opying. To empha-size that we allow unbounded
opying, we also write Tnd;
rather than Tnd.
2.4 The Typechecking ProblemA tree transdu
er T type
he
ks w.r.t. to an input tree lan-guage Sin and an output tree language Sout, if T (t) 2 Soutfor every t 2 Sin.

T p(t)) dT q(b) T q(b(ab)) T q(a(b))+d

de d

 d (d

T p(a) T p(b) T q(a) T q(b)
 T p(b)Figure 2: The translation of t = b(b b(a b)a(b)) by the transdu
er T of Example 1.booktitle author
haptertitle introdu
tion se
tiontitle paragraph se
tiontitle paragraph se
tiontitle paragraph
haptertitle introdu
tion se
tiontitle paragraphFigure 3: A do
ument
onforming to the s
hema of Example 3.Example 4. The se
ond transdu
er of Example 3 type-
he
ks w.r.t. the input s
hema and the following DTD:book ! title; (
hapter; title�)�;
hapter�
hapter ! title; introdu
tion j " 2We de�ne the problem
entral to this paper.De�nition 4. Given Sin, Sout, and T , the type
he
kingproblem
onsists in verifying whether T type
he
ks w.r.t.Sin and Sout. 2The size of the input is the sum of the sizes of Sin, Sout,and T . We parameterize the type
he
king problem by thekind of tree transdu
ers and tree languages we allow. LetT be a
lass of transdu
ers and S be a
lass of tree lan-guages. Then TC[T ;S℄ denotes the type
he
king problemwhere T 2 T and Sin; Sout 2 S. Examples of
lasses of treelanguages, are those de�ned by tree automata or DTDs.Classes of transdu
ers are dis
ussed in the previous se
tion.The
omplexity of the problem is measured in terms of thesum of the sizes of the input and output s
hemas and thetransdu
er.Table 1 summarizes the results obtained in [21℄. All prob-lems are
omplete for the mentioned
omplexity
lasses. Inthe setting of [21℄, type
he
king is only tra
table when re-stri
ting to non-deleting and bounded
opying transdu
ersin the presen
e of DTDs with DFAs. In the remainder ofthe paper, we obtain more general
lasses for whi
h type-
he
king is in ptime.
3. FIXING SCHEMA LANGUAGESAs argued in the introdu
tion, for some s
enarios it makessense to
onsider the input and/or output s
hema not as

part of the input. From a
omplexity theory point of view,it is important to note here that the input and/or outputalphabet then also be
omes �xed. In this se
tion, we revisitthe results of [21℄ in that respe
t. Surprisingly, the newsettings do not result in a spe
ta
ular improvement of the
omplexity.The results are summarized in Table 2. We explain the no-tation used in the table. The se
ond
olumn spe
i�es thekind of tree transdu
er: d stands for deleting,
 for
opy-ing, nd for non-deleting, and b
 for bounded
opying. Theleftmost
olumn lists whi
h s
hema languages are �xed. Inthe
ase of deleting transformations, the di�erent possibili-ties are grouped as all
omplexities
oin
ide. The remaining
olumns show the allowed s
hema languages. As some re-sults already follow from proofs in [21℄, we printed the newresults in bold. The entries where the
omplexity was low-ered are underlined.We dis
uss the obtained results: for non-deleting transfor-mations, we get two new tra
table
ases: (1) �xed outputs
hema, bounded
opying and DTD(NFA)s; and, (2) �xedinput and output, unbounded
opying and all DTDs. It isstriking, however, that in the presen
e of deletion or treeautomata (even deterministi
 ones) type
he
king remainsexptime-hard for all s
enarios. So, the relaxed setting stilldisallows to
ombine tra
tability with the desirable abilityto delete. We therefore fo
us on deletion in the next se
tion.Mostly, we only needed to strengthen the lower bound proofsof [21℄. A parti
ularly interesting non-trivial
ase, is thepspa
e lower bound of TCo[Tnd;
,DTD(DFA)℄. The rest ofthe proofs
an be found in [20℄.Proposition 3.1. TCo[Tnd;
; DTD(DFA)℄ is pspa
e-hard.Proof. We use a redu
tion from the
orridor tiling prob-

TT NTA DTA DTD(NFA) DTD(DFA)d,
 exptime exptime exptime exptimend,
 exptime exptime pspa
e pspa
end,b
 exptime exptime pspa
e ptimeTable 1: Results of [21℄ (upper and lower bounds).�xed TT NTA DTA DTD(NFA) DTD(DFA)in, out, d,
 EXP EXP EXP EXPin+out d,b
 EXP EXP EXP EXPin nd,
 EXP EXP PSPACE PSPACEnd,b
 EXP EXP PSPACE PTIMEout nd,
 EXP EXP PSPACE PSPACEnd,b
 EXP EXP PTIME ptimein+out nd,
 EXP EXP NL NLnd,b
 EXP EXP NL NLTable 2: Complexities of the type
he
king problem in the new setting (upper and lower bounds).lem [6℄. Let (D; V;H; �t;�b) be a tiling system, where D =ft1; : : : ; tkg is the set of tiles, V � D2 and H � D2 are thesets of verti
al and horizontal
onstraints respe
tively, and�t and �b are the top and bottom row, respe
tively. Let n bethe width of �t and �b. The tiling system has a solution ifthere is an m 2 N, su
h that the spa
e m� n (m rows andn
olumns)
an be
orre
tly tiled (w.r.t. H and V) with theadditional requirement that the bottom and top row are �band �t, respe
tively.We de�ne the input DTD din over the alphabet � := f(i; tj) jj 2 f1; : : : ; kg; i 2 f1; : : : ; ngg [frg; r is the start symbol.De�ne din(r) = #�t#��1 ��2 � � ��n#���b#; where we denoteby �i the set f(i; tj) j j 2 f1; : : : ; kgg. Here, # fun
tionsas a row separator. For all other alphabet symbols a 2 �,din(a) = ". So, din en
odes all possible tilings that start andend with the bottom row �b and the top row �t, respe
tively.We now
onstru
t a tree transdu
er T = (QT ;�; q0T ; RT)and an output DTD dout su
h that the tiling system has no
orre
t
orridor tiling if and only if T type
he
ks w.r.t. dinand dout. Intuitively, the transdu
er and the output DTDhave to work together to determine errors in input tilings.There
an only be two types of error: two tiles do not mat
hhorizontally or two tiles do not mat
h verti
ally. The maindiÆ
ulty is that the output DTD is �xed and
an, there-fore, not depend on the tiling system. The transdu
er is
onstru
ted in su
h a way that it prepares in parallel theveri�
ation for all horizontal and verti
al
onstraints by theoutput s
hema. In parti
ular, the transdu
er outputs spe-
i�
 symbols from a �xed set independent of the tiling sys-tem allowing the �xed output s
hema to determine whetheran error o

urred.The state set QT is partitioned into two sets: (1) one forthe horizontal
onstraints: for every i 2 f1; : : : ; n � 1g andt 2 D, qi;t 2 QT transforms the rows in the tiling su
hthat it is possible to
he
k that when position i
arries at, position i + 1
arries a t0 su
h that (t; t0) 2 H; and, (2)one for the verti
al
onstraints: for every i 2 f1; : : : ; ng andt 2 D, pi;t 2 QT transforms the rows in the tiling su
h that

it is possible to
he
k that when position i
arries a t, thenext row
arries a t0 on position i su
h that (t; t0) 2 V .The tree transdu
er T always starts its transformation withthe rule (q0T ; r)! r(w); where w is the
on
atenation of allof the above states, separated by the delimiter $. The otherrules are of the following form:� Horizontal
onstraints: for all (j; t) 2 � add the rule(qi;t; (j; t0))! � where� = 8>>><>>>: a if j = i and t = t0e if j = i and t 6= t0a if j = i + 1 and (t; t0) 2 Hb if j = i + 1 and (t; t0) 62 He if j 6= i and j 6= i+ 1Finally, (qi;t;#) ! hor. The intuition is as follows:if the i-th position in a row is labeled with t, thenthis position is transformed into a. Position i + 1 istransformed to a when it
arries a tile that mat
hest horizontally. Otherwise it is transformed to b. Allother symbols are transformed into an e. So, a row,delimited by two hor-symbols, is wrong i� there is ana immediately followed by a b. When there is no a,then position i was not labeled with t. So, the label aa
ts as a trigger for the output automaton.� Verti
al
onstraints: for all (j; t) 2 �, add the rule(qi;t; (j; t0))! � where� = 8>>><>>>: a if (j; t0) = (i; t) and (t; t) 2 Vb if (j; t0) = (i; t) and (t; t) 62 V
 if j = i, t 6= t0, and (t; t0) 2 Vd if j = i, t 6= t0, and (t; t0) 62 Ve if j 6= iFinally, (qi;t;#) ! ver. The intuition is as follows:if the i-th position in a row is labeled with t, thenthis position is transformed into a when (t; t) 2 Vand to b when (t; t) 62 V . Here, both a and b a
t asa trigger for the output automaton: they mean that

position i was labeled with t. But no a and b
ano

ur in the same transformed row. When position iis labeled with t0 6= t, then we transform this positioninto
 when (t; t0) 2 V , and in d when (t; t0) 62 V . Allother positions are transformed into e. The outputDFA works as follows. If a position is labeled a then ita

epts if there is a d o

urring after the next ver. Ifa position is labeled b, then it a

epts if there is a b ora d o

urring after the next ver. Otherwise, it reje
tsthat row.By making use of the delimiters ver and hor, both abovedes
ribed automata
an be
ombined into one taking
areof the verti
al and the horizontal
onstraints. Note thatthe output automaton is de�ned over the �xed alphabetfa; b;
; d; e; hor; ver; $g.In the remainder of the paper, we denote by TCi[T ;S℄,TCo[T ;S℄ and TCi=o[T ;S℄ the type
he
king problem wherethe input s
hema, output s
hema and both input and out-put s
hema are �xed respe
tively. So, the size of the inputof the type
he
king problem is the sum of the sizes of theinput and output s
hema and the tree transdu
er, minus thesize of the �xed parameter(s).
4. DELETION, BOUNDED COPYING, AND

DFASAlthough deletion has an enormous impa
t on the
omplex-ity of type
he
king, as is exempli�ed by the �rst two rowsof Table 2, more often than not, the ability to skip nodesin the input tree is
riti
al. Indeed, many simple transfor-mations like the ones in Example 3 sele
t spe
i�
 parts ofthe input while deleting the non interesting ones. Moreover,su
h deletion
an be unbounded. That is, the number ofdeleted nodes on a path depends only on the input tree andnot on the s
hema.In this se
tion, we fo
us on DTD(DFA)s and on bounded
opying transdu
ers. We prove a general lemma whi
h quan-ti�es the
ombined e�e
t of
opying and deletion on the
omplexity of type
he
king. From this lemma we then de-rive
onditions under whi
h type
he
king be
omes tra
table.Interestingly, these
onditions allow arbitrary deletion whenno
opying o

urs, but at the same time permit bounded
opying for those rules that only delete in a bounded fash-ion. We further show that these
onditions
annot be re-laxed without in
reasing the
omplexity. Finally, we dis
usstype
he
king in the
ontext of s
hemas represented by de-terministi
 tree automata.
4.1 A Tractable CaseWe start by introdu
ing some terminology. Let T = (Q;�; q0;R) be a transdu
er. A deletion path is a sequen
e of statesq1; : : : ; qn su
h that qi o

urs in top(rhs(qi�1; ai�1)) for ev-ery i = 2; : : : ; n, where a1; : : : ; an�1 2 �. A state q is re-
ursively deleting if it o

urs twi
e in some deletion path;otherwise, q is said to be non-re
ursively deleting. The dele-tion width of q is the maximum number of o

urren
es ofstates in top(rhs(q; a)) for all a 2 �. For instan
e, if R
ontains the rules (q; a) ! aq1bq2q3 and (q; b) ! q1a, thenthe deletion width of q is three. The deletion width of a

deletion path q1; : : : ; qn is the produ
t of the deletion widthsof q1; : : : ; qn�1 (qn is not
ounted). A deleting state q hasdeletion depth k if all deletion paths starting with q
ontainat most k + 1 states. If there exists no su
h k, we say thatq has in�nite deletion depth. In parti
ular, all re
ursivelydeleting states have in�nite deletion depth.Example 5. Suppose that T is a tree transdu
er with statesq1; : : : ; q8 and the following rewrite rules:(q1; a)! q2 a q2 a (q5; a)! q6 aa q6(q2; a)! a q3 q3 a q3 (q6; a)! q7 q7 q7(q3; a)! q4 (q7; a)! a q8 a(q4; a)! a (q8; a)! aa q7The deletion depths and widths are given as follows:state q1 q2 q3 q4 q5 q6 q7 q8deletion depth 3 2 1 0 1 1 1 1deletion width 2 3 1 0 2 3 1 1The sequen
es q1; q2; q3; q4 and q5; q6; q7; q8; q7 are examplesof deletion paths in T . Both paths have deletion width six.Note that the deletion path q5; q6; q7; q8; q7; q8; q7; q8 also hasdeletion width six. The reason is that the deletion widthsof q7 and q8 themselves are one. Would there be a rule(q7; b) ! q8q8 then paths of arbitrary large deletion width
ould be
onstru
ted. 2We are now ready to de�ne the
lass of transdu
ers that isof interest to us.De�nition 5. By T C;Ktra
 , we denote the
lass of transdu
ersthat (i) have
opying bound C, and (ii) for whi
h everydeletion path has deletion width at most K. 2When C and K are not important, we simply write Ttra
instead of T C;Ktra
 .Note that the
lass T C;Ktra
 allows re
ursive deleting, but onlyfor those states that do not
opy at the same time. Oth-erwise the width of deletion paths
annot be bounded. So,if a state of a T C;Ktra
 transdu
er is re
ursively deleting thenevery right-hand side is of the form hqg where q is a stateand h and g are hedges
ontaining no states on their toplevel and whose
opying width is at most C. When a stateis non-re
ursively deleting, then simultaneous
opying anddeleting is allowed but only in a bounded fashion. That is,every deletion path
ontaining that state is of deletion widthat most K and rhs(q; a) has
opying width at most C.Example 6. The �rst transdu
er in Example 3 belongs toT 1;1tra
 while the se
ond is in T 2;1tra
. The transdu
er of Exam-ple 5 is in T 3;6tra
. 2The next lemma provides a detailed analysis of the
om-plexity of type
he
king in terms of
opying and deletion

power. Its proof is a non-trivial generalization from non-deleting to deleting transdu
ers of the redu
tion in [21℄ fromTC[Tnd;
; DTD(DFA)℄ to emptiness of unranked tree au-tomata, followed by an analysis of the size of the obtainedautomaton.Lemma 4.1. The
omplexity of TC[T C;Ktra
 ; DTD(DFA)℄is O�(jdinjjT jCK jdoutjCK)��; where jdinj and jdoutj are thesizes of the input and output s
hema, respe
tively; jT j is thesize of the tree transdu
er T ; and � is a
onstant.Proof sket
h. For a transdu
er T = (QT ;�; q0T ; RT) 2T C;Ktra
 , and input and output s
hemas din and dout, we
on-stru
t a nondeterministi
 unranked tree automaton A a
-
epting all
ounterexample trees. That is, L(A) = ft 2L(din) j T (t) 62 L(dout)g. So, L(A) = ; i� T type
he
ksw.r.t. din and dout. The size of A isO((jdinjjT jCK jdoutjCK)�)for some
onstant �. As emptiness NTAs is in ptime, thereis a
onstant � su
h that the
omplexity of the type
he
kingproblem is O�(jdinjjT jCK jdoutjCK)��.Che
king whether the input of A is
onform to the inputs
hema
an be done by a simple produ
t
onstru
tion oftree automata. We therefore fo
us on verifying whether theoutput of the transformation is not
onform to the outputs
hema. Intuitively, the tree automaton non-deterministi-
ally lo
ates a node v in the input tree that generates asubtree �(a01(t01) � � � a0m(t0m))in the output su
h that a01 � � � a0m 62 dout(�). More spe
i�-
ally, A simulates T on the subtree rooted at v and runs theDFA D representing dout(�) on a01 � � � a0n.Let a(t1 � � � tn) be the tree rooted at v and suppose thatT pro
esses v in state q. Suppose that rhs(q; a)
ontainsthe subtree �(z0q1z1 � � � qkzk), where z0; : : : ; zk 2 �� andq1; : : : ; qk 2 QT . Then, A needs to simulate D onz0 top�T q1 (t1) � � �T q1(tn)� � � � top�T qk (t1) � � �T qk(tn)� zkand a

ept if D reje
ts. Note that k is bounded by C. Forea
h ti, the automaton A guesses k pairs of states of D,(p1i;1; p1i;2); : : : ; (pki;1; pki;2), so that top(T qj (ti)) takes D fromstate pji;1 to state pji;2. We always make sure that1. z0 takes D from its initial state to p11;1;2. zk takes D from pkn;2 to a reje
ting state;3. for ea
h j = 1; : : : ; k� 1, zj takes D from pjn;2 to pj+11;1 ;and4. for ea
h i = 1; : : : ; n � 1 and j = 1; : : : ; k, we havepji;2 = pji+1;1.Note that for this step, A needs to remember at most 2Cstates of D for ea
h subtree.The most
hallenging part remains: testing whether for ea
hti, and j = 1; : : : ; k, the string top(T qj (ti)) takes D fromstate pji;1 to state pji;2. We only sket
h the idea. If rhs(qj ; �i),

where �i is the root of ti,
ontains no deleting states, thentop(T qj (ti)) only depends on rhs(qj ; �i) and not on ti and weare done. When rhs(qj ; �i)
ontains only one deleting state,then we just need to guess k new pairs (pi;1; pi;2) and pro
eedas before. So, for re
ursively deleting states that do not
opywe only need to remember k pairs of states. Otherwise,when rhs(qj ; �i)
ontains say ` deleting states, then we needto guess k � ` pairs of states. As long as the transdu
erdeletes, ea
h of these requires guessing new states. As Kis an upper bound for this number, CK is the maximumnumber of pairs that need to be remembered at all time to
he
k whether for every i, top(T qj (ti)) takes D from statepji;1 to state pji;2. We refer the interested reader to [20℄ for afull proof.From Lemma 4.1 the following tra
tability result then read-ily follows.Theorem 4.2. TC[Ttra
; DTD(DFA)℄ is in ptime.So, not only do we obtain a ptime algorithm, Lemma 4.1also provides a
lear view on the
on
rete
omplexity interms of the di�erent parameters.Link with pra
ti
e. At �rst sight, Lemma 4.1 seems tobe bad news as C and K o

ur in the exponent. Never-theless, we believe these numbers to be small in pra
ti
altransformations. The good news, hidden in the de�nitionof K, is that there is no penalty for the re
ursive deletionwithout
opying that o

urs in many �ltering transforma-tions. In
ontrast to our previous results that abandoneddeletion
ompletely, the present result shows that transfor-mations with small C and K but arbitrary deletion without
opying
an still be eÆ
iently type
he
ked.
4.2 Lower Bounds for ExtensionsWe address the question whether there are obvious exten-sions of Ttra
 for whi
h type
he
king remains tra
table. Firstof all, we
annot allow arbitrary
opying as even withoutdeletion type
he
king is pspa
e-hard (see Table 1). How-ever, the restri
tion on deletion for Ttra
 transformations isvery severe: the number of
onse
utive deletions is �xed inadvan
e and does not even depend on the transdu
er. Asa generalization, we
an therefore
onsider the
lass Tnrd ofnon-re
ursively deleting transdu
ers for whi
h no transdu
eris re
ursively deleting. Note that now the length of a dele-tion path is bounded by the number of states in the trans-du
er. Unfortunately, the next theorem gives little hope fora tra
table type
he
king algorithm for that
lass.Theorem 4.3. TCi[Tnrd;b
; DTD(DFA)℄ is pspa
e-hard.In a Ttra
 transdu
er, a re
ursively deleting state
an not
opy. A legitimate question is whether that restri
tion isne
essary. We show that even in the
ase of �xed input andoutput s
hema, an in
rease to deletion width two for re
ur-sively deleting states results in an exptime lower bound fortype
he
king. We denote the
lass where every state
anhave at most deletion width k by Tdw=k.

Theorem 4.4. TCi=o[Tdw=2;b
; DTD(DFA)℄ is exptime-hard.
4.3 Tree AutomataIn the last part of this se
tion, we turn to s
hemas de�nedby unranked tree automata. We show that when we �xthe
opying width to one, denoted by
w = 1, then re
ur-sively deleting of width one remains tra
table in the presen
eof DTA(DFA)s but not when DTA(NFA)s are used. Su
htransformations are mild generalizations of relabelings. It ishen
e not surprising that the output type of a transdu
er inTdw=1;
w=1
an be
aptured by a tree automaton. The latterobservation is a generalization of the
orresponding result forranked tree transdu
ers [13℄ (Proposition 7.8(b)). We onlyhave to show that the
onstru
tion of the unranked tree au-tomaton
an be done in ptime. Type
he
king then redu
esto
ontainment
he
king of NTA(NFA)s in DTA(DFA)s. For
ompleteness, we also mention here that type
he
king isexptime-hard when we extend the
opying width to two.Theorem 4.5. 1. TC[Tdw=1;
w=1; DTA(DFA)℄ isptime-
omplete;2. TCi[Tdw=1;
w=1; DTA(NFA)℄ is pspa
e-hard; and3. TCi=o[Tnd;
w=2; DTA(DFA)℄ is exptime-hard.
5. DELETION, UNBOUNDED COPYING,

AND RE+All tra
table fragments of the previous setting assume a uni-form bound on the
opying and deletion width of a trans-du
er. Although in pra
ti
e these bounds will usually besmall and Lemma 4.1 provides a detailed a

ount of theire�e
t, the restri
tions remain somewhat arti�
ial. In thepresent se
tion we therefore investigate fragments in whi
hthere are no restri
tions on the
opying or deletion powerof the transdu
er. This implies that we have to restri
ts
hemas, e.g., by restri
ting the regular expressions in rules.We
onsider the following regular expressions. Let RE+ bethe set of regular expressions of the form �1 � � ��k whereevery �i is ", a, or a+ for some a 2 �. An example is titleauthor+
hapter+. In this se
tion, we show that type-
he
king for arbitrary tree transdu
ers w.r.t. DTD(RE+) isin ptime. We note that every DTD(RE+) is either non-re
ursive (i.e. an a-labeled node has no a-labeled des
en-dants) or de�nes the empty language. However, the tra
tabil-ity of type
he
king remains non-trivial, as in general type-
he
king is already pspa
e-
omplete when using DTD(DFA)sonly de�ning trees of depth one [21℄.Let T = (QT ;�; q0T ; RT) be a tree transdu
er, and denotethe input and output DTD by din and dout, respe
tively.We'll present a sket
h of the proof. To this end, we intro-du
e some terminology. For an RE+ expression e and DTDd, we denote by de the hedge language fa1(h1) � � � an(hn) ja1 � � � an 2 L(e) and for every i = 1; : : : ; n, ai(hi) 2 (d; ai)g.So, if t1 � � � tn 2 de then top(t1) � � � top(tn) 2 L(e) and ev-ery ti is a derivation tree of (d; top(ti)). Re
all that (d; ai)denotes DTD d with start symbol ai. For a state q 2 QTand an alphabet symbol a 2 �, we say that the pair (q; a) isrea
hable if there exists a tree t in din su
h that T pro
esses

at least one node of t labeled with a in state q. The latterset
an be
omputed in ptime.To verify that the instan
e type
he
ks, we have to
he
kthat for every rea
hable pair (q; a) and for every node u inrhs(q; a) thatfz0top(T q1(h))z1 � � � zk�1top(T qk(h))zk j h 2 deing � dout(�);where e = din(a), z0q1z1 � � � qkzk is the
on
atenation of u's
hildren, and � is the label of u. In the above, for h =t1 � � � tn, we denote by T q(h) the hedge T q(t1) � � �T q(tn).We denote the above language o

urring to the left of � byLq;a;u. Note that the latter is not ne
essarily regular, oreven
ontext-free. We
onstru
t an extended
ontext-freegrammar Gq;a;u su
h that L(Gq;a;u) � dout(�) i� Lq;a;u �dout(�). More spe
i�
ally, Gq;a;u = (V;�; P; S), where V =fhp; bi j p 2 QT ; b 2 �g is the set of non-terminals, � is theset of terminals, P is the set of produ
tion rules and S isthe start symbol. Intuitively, ea
h non-terminal hp; bi
or-responds to the string language ftop(T p(t)) j t 2 (din; b)g.It remains to de�ne the produ
tion rules P . For the startsymbol S, we have the ruleS ! z0hq1; e1i�1 � � � hq1; eni�nz1 � � �� � � zk�1hqk; e1i�1 � � � hqk; eni�nzk;where dout(�) = e�11 � � � e�nn , every ei 2 � and �i is either +or ". For a non-terminal hp; bi let din(b) = b�11 � � � b�mm andlet top(rhs(p; b)) = s0p1s1 � � � p`s`. Then we add the rulehp; bi ! s0hp1; b1i�1 � � � hp1; bmi�ms1 � � �� � � s`�1hp`; b1i�1 � � � hp`; bmi�ms`to P . If there is no rhs(p; b) in RT , we add hp; bi ! " toP . Note that Gq;a;u is an extended
ontext-free grammar,polynomial in the size of din and T . It is easy to see thatsin
e din is not re
ursive, Gq;a;u is also non-re
ursive.It follows from the next lemma that Lq;a;u � dout(�) i�L(Gq;a;u) � dout(�). For a non-terminal hp; bi 2 V , we de-note by L(hp; bi) the language that is generated by (V;�; P;hp; bi), i.e. the grammar Gq;a;u with start symbol hp; bi.Lemma 5.1. Let e and f be RE+ expressions, with e =e�11 � � � e�nn , d a DTD(RE+) and T = (QT ;�; ÆT ; RT) a treetransdu
er. For z0; : : : ; zk 2 �� and q1; : : : ; qk 2 QT , de�neLe = fz0top(T q1(h))z1 � � � zk�1top(T qk(h))zk j h 2 L(de)g;L0e = fz0top(T q1(h1))z1 � � � zk�1top(T qk(hk))zk jh1; : : : ; hk 2 L(de)g;andL00e = fz0s1z1 � � � zk�1skzk jsi 2 L(hqi; e1i)�1 � � �L(hqi; eni)�n ; i 2 f1; : : : ; kgg:Then, Le � L(f), L0e � L(f), L00e � L(f):

Finally, testing whether L(Gq;a;u) � L(dout(�))
an thenbe done in ptime using standard te
hniques. We have thusobtained the following theorem.Theorem 5.2. TC[Td;
; DTD(RE+)℄ is in ptime.The simpli
ity of RE+-expressions seems to be the pri
e topay for a tra
table algorithm for arbitrary transdu
ers. In-deed, the in
lusion problem for a
lass of regular expressionsC
an readily be redu
ed to type
he
king with DTD(C)s.As it is shown in [22℄ that in
lusion of obvious extensionsof RE+-expressions is
onp-hard, type
he
king for the
or-responding fragment is
onp-hard. In parti
ular, [22℄ dis-
usses expressions of the form �1 � � ��n where all �i belongto
lasses (1) a or a?, and (2) a or a�. By using similar te
h-niques as in [22℄, it
an also be shown that in
lusion is
onp-hard for expressions where all �i belong to
lasses (3) a or(a+1 + � � �+a+n), (4) a or (a1 � � � an)+ (5) a or (a1+ � � �+an)+and (6) (a1 + � � �+ an) or a+.An interesting question is whether we
an also obtain aptime type
he
king algorithm if we allow expressions of theform � and �+ " where � is an RE+ expression. This prob-lem remains open. The following simple example shows whyLemma 5.1 does not hold anymore for su
h expressions.Example 7. Consider the DTD din with rules r ! a + "and a ! ", and let T be a tree transdu
er with start stateq0 and rules(q0; r)! r(q1 q2) (q1; a)! a (q2; a)! b:Then Lr = f"; abg and L0r = ftop(T q1(t1)T q2 (t2)) j t1; t2 2da+"in g = f"; a; b; abg. But Lr � L(a+b+ + "), while L0r 6�L(a+b+ + "). 2
6. XPATH EXPRESSIONSAn approa
h
omplementary to deletion, is the use of XPathexpressions to skip nodes of the input tree. We only
on-sider XPath expressions for downward navigation and there-fore restri
t attention to the following axes and predi
ates:
hild (=), des
endant (==), wild
ard (�), disjun
tion (j), and�lter ([℄). We allow node tests and either the
hild ordes
endant axis in every fragment of XPath we
onsider.We use the following notational
onvention: for a sequen
eX of axes and predi
ates, we denote by XPathfXg theXPath expressions that only use the axes and predi
ates infXg. We assume that the semanti
s of XPath is known (see,e.g., [7℄). Re
all that an XPath pattern de�nes a fun
tiont�Dom(t)! 2Dom(t).Let P be a set of patterns. We explain how the syntax andthe semanti
s of transdu
ers is extended to patterns in P .We denote the latter fragment by T P . Rules are now of theform (q; a)! h where h 2 H�((Q�P)[Q). That is, state-pattern pairs hq; i
an now also o

ur at leaves. Previously,all
hildren of the
urrent node were pro
essed; now, onlythe nodes sele
ted by starting from the
urrent node (indo
ument order). We denote state-pattern pairs with angledparentheses to avoid
onfusion in the string representationof trees. In our framework, we only use XPath expressionsthat start with � , i.e. always start from the
ontext node.

So, if T is a tree transdu
er, t = a(t1 � � � tn) and there isa rule (q; a) ! h 2 RT then T q(t) is obtained from h byrepla
ing every node u in h labeled with hp; i by the hedgeT p(t=u1) � � � T p(t=un) where (t; ") = fu1; : : : ; ung and thesequen
e u1; : : : ; un o

urs in do
ument order. Here, wedenote by t=u the subtree of t rooted at u. Note that the
ontext node is always set to the root of the subtree that isto be pro
essed by T .Example 8. When making use of XPath expressions, we
an write the �rst do
ument transformation in Example 3more su

in
tly as follows:(q; book)! book(q)(q;
hapter)!
hapter hq; �==titlei(q; title)! title 2Via a redu
tion to Theorem 4.2, we show that for very sim-ple XPath expressions added to the formalism type
he
kingremains in ptime.Theorem 6.1. TC[T XPathf=;�gtra
 ; DTD(DFA)℄ is in ptime.Proof. We will show that for any tree transdu
er T 2T XPathf=;�gtra
 , we
an
onstru
t an equivalent tree transdu
erT 0 2 Ttra
 su
h that size(T 0) is O(size(T)) and T and T 0have the same
opying width and deletion path width.Intuitively, we
onvert every XPath-expression x o

urringin T to a DFA, whi
h we simulate by using deleting statesin T 0. The simulation of su
h DFAs only introdu
es non-re
ursively deleting states of deleting width one.Formally, let T = (QT ;�; q0T ; RT) and let XT be the XPathexpressions o

urring in T . For ea
h XPath-expression x 2XT , let Ax = (Qx;�; Æx; fqIxg; fqFx g) be the DFA represent-ing it. A

ording to [14℄, ea
h Ax is linear in the size of x.Further, Ax is a
y
li
, only a

epts a �nite language, andall strings in L(Ax) are of the same length. Without loss ofgenerality, we assume that the sets Qx are pairwise disjointand disjoint from QT .We
onstru
t T 0 = (QT 0 ;�; q0T ; RT 0) as follows. Its state setis QT [Sx2XT QX . For every rule (q; a) ! h in RT , andfor every hp; xi o

urring in h we have the following set ofrules in RT 0� (q; a) ! h0 where h0 is the hedge obtained from h byrepla
ing every o

urren
e of hp; xi by qIx;� (px; b) ! Æx(px; b) for every px 2 Qx and b 2 � su
hthat Æx(px; b) 6= qFx ; and� (px; b) ! rhs(p; b) for every px 2 Qx and b 2 � su
hthat Æx(px; b) = qFx .We only need to argue that the XPath expressions in T areevaluated
orre
tly in T 0. To this end, it easy to see that

we only use deleting states for nodes that are skipped in theinput tree by the XPath expressions, and that we
ontinue inthe
orre
t state in QT in the nodes that are sele
ted by theXPath expressions. Further, only deleting states of widthone are introdu
ed. So, T 0 2 T C;Ktra
 whenever T 2 T C;Ktra
 .Although the fragment XPathf=; �g is very limited, the nexttheorem shows that there is not mu
h room for improve-ment. The lower bounds in the �rst bullet follow from a re-du
tion from XPath
ontainment in the presen
e of DTDs [27,36℄. The lower bound in the se
ond bullet follows from a re-du
tion from the interse
tion emptiness problem for DFAsover a unary alphabet.Theorem 6.2. The following problems are
onp-hard.1. TC[T Xnd;b
; DTD(DFA)℄, for X amongXPathf=; jg;XPathf==; jg;XPathf=; [℄g and XPathf==; [℄g;and2. TC[T XPathf==gtra
 ; DTD(DFA)℄.We denote by T DFA the fragment where patterns are spe
-i�ed by DFAs (every node that is rea
hed in a �nal stateis sele
ted). When we
ompletely disallow deletion, we stillhave tra
tability when patterns are spe
i�ed by DFAs.Theorem 6.3. TC[T DFAnd;b
 ; DTD(DFA)℄ is in ptime.Using the link between DFAs and XPath expressions thatwas laid in [14℄, we immediately obtain that type
he
kingis in ptime for T XPathf=;==;�gnd;b
 where patterns are su
h thatthe number of wild
ards o

urring between two des
endantaxes is bounded by a
onstant. It remains open whethertype
he
king for T XPathf=;==;�gnd;b
 is in ptime in general.Finally, we dis
uss XPath in
onne
tion with the RE+ ex-pressions of the previous se
tion. As DFA-patterns
an berather dire
tly simulated by deleting states, we obtain thattype
he
king is also in ptime when we allow the transdu
erto use su
h expressions.Corollary 6.4. TC[T DFAd;
 ; DTD(RE+)℄ is in ptime.
7. REMARKSIn pra
ti
e it is relevant that type
he
king algorithms
angenerate
ounterexample trees (or a des
ription of them) forinstan
es that it reje
ts. As our main upper bound theoremredu
es the type
he
king problem to the emptiness problemfor a NTA(NFA) of polynomial size, and sin
e it is possi-ble to generate a des
ription of a tree in the language of anNTA(NFA) in polynomial time, we
an also generate a
oun-terexample tree for the type
he
king algorithm in polyno-mial time. Further, the algorithm for TC[Td;
; DTD(RE+)℄
an also be adapted to generate a des
ription of a
ounterex-ample tree.Corollary 7.1. If an instan
e of TC[Ttra
; DTD(DFA)℄or TC[Td;
; DTD(RE+)℄ does not type
he
k, we
an generatea
ounterexample in ptime.

We say that an instan
e of the type
he
king problem type-
he
ks almost always i� the set ft 2 din j T (t) 62 doutg is�nite. The latter notion is introdu
ed by Engelfriet andManeth [16℄. Sin
e the �niteness problem of NTA(NFA) isde
idable in ptime, we have obtained the following.Corollary 7.2. Almost always type
he
king of Ttra
 trans-du
ers w.r.t. DTD(DFA)s is in ptime.
8. CONCLUSIONWe provided a rather
omplete overview of how the di�er-ent parameters in
uen
e the
omplexity of the type
he
kingproblem. As the main fo
us of the paper is on tra
table s
e-narios, we did not investigate upper bounds for intra
table
ases.First, we
onsidered the
omplexity of type
he
king in thepresen
e of �xed input and/or output s
hemas. In
om-parison with the results in [21℄, �xing input and/or outputs
hemas only lowers the
omplexity in the presen
e of DTDsand when deletion is disallowed.In the remainder of the paper we identi�ed several interest-ing pra
ti
al tra
table
ases that
an be
lassi�ed depend-ing on the strength of the s
hema languages. The mostliberal setting is where RE+ expressions suÆ
e to de�nes
hema languages: we have ptime type
he
king for all trans-du
ers in our framework. In fa
t, any fragment of XPathwhose patterns
an be translated in polynomial time toDFAs
an be added to the transformations. Sometimes,however, one needs more expressive regular expressions ins
hema languages. For instan
e, to express
hoi
e like in(se
tion + table + figure)�. Our results show that thereis still a ptime algorithm when those expressions
an betranslated in ptime to DFAs and when one
an bound si-multaneous
opying and deletion. Interestingly, arbitrarydeletion without
opying
an be allowed. As
opying is usu-ally fairly limited in the simple transformations for whi
hXSLT is used, but unbounded deleting without
opying isrequired for so-
alled �ltering transformations, our resultidenti�es a tra
table fragment with potential in pra
ti
e.Further, we obtained that the XPath axes = and �
an beadded without in
reasing the
omplexity. Finally, when de-terministi
 tree automata are required, no
opying
an beallowed but arbitrary deletion is permitted.Though we left some questions open, we also showed thatnone of the above restri
tions
an be severely relaxed with-out rendering the type
he
king problem intra
table. So, forthese larger
lasses of transformations or s
hema languages,it is more appropriate to develop in
omplete or approximatealgorithms.In future work we will try to settle the remaining questions
on
erning the XPath fragments, look at how �xed inputand/or output s
hemas in
uen
e the
omplexity of type-
he
king w.r.t. DTD(RE+)s, and
onsider data values.
AcknowledgmentWe thank Giorgio Ghelli for raising the question about the
omplexity of type
he
king in the setting of a �xed outputs
hema. We thank Dirk Leinders, Thomas S
hwenti
k, and

Stijn Vansummeren for their
omments on a previous versionof this paper.
9. REFERENCES[1℄ N. Alon, T. Milo, F. Neven, D. Su
iu, and V. Vianu.Type
he
king XML views of relational databases.ACM Transa
tions on Computational Logi
,4(3):315{354, 2003.[2℄ N. Alon, T. Milo, F. Neven, D. Su
iu, and V. Vianu.XML with data values: Type
he
king revisited.Journal of Computer and System S
ien
es,66(4):688{727, 2003.[3℄ G. J. Bex, S. Maneth, and F. Neven. A formal modelfor an expressive fragment of XSLT. InformationSystems, 27(1):21{39, 2002.[4℄ A. Br�uggemann-Klein, M. Murata, and D. Wood.Regular tree and regular hedge languages overunranked alphabets: Version 1, april 3, 2001.Te
hni
al Report HKUST-TCSC-2001-0, TheHongkong University of S
ien
e and Te
hnology, 2001.[5℄ P. Buneman, M. Fernandez, and D. Su
iu. UnQl: aquery language and algebra for semistru
tured databased on stru
tural re
ursion. The VLDB Journal,9(1):76{110, 2000.[6℄ B. S. Chlebus. Domino-tiling games. Journal ofComputer and System S
ien
es, 32(3):374{392, 1986.[7℄ J. Clark and S. DeRose. XML Path Language(XPath). http://www.w3.org/TR/xpath.[8℄ H. Comon, M. Dau
het, R. Gilleron, F. Ja
quemard,D. Lugiez, S. Tison, and M. Tommasi. Tree automatate
hniques and appli
ations. Available on:http://www.grappa.univ-lille3.fr/tata, 1997.[9℄ World Wide Web Consortium. XML S
hema.http://www.w3.org/XML/S
hema.[10℄ S.A. Cook. An observation on time-storage trade-o�.Journal of Computer and System S
ien
es,9(3):308{316, 1974.[11℄ A. Fris
h, G. Castagna, and V. Benzaken. CDu
e: anXML-
entri
 general-purpose language. In Pro
eedingsof the eighth ACM SIGPLAN international
onferen
eon Fun
tional Programming, pages 51{63. ACM Press,2003.[12℄ M.R. Garey and D.S. Johnson. Computers andIntra
tability: A Guide to the Theory ofNP-Completeness. Freeman, 1979.[13℄ F. G�e
seg and M. Steinby. Tree languages. InG. Rozenberg and A. Salomaa, editors, Handbook ofFormal Languages, volume 3,
hapter 1, pages 1{68.Springer, 1997.[14℄ T.J. Green, G. Miklau, M. Onizuka, and D. Su
iu.Pro
essing XML streams with deterministi
 automata.In Pro
. 9th International Conferen
e on DatabaseTheory (ICDT 2003), pages 173{189, 2003.

[15℄ H. Hosoya and B. C. Pier
e. XDu
e: A stati
allytyped XML pro
essing language. ACM Transa
tionson Internet Te
hnology (TOIT), 3(2):117{148, 2003.[16℄ J.Engelfriet and S.Maneth. A
omparison of pebbletree transdu
ers with ma
ro tree transdu
ers. A
taInformati
a, 39:613{698, 2003.[17℄ D.S. Johnson. A
atalog of
omplexity
lasses. InJ. van Leeuwen, A.R. Meyer, N. Nivat, M.S. Paterson,and D. Perrin, editors, Handbook of Theoreti
alComputer S
ien
e, volume A,
hapter 2, pages 67{161.North-Holland, 1990.[18℄ D. Lee, M. Mani, and M. Murata. Reasoning aboutXML s
hema languages using formal language theory.Te
hni
al report, IBM Almaden Resear
h Center,2000. Log# 95071.[19℄ S. Maneth and F. Neven. Stru
tured do
umenttransformations based on XSL. In R. Connor andA. Mendelzon, editors, Resear
h Issues in Stru
turedand Semistru
tured Database Programming(DBPL'99), volume 1949 of Le
ture Notes inComputer S
ien
e, pages 79{96. Springer, 2000.[20℄ W. Martens and F. Neven. Frontiers of tra
tability fortype
he
king simple XML transformations: Fullversion.http://alpha.lu
.a
.be/~lu
p1436/pubs.html.[21℄ W. Martens and F. Neven. Type
he
king top-downuniform unranked tree transdu
ers. In Pro
. 9thInternational Conferen
e on Database Theory (ICDT2003), pages 64{78.[22℄ W. Martens, F. Neven, and T. S
hwenti
k. On the
omplexity of de
ision problems for XML s
hemalanguages. In Preparation.[23℄ G. Miklau and D. Su
iu. Containment and equivalen
efor an XPath fragment. In Pro
. 21th Symposium onPrin
iples of Database Systems (PODS 2002), pages65{76, 2002.[24℄ T. Milo and D. Su
iu. Type inferen
e for queries onsemistru
tured data. In Pro
eedings of the EighteenthACM Symposium on Prin
iples of Database Systems,pages 215{226. ACM Press, 1999.[25℄ T. Milo, D. Su
iu, and V. Vianu. Type
he
king forXML transformers. Journal of Computer and SystemS
ien
es, 66(1):66{97, 2003.[26℄ F. Neven. Automata theory for XML resear
hers.SIGMOD Re
ord, 31(3), 2002.[27℄ F. Neven and T. S
hwenti
k. XPath
ontainment inthe presen
e of disjun
tion, DTDs, and variables. InPro
. 9th International Conferen
e on DatabaseTheory (ICDT 2003), pages 315{329.[28℄ Y. Papakonstantinou and V. Vianu. DTD inferen
efor views of XML data. In Pro
. 19th Symposium onPrin
iples of Database Systems (PODS 2000), pages35{46. ACM Press, 2000.

[29℄ Y. Papakonstantinou and V. Vianu. In
rementalvalidation of XML do
uments. In Pro
. 9thInternational Conferen
e on Database Theory (ICDT2003), pages 47{63. Springer, 2003.[30℄ H. Seidl. Haskell overloading is DEXPTIME-
omplete.Information Pro
essing Letters, 52(2):57{60, 1994.[31℄ L. J. Sto
kmeyer and A. R. Meyer. Word problemsrequiring exponential time: Preliminary report. InConferen
e Re
ord of Fifth Annual ACM Symposiumon Theory of Computing, pages 1{9, Austin, Texas, 30April{2 May 1973.[32℄ D. Su
iu. Type
he
king for semistru
tured data. InPro
eedings of the 8th Workshop on Data Bases andProgramming Languages (DBPL 2001), 2001.[33℄ D. Su
iu. The XML type
he
king problem. SIGMODRe
ord, 31(1):89{96, 2002.[34℄ A. Tozawa. Towards stati
 type
he
king for XSLT. InPro
eedings of the ACM Symposium on Do
umentEngineering, pages 18{27, 2001.[35℄ P. T. Wood. Minimising simple XPath expressoins. InWebDB 2001, pages 13{18, 2001.[36℄ P. T. Wood. Containment for XPath fragments underDTD
onstraints. In Pro
. 9th InternationalConferen
e on Database Theory (ICDT 2003), pages300{314, 2003.

