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ABSTRACTType
he
king 
onsists of stati
ally verifying whether theoutput of an XML transformation is always 
onform to anoutput type for do
uments satisfying a given input type.We fo
us on 
omplete algorithms whi
h always produ
e the
orre
t answer. We 
onsider top-down XML transforma-tions in
orporating XPath expressions and abstra
t do
u-ment types by grammars and tree automata. By restri
tings
hema languages and transformations, we identify severalpra
ti
al settings for whi
h type
he
king is in polynomialtime. Moreover, the resulting framework provides a rather
omplete pi
ture as we show that most s
enarios 
an notbe enlarged without rendering the type
he
king problem in-tra
table. So, the present resear
h sheds light on when touse fast 
omplete algorithms and when to reside to soundbut in
omplete ones.
1. INTRODUCTIONIn a typi
al XML data ex
hange s
enario on the web, auser 
ommunity 
reates a 
ommon s
hema and agrees onprodu
ing only XML data 
onforming to that s
hema. Thisraises the issue of type
he
king: verifying at 
ompile timethat every XML do
ument whi
h is the result of a spe
i�edquery or do
ument transformation applied to a valid inputdo
ument, satis�es the output s
hema [32, 33℄.The main goal of this paper is to determine relevant s
enar-ios for whi
h type
he
king be
omes tra
table. Additionally,we also want to identify the frontier of tra
tability for theses
enarios. As type
he
king qui
kly be
omes intra
table [2,21, 25℄, we fo
us on simple but pra
ti
al XML transforma-tions where only little restru
turing is needed, like for in-stan
e in �ltering of do
uments. Transformations that 
anfor example be expressed by stru
tural re
ursion [5℄ or bya top-down fragment of XSLT [3℄. As is a

ustomed, weabstra
t su
h transformations by unranked tree transdu
-ers [19, 21℄. As types we adopt the usual Do
ument Type
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De�nitions (DTDs) and their robust extension: regular treelanguages [25, 18℄ or, equivalently, spe
ialized DTDs [28, 29℄.The latter serve as a formal model for XML S
hema [9℄.In earlier work, we identi�ed three sour
es of 
omplexityfor the type
he
king problem in the above setting: non-determinism in the regular expressions in the output DTD,the ability of the transformation to make arbitrary 
opies ofsubtrees, and the 
apability to delete (rather than renameor repla
e) nodes of the input do
ument [21℄. In fa
t, theonly ptime type
he
king instan
e we obtained, was by disal-lowing all three parameters. As the latter s
enario is overlyrestri
tive, espe
ially sin
e it ex
ludes every form of dele-tion, we investigate in this paper larger and more 
exible
lasses for whi
h the 
omplexity of the type
he
king prob-lem remains in ptime.We �rst note that the s
enario studied in [21℄ is very gen-eral: both the s
hemas and the transdu
er were determinedto be part of the input. However, for some ex
hange s
enar-ios it makes sense to �x the input and/or output s
hema:for instan
e, when 
onsidering a 
ommon s
hema within a
ommunity or when translating data from one 
ommunityto another. Therefore, we �rst revisit the various instan
esof the type
he
king problem 
onsidered in [21℄ and deter-mine the 
omplexity in the presen
e of �xed input and/oroutput s
hemas. The obtained results are summarized inTable 2 and explained in Se
tion 3. In parti
ular, we showthat for non-deleting transdu
ers and �xed input and out-put s
hemas, we 
an allow arbitrary 
opying and still havea tra
table type
he
king algorithm. Unfortunately, we alsoshow that in all new settings the type
he
king problem re-mains intra
table when allowing deletion or using tree au-tomata.As illustrated by Example 3, deletion of an arbitrary numberof interior nodes is quite typi
al for �ltering transformations.Indeed, many simple transformations sele
t spe
i�
 partsof the input while deleting the non-interesting ones. Wetherefore explore ways to preserve tra
tability but admitrestri
ted forms of deletion.First, we investigate deletion in the setting where DTDs useDFAs to de�ne right-hand sides of rules and transdu
ers
an only make a bounded number of 
opies of nodes in theinput tree. By proving a general lemma whi
h quanti�esthe 
ombined e�e
t of 
opying and deletion on the 
om-



plexity of type
he
king, we derive 
onditions under whi
htype
he
king be
omes tra
table. In parti
ular, these 
ondi-tions allow arbitrary deletion when no 
opying o

urs (likein Example 3), but at the same time permit limited 
opyingfor those rules that only delete in a limited fashion. Thisresult is relevant in pra
ti
e as in 
ommon �ltering trans-formations arbitrary deletion almost never o

urs togetherwith 
opying.We then show that the present setting 
annot be enlargedwithout in
reasing the 
omplexity. In parti
ular, we showthat 
ombining arbitrary deletion with the ability of 
opy-ing the input only twi
e, or a slight relaxation of the lim-ited deletion restri
tion makes type
he
king intra
table. Fi-nally, we brie
y examine tree automata to de�ne s
hemasand show that in the 
ase of deterministi
 tree automata, no
opying but arbitrary deletion, we get a ptime algorithm.The �rst ptime result still relies on a uniform bound on thenumber of 
opies a rule of the transdu
er 
an make. Al-though this number will always be fairly small in pra
ti
e,it would still be more elegant to have an algorithm whi
his tra
table for any transdu
er. Thereto, we have to re-stri
t the s
hema languages. In fa
t, we show that only forvery weak DTDs, those where all regular expressions are
on
atenations of symbols a and a+, type
he
king be
omestra
table, and that obvious extensions of su
h expressionsmake the problem at least 
onp-hard. So, the pri
e for ar-bitrary deletion and 
opying is very high.As an alternative to deletion, one 
an skip nodes in the inputtree by by adding XPath expressions to the transformationlanguage. In the 
ase where DTDs use DFAs, we obtaina tra
table fragment by translating the transformation lan-guage to transdu
ers without XPath expressions. As XPath
ontainment in the presen
e of DTDs [27, 36℄ 
an easilybe redu
ed to the type
he
king problem, lower bounds es-tablishing intra
tability readily follow for XPath fragments
ontaining �lter and disjun
tion. We leave one 
ase open.We only prove an initial result for the 
ase where DTDs useRE+ expressions.Finally, we address how to generate 
ounterexamples whenan instan
e fails to type
he
k and 
onsider a slight adapta-tion of the type
he
king problem: almost always type
he
k-ing. The latter problem was �rst dis
ussed by Engelfrietand Maneth [16℄ and asks whether there exist only a �nitenumber of 
ounterexample trees for a given instan
e. Weargue that the ptime algorithms in Se
tion 4 
an also beused for almost always type
he
king.Complete vs. In
omplete. Our work studies sound and
omplete type
he
king algorithms, an approa
h that shouldbe 
ontrasted with the work on general purpose XML pro-gramming languages like XDu
e [15℄ and CDu
e [11℄, forinstan
e, where the main obje
tive is fast and sound butsometimes in
omplete type
he
king. So, sometimes trans-formations are typesafe but are reje
ted by the type
he
ker.As we only 
onsider very simple and by no means Turing-
omplete transformations, it makes sense to ask for 
ompletealgorithms. In fa
t, the present paper sheds light on pre-
isely when we 
an get fast 
omplete algorithms and whenwe should start looking for in
omplete ones.

Related Work. The resear
h on type
he
king XML trans-formations is initiated by Milo, Su
iu, and Vianu [25℄. Theyobtained the de
idability for type
he
king of transforma-tions realized by k-pebble transdu
ers via a redu
tion tosatis�ability of monadi
 se
ond-order logi
. Unfortunately,in this general setting, the latter non-elementary algorithm
annot be improved [25℄. Interestingly, type
he
king of k-pebble transdu
ers has re
ently been related to type
he
kingof 
ompositions of ma
ro tree transdu
ers [16℄. Alon et al. [1,2℄ investigated type
he
king in the presen
e of data valuesand show that the problem qui
kly turns unde
idable. Aproblem related to type
he
king is type inferen
e [24, 28℄.This problem 
onsists in 
onstru
ting a tight output s
hema,given an input s
hema and a transformation. Of 
ourse,solving the type inferen
e problem implies a solution for thetype
he
king problem: 
he
k 
ontainment of the inferreds
hema into the given one. However, 
hara
terizing outputlanguages of transformations is quite hard [28℄. The trans-du
ers 
onsidered in the present paper are restri
ted versionsof the ones studied by Maneth and Neven [19℄. They alreadyobtained a non-elementary upper bound on the 
omplexityof type
he
king (due to the use of monadi
 se
ond-orderlogi
 in the de�nition of the transdu
ers). Tozawa 
onsid-ered type
he
king w.r.t. tree automata for a fragment oftop-down XSLT [34℄. His framework is more general but heonly obtains a double exponential time algorithm. It is not
lear whether that upper bound 
an be improved.Organization. The remainder of the paper is organized asfollows. In Se
tion 2, we provide the ne
essary de�nitions.In Se
tion 3, we dis
uss type
he
king in the restri
ted set-tings of �xed output and/or input s
hemas. In Se
tion 4,we 
onsider deleting transdu
ers. In Se
tion 5, we dis
ussDTDs with RE+ expressions. In Se
tion 6, we dis
uss theaddition of XPath. In Se
tion 7, we present some observa-tions. We 
on
lude in Se
tion 8. Complete proofs 
an befound in [20℄.
2. DEFINITIONSIn this se
tion we provide the ne
essary ba
kground on trees,automata, and tree transdu
ers. We �x a �nite alphabet �.
2.1 Trees, Hedges, DTDs, and Tree AutomataThe set of unranked �-trees, denoted by T�, is the smallestset of strings over � and the parenthesis symbols `)' and `('su
h that for � 2 � and w 2 T �� , �(w) is in T�. So, a treeis either " (empty) or is of the form �(t1 � � � tn) where ea
hti is a tree. The latter denotes the tree where the subtreest1; : : : ; tn are atta
hed to the root labeled �. We write �rather than �(). Note that there is no a priori bound onthe number of 
hildren of a node in a �-tree; su
h trees aretherefore unranked. In the following, whenever we say tree,we always mean �-tree. A tree language is a set of trees.Later, in the right-hand side of transdu
er rules we will allowhedges: a hedge is a �nite sequen
e of trees. The set ofhedges, denoted by H�, is de�ned as T �� .For every hedge h 2 H�, the set of nodes of h, denotedby Dom(h), is the subset of N� de�ned as follows: (i) ifh = ", then Dom(h) = ;; (ii) if h = t1 � � � tn where ea
hti 2 T�, then Dom(h) = Sni=1fiu j u 2 Dom(ti)g; and, (iii)



if h = �(w), then Dom(h) = f"g[Dom(w). In the sequel weadopt the following 
onvention: we use t; t1; t2; : : : to denotetrees and h; h1; h2; : : : to denote hedges. Hen
e, when wewrite h = t1 � � � tn we ta
itly assume that all ti's are trees.For every u 2 Dom(h), we denote by labh(u) the label of uin h. For a hedge h = t1 � � � tn, top(h), is the string obtainedby 
on
atenating the root symbol of every ti.We use extended 
ontext-free grammars and tree automatato abstra
t from DTDs and the various proposals for XMLs
hemas. Further, we parameterize the de�nition of DTDsby a 
lass of representations M of regular string languageslike, e.g., the 
lass of DFAs or NFAs. ForM 2 M, we denoteby L(M) the set of strings a

epted by M .De�nition 1. LetM be a 
lass of representations of regu-lar string languages over �. A DTD is a tuple (d; sd) whered is a fun
tion that maps �-symbols to elements of M andsd 2 � is the start symbol. For simpli
ity, we usually denote(d; sd) by d.A tree t satis�es d if labt(") = sd and for every u 2 Dom(t)with n 
hildren labt(u1) � � � labt(un) 2 L(d(labt(u))). ByL(d) we denote the tree language a

epted by d. 2We denote by DTD(M) the 
lass of DTDs where the regularstring languages are represented by elements ofM. The sizeof a DTD is the sum of the sizes of the elements of M usedto represent the fun
tion d.We re
all the de�nition of non-deterministi
 tree automatafrom [4℄. We refer the unfamiliar reader to [26℄ for a gentleintrodu
tion.De�nition 2. A nondeterministi
 tree automaton (NTA)is a tuple B = (Q;�; Æ; F ), where Q is a �nite set of states,F � Q is the set of �nal states, and Æ is a fun
tion Æ :Q � � ! 2Q� su
h that Æ(q; a) is a regular string languageover Q for every a 2 � and q 2 Q. 2A run of B on a tree t is a labeling � : Dom(t) ! Q su
hthat for every v 2 Dom(t) with n 
hildren, �(v1) � � ��(vn) 2Æ(�(v); labt(v)): Note that when v has no 
hildren, then the
riterion redu
es to " 2 Æ(�(v); labt(v)). A run is a

eptingi� the root is labeled with an a

epting state, that is, �(") 2F . A tree is a

epted if there is an a

epting run. The set ofall a

epted trees is denoted by L(B) and is 
alled a regulartree language.A tree automaton is bottom-up deterministi
 if for all q; q0 2Q with q 6= q0 and a 2 �, Æ(q; a) \ Æ(q0; a) = ;. We denotethe set of bottom-up deterministi
 NTAs by DTA.Like for DTDs, we parameterize NTAs by the formalismused to represent the regular languages in the transitionfun
tions Æ(q; a). So, for a 
lass of representations of regularlanguages M, we denote by NTA(M) the 
lass of NTAswhere all transition fun
tions are represented by elementsof M. The size of an automaton B is then jQj + j�j +Pq2Q;a2� jÆ(q; a)j. Here, by jÆ(q; a)j we denote the size ofthe automaton a

epting Æ(q; a). Unless expli
itly spe
i�edotherwise, Æ(q; a) is always represented by an NFA.

2.2 TransducersWe adhere to transdu
ers as a formal model for simple trans-formations 
orresponding to stru
tural re
ursion [5℄ and afragment of top-down XSLT. Like in [25℄, the abstra
tionfo
uses on stru
ture rather than on 
ontent. We next de-�ne the tree transdu
ers used in this paper. To simplifynotation, we restri
t to one alphabet. That is, we 
onsidertransdu
tions mapping �-trees to �-trees. Of 
ourse one
an de�ne transdu
tions where the input alphabet di�ersfrom the output alphabet.For a set Q, denote by H�(Q) (resp. T�(Q)) the set of �-hedges (resp. trees) where leaf nodes 
an be labeled withelements from Q.De�nition 3. A tree transdu
er is a tuple (Q;�; q0; R),where Q is a �nite set of states, � is the input and outputalphabet, q0 2 Q is the initial state, and R is a �nite setof rules of the form (q; a) ! h, where a 2 �, q 2 Q, andh 2 H�(Q). When q = q0, h is restri
ted to T�(Q) nQ. 2The restri
tion on rules with the initial state ensures thatthe output is always a tree rather than a hedge. Transdu
ersare required to be deterministi
: for every pair (q; a) thereis at most one rule in R.Example 1. Let T = (Q;�; p; R) where Q = fp; qg, � =fa; bg, and R 
ontains the rules(p; a)! d(e) (p; b)! d(q)(q; a)! 
 p (q; b)! 
(p q)The XSLT program equivalent to the above transdu
er isgiven in Figure 1 (we assume the program is started in modep). Note that the right-hand side of (q; a)! 
 p is a hedge,while the other right-hand sides are trees. 2The translation de�ned by T = (Q;�; q0; R) on a tree t instate q, denoted by T q(t), is indu
tively de�ned as follows:if t = " then T q(t) := "; if t = a(t1 � � � tn) and there isa rule (q; a) ! h 2 R then T q(t) is obtained from h byrepla
ing every node u in h labeled with state p by the hedgeT p(t1) � � �T p(tn). Note that su
h nodes u 
an only o

ur atleaves. So, h is only extended downwards. If there is norule (q; a) ! h 2 R then T q(t) := ". Finally, de�ne thetransformation of t by T , denoted by T (t), as T q0(t).For a 2 �, q 2 Q and (q; a) ! h 2 R, we denote h byrhs(q; a). If q and a are not important, we say that h is arhs. The size of T is jQj+ j�j+Pq2Q;a2� jrhs(q; a)j. In thesequel, we always use p; p1; p2; : : : and q; q1; q2; : : : to denotestates.Example 2. In Figure 2 we give the translation of the treet de�ned as bb ba b ab



<xsl:template mat
h="a" mode ="p"><d><e/></d></xsl:template><xsl:template mat
h="b" mode ="p"><d><xsl:apply-templates mode="q"/></d></xsl:template><xsl:template mat
h="a" mode ="q"><
/><xsl:apply-templates mode="p"/></xsl:template><xsl:template mat
h="b" mode ="q"><
> <xsl:apply-templates mode="p"/><xsl:apply-templates mode="q"/></
></xsl:template>Figure 1: The XSLT program equivalent to thetransdu
er of Example 1.by the transdu
er of Example 1. In order to save spa
e, wedid not list T q(") and T p("). 2
2.3 Copying and DeletionWe dis
uss two important features: 
opying and deletion.In Example 1, the rule (q; b)! 
(p q) 
opies the 
hildren ofthe 
urrent node in the input tree two times: one 
opy ispro
essed in state p and the other in state q. The symbol
 is the parent node of the two 
opies. So the 
urrent nodein the input tree 
orresponds to the latter node. The rule(q; a) ! 
 p 
opies the 
hildren of the 
urrent node onlyon
e. However, no parent node is given for this 
opy. So,there is no 
orresponding node for the 
urrent node in theinput tree. We therefore say that it is deleted. For instan
e,T q(a(b)) = 
 d where d 
orresponds to b and not to a.We illustrate the fun
tionality of 
opying and deleting bymeans of a typi
al �ltering example.Example 3. The following DTD(DFA) de�nes a s
hemafor books:book ! title, author+, 
hapter+
hapter ! title, introdu
tion, se
tion+se
tion ! title, paragraph+, se
tion�Here, 
omma denotes 
on
atenation. Figure 3 depi
ts ado
ument 
onforming to the given s
hema. The followingtransdu
er generates a table of 
ontents: that is, for every
hapter of the book a list of its se
tion titles.(q; book)! book(q)(q; 
hapter)! 
hapter q(q; title)! title(q; se
tion)! q

The do
ument in Figure 3 is transformed into the treebooktitle 
hapter title title title title 
hapter title titleThe example illustrates the usefulness of deleting states: allintermediate se
tions are skipped. Further, the rule(q; 
hapter)! 
hapter qallows to list all se
tion titles next to the 
hapter elementrather than below.Next, we illustrate 
opying. The following transdu
er ex-tends the previous one by adding a summary of the bookto the table of 
ontents. The summary is given by listingthe title and introdu
tion of ea
h 
hapter. By using the twostates p and p0, we make sure that the title of the book isnot printed in the summary.(q; book)! book(q p)(q; 
hapter)! 
hapter q(q; title)! title(q; se
tion)! q(p; 
hapter)! 
hapter(p0)(p0; title)! title(p0; introdu
tion)! introdu
tionThe output of the transformation, applied to the do
umentin Figure 3 is the following tree. Here, we repla
ed thepart of the output that is also generated by the previoustransformation with dots.book� � � 
haptertitle introdu
tion 
haptertitle introdu
tion 2We de�ne some relevant 
lasses of transdu
ers. A transdu
eris non-deleting if no states o

ur at the top-level of a rhs.We denote by Tnd the 
lass of non-deleting transdu
ers andby Td the 
lass of transdu
ers where we allow deletion. Fur-ther, a transdu
er T has 
opying width k if there are at mostk o

urren
es of states in every sequen
e of siblings in theright-hand sides of rules of T . For instan
e, the transdu
erin Example 1 has 
opying width two. By Tb
 we denote the
lass of transdu
ers for whi
h there is a natural number ksu
h that all transdu
ers have 
opying width k. We leavek impli
it. We denote the interse
tions of these 
lasses by
ombining the indexes. For instan
e, Tnd;b
 is the 
lass ofnon-deleting transdu
ers with bounded 
opying. To empha-size that we allow unbounded 
opying, we also write Tnd;
rather than Tnd.
2.4 The Typechecking ProblemA tree transdu
er T type
he
ks w.r.t. to an input tree lan-guage Sin and an output tree language Sout, if T (t) 2 Soutfor every t 2 Sin.



T p(t) ) dT q(b) T q(b(ab)) T q(a(b))+d
 
de d 
 

 d ( d
 
T p(a) T p(b) T q(a) T q(b)
 T p(b)Figure 2: The translation of t = b(b b(a b)a(b)) by the transdu
er T of Example 1.booktitle author 
haptertitle introdu
tion se
tiontitle paragraph se
tiontitle paragraph se
tiontitle paragraph 
haptertitle introdu
tion se
tiontitle paragraphFigure 3: A do
ument 
onforming to the s
hema of Example 3.Example 4. The se
ond transdu
er of Example 3 type-
he
ks w.r.t. the input s
hema and the following DTD:book ! title; (
hapter; title�)�; 
hapter�
hapter ! title; introdu
tion j " 2We de�ne the problem 
entral to this paper.De�nition 4. Given Sin, Sout, and T , the type
he
kingproblem 
onsists in verifying whether T type
he
ks w.r.t.Sin and Sout. 2The size of the input is the sum of the sizes of Sin, Sout,and T . We parameterize the type
he
king problem by thekind of tree transdu
ers and tree languages we allow. LetT be a 
lass of transdu
ers and S be a 
lass of tree lan-guages. Then TC[T ;S℄ denotes the type
he
king problemwhere T 2 T and Sin; Sout 2 S. Examples of 
lasses of treelanguages, are those de�ned by tree automata or DTDs.Classes of transdu
ers are dis
ussed in the previous se
tion.The 
omplexity of the problem is measured in terms of thesum of the sizes of the input and output s
hemas and thetransdu
er.Table 1 summarizes the results obtained in [21℄. All prob-lems are 
omplete for the mentioned 
omplexity 
lasses. Inthe setting of [21℄, type
he
king is only tra
table when re-stri
ting to non-deleting and bounded 
opying transdu
ersin the presen
e of DTDs with DFAs. In the remainder ofthe paper, we obtain more general 
lasses for whi
h type-
he
king is in ptime.
3. FIXING SCHEMA LANGUAGESAs argued in the introdu
tion, for some s
enarios it makessense to 
onsider the input and/or output s
hema not as

part of the input. From a 
omplexity theory point of view,it is important to note here that the input and/or outputalphabet then also be
omes �xed. In this se
tion, we revisitthe results of [21℄ in that respe
t. Surprisingly, the newsettings do not result in a spe
ta
ular improvement of the
omplexity.The results are summarized in Table 2. We explain the no-tation used in the table. The se
ond 
olumn spe
i�es thekind of tree transdu
er: d stands for deleting, 
 for 
opy-ing, nd for non-deleting, and b
 for bounded 
opying. Theleftmost 
olumn lists whi
h s
hema languages are �xed. Inthe 
ase of deleting transformations, the di�erent possibili-ties are grouped as all 
omplexities 
oin
ide. The remaining
olumns show the allowed s
hema languages. As some re-sults already follow from proofs in [21℄, we printed the newresults in bold. The entries where the 
omplexity was low-ered are underlined.We dis
uss the obtained results: for non-deleting transfor-mations, we get two new tra
table 
ases: (1) �xed outputs
hema, bounded 
opying and DTD(NFA)s; and, (2) �xedinput and output, unbounded 
opying and all DTDs. It isstriking, however, that in the presen
e of deletion or treeautomata (even deterministi
 ones) type
he
king remainsexptime-hard for all s
enarios. So, the relaxed setting stilldisallows to 
ombine tra
tability with the desirable abilityto delete. We therefore fo
us on deletion in the next se
tion.Mostly, we only needed to strengthen the lower bound proofsof [21℄. A parti
ularly interesting non-trivial 
ase, is thepspa
e lower bound of TCo[Tnd;
,DTD(DFA)℄. The rest ofthe proofs 
an be found in [20℄.Proposition 3.1. TCo[Tnd;
; DTD(DFA)℄ is pspa
e-hard.Proof. We use a redu
tion from the 
orridor tiling prob-



TT NTA DTA DTD(NFA) DTD(DFA)d,
 exptime exptime exptime exptimend,
 exptime exptime pspa
e pspa
end,b
 exptime exptime pspa
e ptimeTable 1: Results of [21℄ (upper and lower bounds).�xed TT NTA DTA DTD(NFA) DTD(DFA)in, out, d,
 EXP EXP EXP EXPin+out d,b
 EXP EXP EXP EXPin nd,
 EXP EXP PSPACE PSPACEnd,b
 EXP EXP PSPACE PTIMEout nd,
 EXP EXP PSPACE PSPACEnd,b
 EXP EXP PTIME ptimein+out nd,
 EXP EXP NL NLnd,b
 EXP EXP NL NLTable 2: Complexities of the type
he
king problem in the new setting (upper and lower bounds).lem [6℄. Let (D; V;H; �t;�b) be a tiling system, where D =ft1; : : : ; tkg is the set of tiles, V � D2 and H � D2 are thesets of verti
al and horizontal 
onstraints respe
tively, and�t and �b are the top and bottom row, respe
tively. Let n bethe width of �t and �b. The tiling system has a solution ifthere is an m 2 N, su
h that the spa
e m� n (m rows andn 
olumns) 
an be 
orre
tly tiled (w.r.t. H and V ) with theadditional requirement that the bottom and top row are �band �t, respe
tively.We de�ne the input DTD din over the alphabet � := f(i; tj) jj 2 f1; : : : ; kg; i 2 f1; : : : ; ngg [ frg; r is the start symbol.De�ne din(r) = #�t#��1 ��2 � � ��n#���b#; where we denoteby �i the set f(i; tj) j j 2 f1; : : : ; kgg. Here, # fun
tionsas a row separator. For all other alphabet symbols a 2 �,din(a) = ". So, din en
odes all possible tilings that start andend with the bottom row �b and the top row �t, respe
tively.We now 
onstru
t a tree transdu
er T = (QT ;�; q0T ; RT )and an output DTD dout su
h that the tiling system has no
orre
t 
orridor tiling if and only if T type
he
ks w.r.t. dinand dout. Intuitively, the transdu
er and the output DTDhave to work together to determine errors in input tilings.There 
an only be two types of error: two tiles do not mat
hhorizontally or two tiles do not mat
h verti
ally. The maindiÆ
ulty is that the output DTD is �xed and 
an, there-fore, not depend on the tiling system. The transdu
er is
onstru
ted in su
h a way that it prepares in parallel theveri�
ation for all horizontal and verti
al 
onstraints by theoutput s
hema. In parti
ular, the transdu
er outputs spe-
i�
 symbols from a �xed set independent of the tiling sys-tem allowing the �xed output s
hema to determine whetheran error o

urred.The state set QT is partitioned into two sets: (1) one forthe horizontal 
onstraints: for every i 2 f1; : : : ; n � 1g andt 2 D, qi;t 2 QT transforms the rows in the tiling su
hthat it is possible to 
he
k that when position i 
arries at, position i + 1 
arries a t0 su
h that (t; t0) 2 H; and, (2)one for the verti
al 
onstraints: for every i 2 f1; : : : ; ng andt 2 D, pi;t 2 QT transforms the rows in the tiling su
h that

it is possible to 
he
k that when position i 
arries a t, thenext row 
arries a t0 on position i su
h that (t; t0) 2 V .The tree transdu
er T always starts its transformation withthe rule (q0T ; r)! r(w); where w is the 
on
atenation of allof the above states, separated by the delimiter $. The otherrules are of the following form:� Horizontal 
onstraints: for all (j; t) 2 � add the rule(qi;t; (j; t0))! � where� = 8>>><>>>: a if j = i and t = t0e if j = i and t 6= t0a if j = i + 1 and (t; t0) 2 Hb if j = i + 1 and (t; t0) 62 He if j 6= i and j 6= i+ 1Finally, (qi;t;#) ! hor. The intuition is as follows:if the i-th position in a row is labeled with t, thenthis position is transformed into a. Position i + 1 istransformed to a when it 
arries a tile that mat
hest horizontally. Otherwise it is transformed to b. Allother symbols are transformed into an e. So, a row,delimited by two hor-symbols, is wrong i� there is ana immediately followed by a b. When there is no a,then position i was not labeled with t. So, the label aa
ts as a trigger for the output automaton.� Verti
al 
onstraints: for all (j; t) 2 �, add the rule(qi;t; (j; t0))! � where� = 8>>><>>>: a if (j; t0) = (i; t) and (t; t) 2 Vb if (j; t0) = (i; t) and (t; t) 62 V
 if j = i, t 6= t0, and (t; t0) 2 Vd if j = i, t 6= t0, and (t; t0) 62 Ve if j 6= iFinally, (qi;t;#) ! ver. The intuition is as follows:if the i-th position in a row is labeled with t, thenthis position is transformed into a when (t; t) 2 Vand to b when (t; t) 62 V . Here, both a and b a
t asa trigger for the output automaton: they mean that



position i was labeled with t. But no a and b 
ano

ur in the same transformed row. When position iis labeled with t0 6= t, then we transform this positioninto 
 when (t; t0) 2 V , and in d when (t; t0) 62 V . Allother positions are transformed into e. The outputDFA works as follows. If a position is labeled a then ita

epts if there is a d o

urring after the next ver. Ifa position is labeled b, then it a

epts if there is a b ora d o

urring after the next ver. Otherwise, it reje
tsthat row.By making use of the delimiters ver and hor, both abovedes
ribed automata 
an be 
ombined into one taking 
areof the verti
al and the horizontal 
onstraints. Note thatthe output automaton is de�ned over the �xed alphabetfa; b; 
; d; e; hor; ver; $g.In the remainder of the paper, we denote by TCi[T ;S℄,TCo[T ;S℄ and TCi=o[T ;S℄ the type
he
king problem wherethe input s
hema, output s
hema and both input and out-put s
hema are �xed respe
tively. So, the size of the inputof the type
he
king problem is the sum of the sizes of theinput and output s
hema and the tree transdu
er, minus thesize of the �xed parameter(s).
4. DELETION, BOUNDED COPYING, AND

DFASAlthough deletion has an enormous impa
t on the 
omplex-ity of type
he
king, as is exempli�ed by the �rst two rowsof Table 2, more often than not, the ability to skip nodesin the input tree is 
riti
al. Indeed, many simple transfor-mations like the ones in Example 3 sele
t spe
i�
 parts ofthe input while deleting the non interesting ones. Moreover,su
h deletion 
an be unbounded. That is, the number ofdeleted nodes on a path depends only on the input tree andnot on the s
hema.In this se
tion, we fo
us on DTD(DFA)s and on bounded
opying transdu
ers. We prove a general lemma whi
h quan-ti�es the 
ombined e�e
t of 
opying and deletion on the
omplexity of type
he
king. From this lemma we then de-rive 
onditions under whi
h type
he
king be
omes tra
table.Interestingly, these 
onditions allow arbitrary deletion whenno 
opying o

urs, but at the same time permit bounded
opying for those rules that only delete in a bounded fash-ion. We further show that these 
onditions 
annot be re-laxed without in
reasing the 
omplexity. Finally, we dis
usstype
he
king in the 
ontext of s
hemas represented by de-terministi
 tree automata.
4.1 A Tractable CaseWe start by introdu
ing some terminology. Let T = (Q;�; q0;R) be a transdu
er. A deletion path is a sequen
e of statesq1; : : : ; qn su
h that qi o

urs in top(rhs(qi�1; ai�1)) for ev-ery i = 2; : : : ; n, where a1; : : : ; an�1 2 �. A state q is re-
ursively deleting if it o

urs twi
e in some deletion path;otherwise, q is said to be non-re
ursively deleting. The dele-tion width of q is the maximum number of o

urren
es ofstates in top(rhs(q; a)) for all a 2 �. For instan
e, if R
ontains the rules (q; a) ! aq1bq2q3 and (q; b) ! q1a, thenthe deletion width of q is three. The deletion width of a

deletion path q1; : : : ; qn is the produ
t of the deletion widthsof q1; : : : ; qn�1 (qn is not 
ounted). A deleting state q hasdeletion depth k if all deletion paths starting with q 
ontainat most k + 1 states. If there exists no su
h k, we say thatq has in�nite deletion depth. In parti
ular, all re
ursivelydeleting states have in�nite deletion depth.Example 5. Suppose that T is a tree transdu
er with statesq1; : : : ; q8 and the following rewrite rules:(q1; a)! q2 a q2 a (q5; a)! q6 aa q6(q2; a)! a q3 q3 a q3 (q6; a)! q7 q7 q7(q3; a)! q4 (q7; a)! a q8 a(q4; a)! a (q8; a)! aa q7The deletion depths and widths are given as follows:state q1 q2 q3 q4 q5 q6 q7 q8deletion depth 3 2 1 0 1 1 1 1deletion width 2 3 1 0 2 3 1 1The sequen
es q1; q2; q3; q4 and q5; q6; q7; q8; q7 are examplesof deletion paths in T . Both paths have deletion width six.Note that the deletion path q5; q6; q7; q8; q7; q8; q7; q8 also hasdeletion width six. The reason is that the deletion widthsof q7 and q8 themselves are one. Would there be a rule(q7; b) ! q8q8 then paths of arbitrary large deletion width
ould be 
onstru
ted. 2We are now ready to de�ne the 
lass of transdu
ers that isof interest to us.De�nition 5. By T C;Ktra
 , we denote the 
lass of transdu
ersthat (i) have 
opying bound C, and (ii) for whi
h everydeletion path has deletion width at most K. 2When C and K are not important, we simply write Ttra
instead of T C;Ktra
 .Note that the 
lass T C;Ktra
 allows re
ursive deleting, but onlyfor those states that do not 
opy at the same time. Oth-erwise the width of deletion paths 
annot be bounded. So,if a state of a T C;Ktra
 transdu
er is re
ursively deleting thenevery right-hand side is of the form hqg where q is a stateand h and g are hedges 
ontaining no states on their toplevel and whose 
opying width is at most C. When a stateis non-re
ursively deleting, then simultaneous 
opying anddeleting is allowed but only in a bounded fashion. That is,every deletion path 
ontaining that state is of deletion widthat most K and rhs(q; a) has 
opying width at most C.Example 6. The �rst transdu
er in Example 3 belongs toT 1;1tra
 while the se
ond is in T 2;1tra
. The transdu
er of Exam-ple 5 is in T 3;6tra
. 2The next lemma provides a detailed analysis of the 
om-plexity of type
he
king in terms of 
opying and deletion



power. Its proof is a non-trivial generalization from non-deleting to deleting transdu
ers of the redu
tion in [21℄ fromTC[Tnd;
; DTD(DFA)℄ to emptiness of unranked tree au-tomata, followed by an analysis of the size of the obtainedautomaton.Lemma 4.1. The 
omplexity of TC[T C;Ktra
 ; DTD(DFA)℄is O�(jdinjjT jCK jdoutjCK)��; where jdinj and jdoutj are thesizes of the input and output s
hema, respe
tively; jT j is thesize of the tree transdu
er T ; and � is a 
onstant.Proof sket
h. For a transdu
er T = (QT ;�; q0T ; RT ) 2T C;Ktra
 , and input and output s
hemas din and dout, we 
on-stru
t a nondeterministi
 unranked tree automaton A a
-
epting all 
ounterexample trees. That is, L(A) = ft 2L(din) j T (t) 62 L(dout)g. So, L(A) = ; i� T type
he
ksw.r.t. din and dout. The size of A isO((jdinjjT jCK jdoutjCK)�)for some 
onstant �. As emptiness NTAs is in ptime, thereis a 
onstant � su
h that the 
omplexity of the type
he
kingproblem is O�(jdinjjT jCK jdoutjCK)��.Che
king whether the input of A is 
onform to the inputs
hema 
an be done by a simple produ
t 
onstru
tion oftree automata. We therefore fo
us on verifying whether theoutput of the transformation is not 
onform to the outputs
hema. Intuitively, the tree automaton non-deterministi-
ally lo
ates a node v in the input tree that generates asubtree �(a01(t01) � � � a0m(t0m))in the output su
h that a01 � � � a0m 62 dout(�). More spe
i�-
ally, A simulates T on the subtree rooted at v and runs theDFA D representing dout(�) on a01 � � � a0n.Let a(t1 � � � tn) be the tree rooted at v and suppose thatT pro
esses v in state q. Suppose that rhs(q; a) 
ontainsthe subtree �(z0q1z1 � � � qkzk), where z0; : : : ; zk 2 �� andq1; : : : ; qk 2 QT . Then, A needs to simulate D onz0 top�T q1 (t1) � � �T q1(tn)� � � � top�T qk (t1) � � �T qk(tn)� zkand a

ept if D reje
ts. Note that k is bounded by C. Forea
h ti, the automaton A guesses k pairs of states of D,(p1i;1; p1i;2); : : : ; (pki;1; pki;2), so that top(T qj (ti)) takes D fromstate pji;1 to state pji;2. We always make sure that1. z0 takes D from its initial state to p11;1;2. zk takes D from pkn;2 to a reje
ting state;3. for ea
h j = 1; : : : ; k� 1, zj takes D from pjn;2 to pj+11;1 ;and4. for ea
h i = 1; : : : ; n � 1 and j = 1; : : : ; k, we havepji;2 = pji+1;1.Note that for this step, A needs to remember at most 2Cstates of D for ea
h subtree.The most 
hallenging part remains: testing whether for ea
hti, and j = 1; : : : ; k, the string top(T qj (ti)) takes D fromstate pji;1 to state pji;2. We only sket
h the idea. If rhs(qj ; �i),

where �i is the root of ti, 
ontains no deleting states, thentop(T qj (ti)) only depends on rhs(qj ; �i) and not on ti and weare done. When rhs(qj ; �i) 
ontains only one deleting state,then we just need to guess k new pairs (pi;1; pi;2) and pro
eedas before. So, for re
ursively deleting states that do not 
opywe only need to remember k pairs of states. Otherwise,when rhs(qj ; �i) 
ontains say ` deleting states, then we needto guess k � ` pairs of states. As long as the transdu
erdeletes, ea
h of these requires guessing new states. As Kis an upper bound for this number, CK is the maximumnumber of pairs that need to be remembered at all time to
he
k whether for every i, top(T qj (ti)) takes D from statepji;1 to state pji;2. We refer the interested reader to [20℄ for afull proof.From Lemma 4.1 the following tra
tability result then read-ily follows.Theorem 4.2. TC[Ttra
; DTD(DFA)℄ is in ptime.So, not only do we obtain a ptime algorithm, Lemma 4.1also provides a 
lear view on the 
on
rete 
omplexity interms of the di�erent parameters.Link with pra
ti
e. At �rst sight, Lemma 4.1 seems tobe bad news as C and K o

ur in the exponent. Never-theless, we believe these numbers to be small in pra
ti
altransformations. The good news, hidden in the de�nitionof K, is that there is no penalty for the re
ursive deletionwithout 
opying that o

urs in many �ltering transforma-tions. In 
ontrast to our previous results that abandoneddeletion 
ompletely, the present result shows that transfor-mations with small C and K but arbitrary deletion without
opying 
an still be eÆ
iently type
he
ked.
4.2 Lower Bounds for ExtensionsWe address the question whether there are obvious exten-sions of Ttra
 for whi
h type
he
king remains tra
table. Firstof all, we 
annot allow arbitrary 
opying as even withoutdeletion type
he
king is pspa
e-hard (see Table 1). How-ever, the restri
tion on deletion for Ttra
 transformations isvery severe: the number of 
onse
utive deletions is �xed inadvan
e and does not even depend on the transdu
er. Asa generalization, we 
an therefore 
onsider the 
lass Tnrd ofnon-re
ursively deleting transdu
ers for whi
h no transdu
eris re
ursively deleting. Note that now the length of a dele-tion path is bounded by the number of states in the trans-du
er. Unfortunately, the next theorem gives little hope fora tra
table type
he
king algorithm for that 
lass.Theorem 4.3. TCi[Tnrd;b
; DTD(DFA)℄ is pspa
e-hard.In a Ttra
 transdu
er, a re
ursively deleting state 
an not
opy. A legitimate question is whether that restri
tion isne
essary. We show that even in the 
ase of �xed input andoutput s
hema, an in
rease to deletion width two for re
ur-sively deleting states results in an exptime lower bound fortype
he
king. We denote the 
lass where every state 
anhave at most deletion width k by Tdw=k.



Theorem 4.4. TCi=o[Tdw=2;b
; DTD(DFA)℄ is exptime-hard.
4.3 Tree AutomataIn the last part of this se
tion, we turn to s
hemas de�nedby unranked tree automata. We show that when we �xthe 
opying width to one, denoted by 
w = 1, then re
ur-sively deleting of width one remains tra
table in the presen
eof DTA(DFA)s but not when DTA(NFA)s are used. Su
htransformations are mild generalizations of relabelings. It ishen
e not surprising that the output type of a transdu
er inTdw=1;
w=1 
an be 
aptured by a tree automaton. The latterobservation is a generalization of the 
orresponding result forranked tree transdu
ers [13℄ (Proposition 7.8(b)). We onlyhave to show that the 
onstru
tion of the unranked tree au-tomaton 
an be done in ptime. Type
he
king then redu
esto 
ontainment 
he
king of NTA(NFA)s in DTA(DFA)s. For
ompleteness, we also mention here that type
he
king isexptime-hard when we extend the 
opying width to two.Theorem 4.5. 1. TC[Tdw=1;
w=1; DTA(DFA)℄ isptime-
omplete;2. TCi[Tdw=1;
w=1; DTA(NFA)℄ is pspa
e-hard; and3. TCi=o[Tnd;
w=2; DTA(DFA)℄ is exptime-hard.
5. DELETION, UNBOUNDED COPYING,

AND RE+All tra
table fragments of the previous setting assume a uni-form bound on the 
opying and deletion width of a trans-du
er. Although in pra
ti
e these bounds will usually besmall and Lemma 4.1 provides a detailed a

ount of theire�e
t, the restri
tions remain somewhat arti�
ial. In thepresent se
tion we therefore investigate fragments in whi
hthere are no restri
tions on the 
opying or deletion powerof the transdu
er. This implies that we have to restri
ts
hemas, e.g., by restri
ting the regular expressions in rules.We 
onsider the following regular expressions. Let RE+ bethe set of regular expressions of the form �1 � � ��k whereevery �i is ", a, or a+ for some a 2 �. An example is titleauthor+ 
hapter+. In this se
tion, we show that type-
he
king for arbitrary tree transdu
ers w.r.t. DTD(RE+) isin ptime. We note that every DTD(RE+) is either non-re
ursive (i.e. an a-labeled node has no a-labeled des
en-dants) or de�nes the empty language. However, the tra
tabil-ity of type
he
king remains non-trivial, as in general type-
he
king is already pspa
e-
omplete when using DTD(DFA)sonly de�ning trees of depth one [21℄.Let T = (QT ;�; q0T ; RT ) be a tree transdu
er, and denotethe input and output DTD by din and dout, respe
tively.We'll present a sket
h of the proof. To this end, we intro-du
e some terminology. For an RE+ expression e and DTDd, we denote by de the hedge language fa1(h1) � � � an(hn) ja1 � � � an 2 L(e) and for every i = 1; : : : ; n, ai(hi) 2 (d; ai)g.So, if t1 � � � tn 2 de then top(t1) � � � top(tn) 2 L(e) and ev-ery ti is a derivation tree of (d; top(ti)). Re
all that (d; ai)denotes DTD d with start symbol ai. For a state q 2 QTand an alphabet symbol a 2 �, we say that the pair (q; a) isrea
hable if there exists a tree t in din su
h that T pro
esses

at least one node of t labeled with a in state q. The latterset 
an be 
omputed in ptime.To verify that the instan
e type
he
ks, we have to 
he
kthat for every rea
hable pair (q; a) and for every node u inrhs(q; a) thatfz0top(T q1(h))z1 � � � zk�1top(T qk(h))zk j h 2 deing � dout(�);where e = din(a), z0q1z1 � � � qkzk is the 
on
atenation of u's
hildren, and � is the label of u. In the above, for h =t1 � � � tn, we denote by T q(h) the hedge T q(t1) � � �T q(tn).We denote the above language o

urring to the left of � byLq;a;u. Note that the latter is not ne
essarily regular, oreven 
ontext-free. We 
onstru
t an extended 
ontext-freegrammar Gq;a;u su
h that L(Gq;a;u) � dout(�) i� Lq;a;u �dout(�). More spe
i�
ally, Gq;a;u = (V;�; P; S), where V =fhp; bi j p 2 QT ; b 2 �g is the set of non-terminals, � is theset of terminals, P is the set of produ
tion rules and S isthe start symbol. Intuitively, ea
h non-terminal hp; bi 
or-responds to the string language ftop(T p(t)) j t 2 (din; b)g.It remains to de�ne the produ
tion rules P . For the startsymbol S, we have the ruleS ! z0hq1; e1i�1 � � � hq1; eni�nz1 � � �� � � zk�1hqk; e1i�1 � � � hqk; eni�nzk;where dout(�) = e�11 � � � e�nn , every ei 2 � and �i is either +or ". For a non-terminal hp; bi let din(b) = b�11 � � � b�mm andlet top(rhs(p; b)) = s0p1s1 � � � p`s`. Then we add the rulehp; bi ! s0hp1; b1i�1 � � � hp1; bmi�ms1 � � �� � � s`�1hp`; b1i�1 � � � hp`; bmi�ms`to P . If there is no rhs(p; b) in RT , we add hp; bi ! " toP . Note that Gq;a;u is an extended 
ontext-free grammar,polynomial in the size of din and T . It is easy to see thatsin
e din is not re
ursive, Gq;a;u is also non-re
ursive.It follows from the next lemma that Lq;a;u � dout(�) i�L(Gq;a;u) � dout(�). For a non-terminal hp; bi 2 V , we de-note by L(hp; bi) the language that is generated by (V;�; P;hp; bi), i.e. the grammar Gq;a;u with start symbol hp; bi.Lemma 5.1. Let e and f be RE+ expressions, with e =e�11 � � � e�nn , d a DTD(RE+) and T = (QT ;�; ÆT ; RT ) a treetransdu
er. For z0; : : : ; zk 2 �� and q1; : : : ; qk 2 QT , de�neLe = fz0top(T q1(h))z1 � � � zk�1top(T qk(h))zk j h 2 L(de)g;L0e = fz0top(T q1(h1))z1 � � � zk�1top(T qk(hk))zk jh1; : : : ; hk 2 L(de)g;andL00e = fz0s1z1 � � � zk�1skzk jsi 2 L(hqi; e1i)�1 � � �L(hqi; eni)�n ; i 2 f1; : : : ; kgg:Then, Le � L(f), L0e � L(f), L00e � L(f):



Finally, testing whether L(Gq;a;u) � L(dout(�)) 
an thenbe done in ptime using standard te
hniques. We have thusobtained the following theorem.Theorem 5.2. TC[Td;
; DTD(RE+)℄ is in ptime.The simpli
ity of RE+-expressions seems to be the pri
e topay for a tra
table algorithm for arbitrary transdu
ers. In-deed, the in
lusion problem for a 
lass of regular expressionsC 
an readily be redu
ed to type
he
king with DTD(C)s.As it is shown in [22℄ that in
lusion of obvious extensionsof RE+-expressions is 
onp-hard, type
he
king for the 
or-responding fragment is 
onp-hard. In parti
ular, [22℄ dis-
usses expressions of the form �1 � � ��n where all �i belongto 
lasses (1) a or a?, and (2) a or a�. By using similar te
h-niques as in [22℄, it 
an also be shown that in
lusion is 
onp-hard for expressions where all �i belong to 
lasses (3) a or(a+1 + � � �+a+n ), (4) a or (a1 � � � an)+ (5) a or (a1+ � � �+an)+and (6) (a1 + � � �+ an) or a+.An interesting question is whether we 
an also obtain aptime type
he
king algorithm if we allow expressions of theform � and �+ " where � is an RE+ expression. This prob-lem remains open. The following simple example shows whyLemma 5.1 does not hold anymore for su
h expressions.Example 7. Consider the DTD din with rules r ! a + "and a ! ", and let T be a tree transdu
er with start stateq0 and rules(q0; r)! r(q1 q2) (q1; a)! a (q2; a)! b:Then Lr = f"; abg and L0r = ftop(T q1(t1)T q2 (t2)) j t1; t2 2da+"in g = f"; a; b; abg. But Lr � L(a+b+ + "), while L0r 6�L(a+b+ + "). 2
6. XPATH EXPRESSIONSAn approa
h 
omplementary to deletion, is the use of XPathexpressions to skip nodes of the input tree. We only 
on-sider XPath expressions for downward navigation and there-fore restri
t attention to the following axes and predi
ates:
hild (=), des
endant (==), wild
ard (�), disjun
tion (j), and�lter ([ ℄). We allow node tests and either the 
hild ordes
endant axis in every fragment of XPath we 
onsider.We use the following notational 
onvention: for a sequen
eX of axes and predi
ates, we denote by XPathfXg theXPath expressions that only use the axes and predi
ates infXg. We assume that the semanti
s of XPath is known (see,e.g., [7℄). Re
all that an XPath pattern de�nes a fun
tiont�Dom(t)! 2Dom(t).Let P be a set of patterns. We explain how the syntax andthe semanti
s of transdu
ers is extended to patterns in P .We denote the latter fragment by T P . Rules are now of theform (q; a)! h where h 2 H�((Q�P )[Q). That is, state-pattern pairs hq;  i 
an now also o

ur at leaves. Previously,all 
hildren of the 
urrent node were pro
essed; now, onlythe nodes sele
ted by  starting from the 
urrent node (indo
ument order). We denote state-pattern pairs with angledparentheses to avoid 
onfusion in the string representationof trees. In our framework, we only use XPath expressionsthat start with � , i.e. always start from the 
ontext node.

So, if T is a tree transdu
er, t = a(t1 � � � tn) and there isa rule (q; a) ! h 2 RT then T q(t) is obtained from h byrepla
ing every node u in h labeled with hp; i by the hedgeT p(t=u1) � � � T p(t=un) where  (t; ") = fu1; : : : ; ung and thesequen
e u1; : : : ; un o

urs in do
ument order. Here, wedenote by t=u the subtree of t rooted at u. Note that the
ontext node is always set to the root of the subtree that isto be pro
essed by T .Example 8. When making use of XPath expressions, we
an write the �rst do
ument transformation in Example 3more su

in
tly as follows:(q; book)! book(q)(q; 
hapter)! 
hapter hq; �==titlei(q; title)! title 2Via a redu
tion to Theorem 4.2, we show that for very sim-ple XPath expressions added to the formalism type
he
kingremains in ptime.Theorem 6.1. TC[T XPathf=;�gtra
 ; DTD(DFA)℄ is in ptime.Proof. We will show that for any tree transdu
er T 2T XPathf=;�gtra
 , we 
an 
onstru
t an equivalent tree transdu
erT 0 2 Ttra
 su
h that size(T 0) is O(size(T )) and T and T 0have the same 
opying width and deletion path width.Intuitively, we 
onvert every XPath-expression x o

urringin T to a DFA, whi
h we simulate by using deleting statesin T 0. The simulation of su
h DFAs only introdu
es non-re
ursively deleting states of deleting width one.Formally, let T = (QT ;�; q0T ; RT ) and let XT be the XPathexpressions o

urring in T . For ea
h XPath-expression x 2XT , let Ax = (Qx;�; Æx; fqIxg; fqFx g) be the DFA represent-ing it. A

ording to [14℄, ea
h Ax is linear in the size of x.Further, Ax is a
y
li
, only a

epts a �nite language, andall strings in L(Ax) are of the same length. Without loss ofgenerality, we assume that the sets Qx are pairwise disjointand disjoint from QT .We 
onstru
t T 0 = (QT 0 ;�; q0T ; RT 0) as follows. Its state setis QT [ Sx2XT QX . For every rule (q; a) ! h in RT , andfor every hp; xi o

urring in h we have the following set ofrules in RT 0� (q; a) ! h0 where h0 is the hedge obtained from h byrepla
ing every o

urren
e of hp; xi by qIx;� (px; b) ! Æx(px; b) for every px 2 Qx and b 2 � su
hthat Æx(px; b) 6= qFx ; and� (px; b) ! rhs(p; b) for every px 2 Qx and b 2 � su
hthat Æx(px; b) = qFx .We only need to argue that the XPath expressions in T areevaluated 
orre
tly in T 0. To this end, it easy to see that



we only use deleting states for nodes that are skipped in theinput tree by the XPath expressions, and that we 
ontinue inthe 
orre
t state in QT in the nodes that are sele
ted by theXPath expressions. Further, only deleting states of widthone are introdu
ed. So, T 0 2 T C;Ktra
 whenever T 2 T C;Ktra
 .Although the fragment XPathf=; �g is very limited, the nexttheorem shows that there is not mu
h room for improve-ment. The lower bounds in the �rst bullet follow from a re-du
tion from XPath 
ontainment in the presen
e of DTDs [27,36℄. The lower bound in the se
ond bullet follows from a re-du
tion from the interse
tion emptiness problem for DFAsover a unary alphabet.Theorem 6.2. The following problems are 
onp-hard.1. TC[T Xnd;b
; DTD(DFA)℄, for X amongXPathf=; jg;XPathf==; jg;XPathf=; [℄g and XPathf==; [℄g;and2. TC[T XPathf==gtra
 ; DTD(DFA)℄.We denote by T DFA the fragment where patterns are spe
-i�ed by DFAs (every node that is rea
hed in a �nal stateis sele
ted). When we 
ompletely disallow deletion, we stillhave tra
tability when patterns are spe
i�ed by DFAs.Theorem 6.3. TC[T DFAnd;b
 ; DTD(DFA)℄ is in ptime.Using the link between DFAs and XPath expressions thatwas laid in [14℄, we immediately obtain that type
he
kingis in ptime for T XPathf=;==;�gnd;b
 where patterns are su
h thatthe number of wild
ards o

urring between two des
endantaxes is bounded by a 
onstant. It remains open whethertype
he
king for T XPathf=;==;�gnd;b
 is in ptime in general.Finally, we dis
uss XPath in 
onne
tion with the RE+ ex-pressions of the previous se
tion. As DFA-patterns 
an berather dire
tly simulated by deleting states, we obtain thattype
he
king is also in ptime when we allow the transdu
erto use su
h expressions.Corollary 6.4. TC[T DFAd;
 ; DTD(RE+)℄ is in ptime.
7. REMARKSIn pra
ti
e it is relevant that type
he
king algorithms 
angenerate 
ounterexample trees (or a des
ription of them) forinstan
es that it reje
ts. As our main upper bound theoremredu
es the type
he
king problem to the emptiness problemfor a NTA(NFA) of polynomial size, and sin
e it is possi-ble to generate a des
ription of a tree in the language of anNTA(NFA) in polynomial time, we 
an also generate a 
oun-terexample tree for the type
he
king algorithm in polyno-mial time. Further, the algorithm for TC[Td;
; DTD(RE+)℄
an also be adapted to generate a des
ription of a 
ounterex-ample tree.Corollary 7.1. If an instan
e of TC[Ttra
; DTD(DFA)℄or TC[Td;
; DTD(RE+)℄ does not type
he
k, we 
an generatea 
ounterexample in ptime.

We say that an instan
e of the type
he
king problem type-
he
ks almost always i� the set ft 2 din j T (t) 62 doutg is�nite. The latter notion is introdu
ed by Engelfriet andManeth [16℄. Sin
e the �niteness problem of NTA(NFA) isde
idable in ptime, we have obtained the following.Corollary 7.2. Almost always type
he
king of Ttra
 trans-du
ers w.r.t. DTD(DFA)s is in ptime.
8. CONCLUSIONWe provided a rather 
omplete overview of how the di�er-ent parameters in
uen
e the 
omplexity of the type
he
kingproblem. As the main fo
us of the paper is on tra
table s
e-narios, we did not investigate upper bounds for intra
table
ases.First, we 
onsidered the 
omplexity of type
he
king in thepresen
e of �xed input and/or output s
hemas. In 
om-parison with the results in [21℄, �xing input and/or outputs
hemas only lowers the 
omplexity in the presen
e of DTDsand when deletion is disallowed.In the remainder of the paper we identi�ed several interest-ing pra
ti
al tra
table 
ases that 
an be 
lassi�ed depend-ing on the strength of the s
hema languages. The mostliberal setting is where RE+ expressions suÆ
e to de�nes
hema languages: we have ptime type
he
king for all trans-du
ers in our framework. In fa
t, any fragment of XPathwhose patterns 
an be translated in polynomial time toDFAs 
an be added to the transformations. Sometimes,however, one needs more expressive regular expressions ins
hema languages. For instan
e, to express 
hoi
e like in(se
tion + table + figure)�. Our results show that thereis still a ptime algorithm when those expressions 
an betranslated in ptime to DFAs and when one 
an bound si-multaneous 
opying and deletion. Interestingly, arbitrarydeletion without 
opying 
an be allowed. As 
opying is usu-ally fairly limited in the simple transformations for whi
hXSLT is used, but unbounded deleting without 
opying isrequired for so-
alled �ltering transformations, our resultidenti�es a tra
table fragment with potential in pra
ti
e.Further, we obtained that the XPath axes = and � 
an beadded without in
reasing the 
omplexity. Finally, when de-terministi
 tree automata are required, no 
opying 
an beallowed but arbitrary deletion is permitted.Though we left some questions open, we also showed thatnone of the above restri
tions 
an be severely relaxed with-out rendering the type
he
king problem intra
table. So, forthese larger 
lasses of transformations or s
hema languages,it is more appropriate to develop in
omplete or approximatealgorithms.In future work we will try to settle the remaining questions
on
erning the XPath fragments, look at how �xed inputand/or output s
hemas in
uen
e the 
omplexity of type-
he
king w.r.t. DTD(RE+)s, and 
onsider data values.
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