
Data Definition Languages

for

XML Repository Management Systems

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät Informatik

von

Matthias Niewerth

Dortmund

2015

Tag der mündlichen Prüfung: 27. März 2015

Dekan: Gernot A. Fink

Gutachter: Thomas Schwentick
Angela Bonifati

3

Preface

Already when I got my first computer at the age of six, I was fascinated by the possibilities
offered by an 8-bit processor using 65536 bytes of random access memory. It soon became
very clear that I wanted to do “something with computers”. This is a decision that I
hardly ever questioned and that I never regretted. This thesis is the climax of a way that
I started very young. It is my dearest wish to thank all persons who have accompanied
me on this way. As this is a big number of people, I have to apologize to those who
should be mentioned, but are not.

First, I thank Thomas Schwentick for being a great advisor. He introduced me to the
habits of scientific research and to the field of database theory. I remember countless
occasions, where we discussed the details of some proof, how to present some work on a
conference, or what is the best way to represent constraints for XML documents, but
also sometimes controversies about priorities of work or how to document my progress.
In retrospect, the creation of this thesis was a wonderful time and Thomas Schwentick
has contributed a lot to this positive feelings.

I am very thankful to Wim Martens, who always was helpful when I had questions
and who has given me a new professional home in Bayreuth. I joyfully remember many
hours we shared discussing scientific topics, the newest academic gossip, or just the news
of the day.

I thank Angela Bonifati for providing a secondary evaluation of my thesis and Jens
Teubner and Boris Düdder for taking part in my dissertation commission.

Of course, I want to thank all my colleagues for the wonderful time. This includes my
colleagues, both in Dortmund and in Bayreuth, but also numerous persons from other
universities, which I met at many different places during workshops, conferences and
summer schools. In order to not doing injustice to someone, I refrain from giving a list.

Also, the colleagues and professors who guided me through my undergraduate studies
are too countable to list them all. However, one name has to be mentioned here: Ingo
Wegener was an outstanding teacher and scientist. I myself enjoyed several courses given
by him. What is most remarkable to me is, that he, shortly before he lost his fight against
cancer, agreed to supervise my diploma thesis. Sadly, he was not given the time to finish
this process.

I also have to mention my school time, where I had a few problems to integrate within
rules that I could not understand at this time. In retrospect, of course, I see that most of
the rules were there for good reasons. I am very thankful to my school directors Bernhard
Sporkmann and Wolfgang Gorniak, who allowed me to bend some of these rules, such
that I could follow my passion together with some colleagues. I will never forget the long
afternoons, where we optimized the school network, enriched our knowledge of Linux, or
sometimes just played using a network, which was much bigger than what would have

4

been possible at home. The freedom I had there is definitely not what is usual. Norbert
Stäbler should be mentioned for very motivating and dedicated computer science classes
and for supporting our extra-curricular activities, wherever possible. While I already
decided a long time ago, that computer science is my preferred field, the classes given by
him were a good preparation and strengthened my decision to study computer science.

Finally, my warmest thanks go to my family. To my uncle who stired my passion
for computers and to my parents who supported me on the whole way. My uncle rised
my interest by giving me the 8-bit computer, I mentioned in the very beginning. We
had many interesting discussions since then, starting technically when I was young and
getting more theoretical and philosophical during my studies. I cannot say enough thanks
to my parents who supported me on the whole way and who enabled me to start my
academic career. There are no words to express what they mean to me.

One last thing: Often forgotten, there are the institutions who enable young scientists
to start an academic career by providing the necessary finances and without whom many
careers would not be possible. In my case, this is the Future and Emerging Technologies
(FET) programme of the European Commission, which supported me during my time in
Dortmund under the FET-Open grant agreement FOX, number FP7-ICT-233599 and
the Deutsche Forschungsgemeinschaft (DFG), which supported me during my time in
Bayreuth under the grant MA 4938/21 (Emmy Noether Nachwuchsgruppe).

5

Contents

Preface 3

Contents 5

Introduction 9

1 Introduction 11
1.1 Questions . 11
1.2 Running Example: A Content Management System 12
1.3 Structure of the Thesis . 15
1.4 Contributions by other Authors . 16

2 Database Management Systems 19
2.1 Database Interface . 21
2.2 Query Evaluation Engine . 23
2.3 Low-Level Features . 25
2.4 Distributed Data . 26

3 Preliminaries and Notation 27
3.1 Regular Languages . 27
3.2 Tree Model . 29
3.3 Tree Languages . 30
3.4 Tiling Problems . 31

6 Contents

I Schema Definition Languages 35

4 Defining the Structure of Trees 37
4.1 Example: A Toy Markup Language . 38
4.2 A DTD for the Markup Language . 40
4.3 An XML Schema for the Markup Language 40

5 BonXai 47
5.1 BonXai Schemas for the Markup Language 47
5.2 BonXai at a Glance . 50
5.3 BonXai at Work . 55
5.4 A Comparison with Other Schema Languages for XML 57

6 The Theory Underlying BonXai 59
6.1 A Formal Model for XML Schema Definitions 59
6.2 A Formal Model for BonXai Schemas . 62
6.3 Priorities in BonXai . 63
6.4 Translations Between Schemas . 64
6.5 Efficient Translations for Fragments . 68
6.6 Worst-Case Optimality of the Translation Algorithms 70
6.7 Further Research on the BonXai Schema Language 75

7 Deterministic Regular Expressions 77
7.1 Weak vs. Strong Determinism . 78
7.2 Orbit Property and DRE Definability 79
7.3 Closure Properties and Descriptional Complexity of DREs 81
7.4 Minimization . 82
7.5 Further Research on Deterministic Regular Expressions 85

8 Schema Decomposition 87
8.1 From XML Documents to Strings . 89
8.2 Notation and Algorithmic Problems . 89
8.3 Connections to Language Theoretic Problems 91
8.4 The Language Primality Problem . 93
8.5 Perfect Typings . 101
8.6 Normal Form Typings . 106
8.7 Verification of Typings . 109
8.8 Existence of Typings . 114
8.9 Further Research on Distributed XML Design 119

Contents 7

II Integrity Constraints 121

9 Integrity Constraints for Relations and Trees 123
9.1 Relational Integrity Constraints . 123
9.2 Integrity Constraints on Trees . 127

10 A Framework for XML Integrity Constraints 129
10.1 XML-to-Relational Constraints . 129
10.2 Tree Patterns and Tree Pattern Mappings 130
10.3 Tree Pattern Based X2R-Constraints . 132
10.4 Comparing the X2R-Framework with Existing Work 134

11 Implication of XML-to-Relational Constraints 141
11.1 Witness Pairs and Model Checking . 143
11.2 Chasing on Trees . 146
11.3 Upper Bounds Based on Small Counter Examples 159
11.4 Polynomial Space Upper Bound Based on Skeletons 162
11.5 Lower Bounds by Reductions from 3SAT 170
11.6 Lower Bounds by Reductions from Tiling Problems 172
11.7 Conclusions and Further Research on X2R-constraints 178

12 Two Variable First Order Logic and Key Constraints 181
12.1 Definitions . 182
12.2 FO2(∼,+1) without Key Constraints . 183
12.3 FO2(∼,+1) with Key Constraints . 204
12.4 Conclusion on FO2(∼,+1) . 214

III Prototype 217

13 FoXLib 219
13.1 Formal Language Toolkit . 219
13.2 Schema Toolkit . 219
13.3 BonXai Editor . 220
13.4 History of FoXLib . 223
13.5 Future of FoXLib . 223

Conclusion & Bibliography 225

14 Conclusions and Directions for Further Research 227

Bibliography 231

9

Introduction

10

11

1 Introduction

XML is nowadays the de facto standard for data exchange on the web. However, while
XML is widely used for data exchange, its role in data storage is quite small. As a
consequence, data has to be converted between XML and other formats, especially
relational databases, many times.

Many of these conversion steps could be avoided if the data model of the database
systems would be XML. In this thesis we will study certain aspects of database systems
dedicated to manage big amounts of XML data. We call such systems XML Repository
Management Systems (XRMS).

Of course, we will not be able to cover all aspects of XRMS’s, as the topic is very broad
and touches almost every part of database theory of the last four decades. Instead, we will
concentrate on data description languages for XRMS’s. Data description languages are a
very important part of the interface between a database administrator or programmer
and a database management system.

We will distinguish two very different aspects of data description languages. The first
aspect is the ability to describe structure of the data. In classical relational database
management systems this basically boils down to describing which attributes each relation
has and which domain each of the attributes uses. In XRMS’s, the structure of the data
can be much more complicated, because the underlying data model is a tree.

The second aspect of a data description language is its ability to express semantic
constraints of the data. The most prominent example is that IDs should be unique.

The intuitive difference between both aspects is that semantic constraints look at the
data values itself and can compare them, usually for equality, while structural definitions
do not compare data values.

We give examples on both aspects after we have introduced our running example. First,
we want to highlight the questions, we are going to analyze.

1.1 Questions

As already said, we are going to analyze data definition languages for XRMS’s. In
particular, we will investigate the following questions, that arise in the context of
XRMS’s.

• How can the structure of XML databases and documents be described?

• What are the properties of regular expressions, as they are used in existing XML
schema languages?

12 1 Introduction

• How to design schemas in the case that XML databases are distributed?

• How can semantic constraints on XML databases be described?

Towards the first question, we will propose the BonXai schema language that allows
to describe the structure of documents based on simple rules instead of a complex type
system. We will compare BonXai with existing XML schema languages and analyze the
conversion algorithms between XML Schema and BonXai.

We will cover the second question only very briefly, as the main work in this area has
been done by Katja Losemann.

The third question covers a very broad topic. We will concentrate on one concrete
question: Given a schema S and a root document D that references documents D1, . . . , Dn,
how should good schemas for the referenced documents look like, such that the combined
document obtained by inserting the child documents in the root document satisfies the
original schema.

The investigation of the last question almost covers half of the thesis. We will investigate
two quite different approaches. The first approach is by designing a general framework
for studying XML integrity constraints. Based on this framework, we will analyze how
well existing constraint definition languages fit into the framework. Furthermore, we will
investigate the complexity of the implication problem for XML integrity constraints for
constraints that are the XML analog to relational functional dependencies and relational
key constraints.

The second approach is to add key constraints to two variable first order logic. Two
variable first order logic has already some applications in XML theory.

In the next section, we present the running example, that we use to investigate the
questions.

1.2 Running Example: A Content Management System

We start with a simple example, which will be used as running example throughout the
thesis. Instead of writing HTML documents by hand, nowadays many web publishers
use content management systems (CMS’s) to manage their web data.

Usually these systems deliver XML data1 to the viewers of the web pages. However,
most of these systems store the data inside a relational database, i.e. as blobs of text.
It seems to be a natural choice to store this data using an XRMS, once such systems
become ready for production use.

In Figure 1.1 we depicted parts of a simple XML database of such a content management
system. The depicted database has two parts, one part stores the content or documents
with some meta-information and the other part contains the user data.

The user part stores user IDs together with associated persons (only first and last
name for simplicity reasons) and the documents part stores documents together with
the user ID, which created the document. Of course, in a real system we would also

1XHTML is one out of many document standards based on XML.

1.2 Running Example: A Content Management System 13

<root>

<documents>

<document>

<owner>user42</owner>

<content>

<!-- Here should be the content of the first document. -->

</content>

</document>

<document>

<owner>user23</owner>

<content>

<!-- Here should be the content of the second document. -->

</content>

</document>

</documents>

<persons>

<person>

<firstname>Joe</firstname>

<lastname>Smith</lastname>

<user-id>user42</user-id>

</person>

<person>

<firstname>Ann</firstname>

<lastname>Brown</lastname>

<user-id>user23</user-id>

</person>

</persons>

</root>

Figure 1.1: Running Example: Database of a Content Management System (CMS)

need to store password hashes, access rights, and much more, but we feel, for the sake of
this thesis, the example should be as simple as possible while still capturing some of the
challenges, XRMS’s have to deal with.

Since we will always interpret XML documents as trees for the ease of algorithmic
analysis, we additionally depicted a tree view of the XML database in Figure 1.2. For a
formal definition of our tree model the reader is directed to Chapter 3.

We will give English language descriptions of the database and its constraints. Of
course, these descriptions are neither complete nor suited for any actual database system,

14 1 Introduction

v1:root

v2:documents

v3:document

v4:owner
”user42”

v5:content

v6:document

v7:owner
”user23”

v8:content

v9:persons

v10:person v14:person

v11:firstname
”Joe” v12:lastname

”Smith”

v13:user-id
”user42”

v15:firstname
”Ann” v16:lastname

”Brown”

v17:user-id
”user23”

Figure 1.2: CMS Database from Figure 1.1 as a tree

but during the thesis we will see how these descriptions can be formulated using formal
languages.

a) The root element of the XML document is labeled root and has two child elements
labeled persons and documents.

b) The persons element has arbitrary many child elements all labeled person.

c) Each person element has two child elements labeled firstname and lastname respec-
tively and arbitrarily many child elements labeled user-id

d) Elements labeled firstname, lastname or user-id do not have child elements.

e) Elements labeled firstname or lastname have a string as data value which only
consists of letters.

f) Elements labeled user-id have a string as data value which consists of letters and
digits and starts with a letter.

g) User IDs should be unique, i.e. there should be no two persons which use the same
user ID.

h) The user IDs, which own some documents should exist, i.e. for every user ID which
occurs as the owner of a document, there has to be a person associated with this ID.

It can be observed that the given constraints are of different nature. The constraints
(a–d) only talk about the structure of the XML database (the XML tree) and do not
refer to the data stored inside the elements (nodes). We will refer to these as syntactic
constraints.

The constraints (e–f) define the domain used for data values of different nodes. While
these constraints restrict the possible data values, we still call them syntactic. As we

1.3 Structure of the Thesis 15

will represent all domains by anonymous uncountable sets throughout the thesis, we will
concentrate on those syntactic constraints, which describe the structure of the tree.

Finally, there are the constraints (g–h), that compare data values. The constraint g)
compares all data values of user-id nodes to rule out any identical data values among
these nodes, while the constraint h) expresses that data values occurring in some part
of the database also have to occur at another place. We call these types of constraints
semantic constraints or integrity constraints. The constraints g) and h) represent the
most widely used integrity constraints, namely key constraints and inclusion constraints.
Of course, one might think of different semantic constraints such as a constraint enforcing
a chronological order on timestamps of the stored documents. However these constraints
are out of the scope of this thesis.

1.3 Structure of the Thesis

In Chapter 2, we depict the components of database management systems and comment
on the differences between relational database management systems and XML repository
management systems. We use this description to clarify which aspects of XRMS’s are
covered by this thesis. Afterwards, Chapter 3 establishes some definitions and notations
used throughout the thesis.

The thesis is divided into three parts, not counting introduction and conclusion. In the
first and second part, we will look at syntactic descriptions and semantic constraints of
XML documents, respectively, while in the third part, we will briefly describe a software
library, which contains many prototypical algorithms for dealing with XML schemas and
documents.

As already mentioned, the first part of this thesis covers syntactical definitions, that
is describing constraints like the constraints (a–f) from our running example. After
introducing existing XML schema languages in Chapter 4, we introduce the pattern-based
schema language BonXai in Chapter 5 and compare it with traditional schema languages,
especially XML Schema and Document Type Definitions. In Chapter 6 we provide a
solid theoretical background for the BonXai schema language. Many schema languages,
including Document Type Definitions, XML Schema and BonXai, use deterministic
regular expressions to describe content models of nodes. We will give a short overview
over this class of regular expressions in Chapter 7. We close the part about syntactic
definitions in Chapter 8 with some results on distributed XML design. We research how
a syntactic definition for a global document can be split into several syntactic definitions
for local documents such that recombining local documents (according to a given rule)
generates a document, which is valid according to the global definitions.

In the second part, we continue with semantic constraints on XML databases, i.e. how
to describe constraints similar to the constraints (g) and (h) of our running example.
We start with repeating the basics of relational integrity constraints and sketching
some challenges for the design of XML integrity constraint languages in Chapter 9. In
Chapter 10, we will depict a new framework for XML integrity constraints. Furthermore,
we will show how constraints depicted in existing constraint languages can be represented

16 1 Introduction

using this framework. The following Chapter 11 is entirely destined for analyzing the
complexity of the implication problem of XML integrity constraints. We will present
complexity results for some instantiations of the framework presented in Chapter 10. At
the end of the second part, we present some older work in Chapter 12, which analyzes
the combination of key constraints of arbitrary arity with first order sentences using only
two variables.

The third part contains only one chapter presenting the software library FoXLib.
This library contains many prototypical algorithms for analyzing XML Schemas and
documents and developing XML Schemas. Especially it contains algorithms to convert
XML Schema definitions into BonXai schemas and vice versa.

1.4 Contributions by other Authors

Most of the results presented in this thesis are joined work with other authors.
The work on the BonXai schema language presented in Chapters 4 to 6 is based on

joined work with Wim Martens, Frank Neven and Thomas Schwentick. Parts of the
content of Chapter 5 were presented as a demo at the 38th International Conference on
Very Large Databases (VLDB 2012) [MNNS12]. The initial draft of BonXai (presented
in Chapter 5) was designed by a student group at TU Dortmund University [DGG+09].
The main work on the prototype implementation presented a VLDB 2012 was done by
the author of this thesis. The remaining content of Chapters 4 to 6 is not yet published.

Chapter 7 mostly summarizes literature work for completeness and reference reasons.
The results on closure properties and descriptional complexity of DREs are joined work
with Katja Losemann and Wim Martens [LMN12]. Katja Losemann is the main author
of this work. The hardness result for DRE minimization is the work of this author. It
has not been published before.

The work about schema decompositions presented in Chapter 8 has been presented at
the 29th Symposium on Principles of Database Systems (PODS 2010) [MNS10]. The
author of this thesis is the main author of this work with contributions from Wim Martens
and Thomas Schwentick.

The work about integrity constraints presented in Part II is based on joined work with
Thomas Schwentick. A first version of the results on first order logic with two variables
in Chapter 12 has been presented at the 14th International Conference on Database
Theory (ICDT 2011) [NS11]. The revised version presented in Chapter 12 is by the
author of the thesis. It uses a clearer model for representing the constraints imposed
by FO2(∼,+1)-formulas and provides a better upper bound in the case without key
constraints. The underlying concepts are the same as in [NS11].

The work on XML2Relational constraints from Chapters 10 and 11 has been presented
at the 17th International Conference on Database Theory (ICDT 2014) [NS14]. A
journal paper of this work has been submitted to the Theory of Computing Systems
journal [NS15]. Unfortunately, there was a big flaw in one of the proofs of the conference
version. Therefore Section 11.4 has been rewritten by the author of this thesis. As the
new version did not undergo a review process before completion of the thesis, it was of

1.4 Contributions by other Authors 17

significantly lower quality then the remainder of the thesis. Therefore, the published
version of the thesis contains a version of the proof extracted from the submitted journal
version [NS15] that has been created together with Thomas Schwentick based on the
work of the author.

The software library FoXLib presented in Chapter 13 contains contributions from
different sources. Details are given in Section 13.4.

19

2 Database Management Systems

Even if this thesis will only cover a small fraction of an XML Repository Management
System, we want to use this chapter to take a look at the complete system. Our
understanding of an XML Repository Management System is a Database Management
System (DBMS), where the underlying data format is XML data.

To understand what an XRMS is, it is obviously necessary to understand what a
DBMS is. Therefore we recapitulate the features and components of a DBMS in this
chapter.

We will give a general overview over Database Management Systems according to
Garcia-Molina, Ullman and Widom [GMUW02] and Ramakrishnan and Gehrke [RG03].

According to Garcia-Molina, Ullman and Widom [GMUW02],

a DBMS is a powerful tool for creating and managing large amounts of data
efficiently and allowing it to persist over long periods of time, safely.

A DBMS is expected to

1. Allow users to create new databases and specify their schema (logical
structure of data), using a specialized language called a data-definition
language.

2. Give users the ability to query [. . .] and modify the data, using an
appropriate language, often called a query language or data-manipulation
language.

3. Support the storage of very large amounts of data [. . .] over a long period
of time, keeping it secure from accident or unauthorized use and allowing
efficient access to the data for queries and database modifications.

4. Control access to data from many users at one, without allowing the
actions of one user to affect other users and without allowing simultaneous
accesses to corrupt the data accidentally.

Figure 2.1 lists the components of a DBMS. The figure is based on Figure 1.3 in [RG03].
In the following we will investigate the individual components depicted in Figure 2.1.
We will explain their role mostly on the basis of usual relational database systems
based on the SQL standard. Furthermore we will explain some differences between
existing implementations based on the SQL standard and an imaginary XML Repository
Management System. Our considerations are general enough so that we do not need to
distinguish different flavors (implementations) of the SQL standard.

Quite obviously most of the necessary changes apply to the high-level components of
the DBMS while the low-level components are more independent from the structure of
the data (relational vs. XML trees).

20 2 Database Management Systems

User
Interface

Unsophisticated users
(customers, travel agents, etc.)

Web Forms Application Front Ends

Sophisticated users,
application programmers,
DB administrators

Query Language
Data Definition

Language
Database
Interface

Parser

Optimizer

Plan Executor

Operator Evaluator
Query
Evaluation
Engine

Files and Access Methods

Buffer Manager

Disk Space Manager

Transaction
Manager

Lock
Manager

Concurrency
Control

Recovery
Manager

DBMS

Index Files

Data Files

System Catalog

Database

Figure 2.1: Architecture of a DBMS (Based on Figure 1.3 in [RG03])

2.1 Database Interface 21

2.1 Database Interface

For a user, the first visible part of a database management system is its interface. The
database interface consists of a query language, which is used to query and update the
data and a data definition language, which describes the structure of the database.

Ordinary users usually only interfere with the query language, usually through an
application front end or web service. They are interested in retrieving data, adding new
data or editing existing data through database queries. Application programmers and
database administrators additionally use the data description language to specify the
structure of the data before the database can actually be used to store data.

Most parts of this thesis deal directly or indirectly with the definition of the database
interface for XML Repository Management Systems. More precisely we have a look
at the data definition language for XML databases. The first part of this thesis deals
with syntactical definitions of XML databases and the second part deals with semantic
constraints on XML databases. Both aspects are part of the data definition language.
In Part III, we present a prototype software library. One of the main features of this
software library is a conversion routine between two different data definition languages
for XML documents.

Query Languages

Query languages are used to retrieve and update the data. We will distinguish two kinds
of queries. Retrieval queries do not change the database and just return the queried data.
In SQL, these queries start with the keyword SELECT. On the other hand, update queries
usually do not return any data. Instead, they change the database. In SQL, these queries
start with the keyword UPDATE or INSERT.

For relational databases both types of queries are important, while many applications
dealing with XML data do not support update queries at all. This is because in many
cases XML is only used to exchange and transfer data but not to actually store data.
In these cases the data is typically stored in a relational database management system.
Therefore, it is never necessary to update XML data itself. Updates are processed by the
underlying relational database and the (changed) XML document is recreated from this
database whenever it is needed. For an XRMS, update queries are much more important
as the data is stored in XML databases and updates have to be directly applied to the
XML database.

A big difference between relational and XML query languages is, that XML query
languages are usually recursive, e.g., it is possible to state queries like “Give all a-nodes
that are below some b-node.”. This query implicitly needs the transitive closure of
the edge-relation of the underlying tree. General query languages for XML have to be
recursive, as the trees can be arbitrarily deep.

The most prominent query languages for XML are XPath and XQuery. The XPath
query language allows to query for a set of nodes, while the XQuery language can return
XML documents, constructed by the query. XQuery is build on top of XPath.

22 2 Database Management Systems

Diego Figueira has done a lot of research on XPath satisfiability. The results are nicely
presented in his PHD thesis [Fig10].

Although query languages are very important for XML processing in general and
XRMS’s in particular, they are out of scope of this thesis, which focuses on syntactical
description and semantic constraints of data. In Chapters 10 and 11 we use tree patterns
as query language to define semantic constraints for XML databases.

Data Definition Languages

Data definition languages describe how data should look like. In the SQL standard the
CREATE TABLE command defines the structure of a relation.

To create a relational database which are capable of holding the information given in
the XML database in Figure 1.1, we can use the following SQL commands.

CREATE TABLE users (user-id CHAR(20), name CHAR(50));

CREATE TABLE documents (owner CHAR(20), content TEXT);

These commands create two tables/relations with the names users and documents. The
users table contains tuples where the first entry is a string of at most 50 characters and
the second entry is a string of at most 20 characters. The documents table contains
tuples where the first entry is a string of up to 20 characters and the second entry is
some text of arbitrary length. Note that table definitions in SQL can be much more
complicated than in this simple example.

While the structure of SQL based databases is defined by a series of CREATE TABLE

commands, the structure of XML documents is usually defined by a schema. There
is a wide variety of existing schema description languages. The most important ones
are Document Type Definitions (DTDs) [BPSM+08] and XML Schema [GSMT+12].
These two schema languages are standardized by the W3C. Other proposed schema
languages include Relax NG [CM01], Schematron [Sch99] and Document Structure
Descriptions [DSD02]. We will see some example schemas for our CMS example in
Chapter 4.

In theoretic work, schemas are usually described by regular tree languages, which can
for example be represented by various classes of tree automata or by monadic second
order logic over trees. An important difference to the afore mentioned schema languages
is that these models usually use a more abstract tree model that does not deal with all
subtleties of the XML standard.

In Chapter 5, we will introduce BonXai as a pattern based schema language. We
will compare BonXai to DTDs and XML Schema and have a look at the problems of
converting XML Schema descriptions to BonXai schemas and vice versa.

Integrity Constraints

Integrity constraints describe semantic constraints on the data. They are part of the
data definition language.

2.2 Query Evaluation Engine 23

We can formulate the two example constraints from the introduction using the following
SQL commands:

CREATE TABLE users (user-id CHAR(20) PRIMARY KEY, name CHAR(50));

CREATE TABLE docs (doc-id INT, owner CHAR(20) REFERENCES users

(user-id));

These commands necessarily include the definitions of the tables, as SQL integrity
constraints are part of the syntactic definitions. The addition of PRIMARY KEY behind the
declaration of user-id specifies that there should not be two different tuples with the same
user ID, while the specification REFERENCES users (user-id) behind the declaration of
owner specifies that every entry in the column owner should have a corresponding entry
in the column user-id of the users table.

For XML, many approaches for integrity constraints have been proposed. On the
practical side there is the minimalistic ID/IDREF mechanism of DTDs and there are
the much more powerful identity constraint definitions from the XML Schema standard.
On the theoretical side there are many different approaches showing that there is no
clear consensus yet on the definition of XML integrity constraints, see e.g. [AL04, HL03,
KW07, LLL02].

We will have a closer look on XML integrity constraints in the second part of this
thesis. Where we give a unifying framework for some of these approaches.

The following section about query evaluation explains why it is desirable to solve the
implication problem of integrity constraints with low complexity.

2.2 Query Evaluation Engine

The query evaluation engine is responsible for parsing and evaluation of queries. It
consists of a parser which translates the query into an initial query plan. Afterwards, the
optimizer can modify the query plan for shorter execution times. For complex queries
there might be many different equivalent query plans with big differences in execution
times. The plan executor is responsible for executing a given query plan by calling
the operator evaluator for all operations inside the query plan. The operator evaluator
contains all the necessary algorithms for performing database operations occurring in
query plans like performing a join or applying some projection or selection.

The most sophisticated part of the query evaluation engine is the optimizer. We give
one example on how the optimizer can optimize a query. The following SQL query returns
all persons owning some document.

SELECT name FROM users,docs WHERE user-id=owner;

An initial query plan for this query might look as follows:

1. Compute the Cartesian product of users and docs:
tmp← users× docs

2. Select all tuples where user-id equals owner:
tmp2← {(w, x, y, z) | (w, x, y, z) ∈ tmp ∧ w = z}

24 2 Database Management Systems

3. Project to the column name:
output← {(x) | ∃w, y, z. (w, x, y, z) ∈ tmp2}

Note that we use temporary tables for clarity while a real database system would not
employ intermediate tables but instead execute all steps at the same time directly using
the output from one step as the input to the next step. Temporary tables are usually
only used if the applied operations do not allow otherwise.

It is easy to see that this query plan can have quadratic running time in the size of the
database due to the computation of the Cartesian product. Much time can already be
saved by projecting the docs relation to the owner column before computing the Cartesian
product. Note that the projection will not only remove the column with the document ids
but will additionally keep only one entry for every user owning some documents instead
of one entry per document.

However the query can be optimized even more. It is a waste of computation time to
compute the complete Cartesian product if we only need those tuples where the user-id

and owner attributes coincide. The following query plan will also return the correct
result.

1. Project the docs relation to the owner column:
tmp← {(y) | ∃x. (x, y) ∈ docs}

2. For each owner, scan the users relation for tuples with matching entries in the user-id
column and output the corresponding name:
for each x ∈ tmp do output← output ∪ {(y) | (x, y) ∈ users}

Optimization can go even further, taking integrity constraints into account. If user-id
is a key, the database engine knows that every user ID can occur only once and can stop
scanning the users relation in step 2 of the query plan after one match is found.

If there is an index for the user-id column available (which is reasonable to assume if
user-id is the primary key of the relation), the table scan can be replaced by an index
look-up, which usually needs constant to logarithmic time depending on whether the
index is a hash table or some tree based data structure.

Altogether the expected execution time of the query can be reduced from quadratic to
linear given an appropriate database structure with indexes. As databases can be very
huge it is reasonable to take big efforts in optimizing a query before its execution.

Query optimization on itself is out of the scope of this thesis. Nevertheless, there has
been research on semantic query optimization, i.e., optimizing queries by taking semantic
information like integrity constraints into account [Kin81, CGM88]. Newer research even
looks on semantic query optimization in the context of XML [SRM05]. An important
subproblem in semantic query optimization is the inference of integrity constraints that
hold on the database from the constraints explicitly given by the creator of the database.
In the second part of the thesis, we will have a look on integrity constraints for XML.
In Chapter 11 we will especially analyze the complexity of the implication problem of
integrity constraints for XML.

2.3 Low-Level Features 25

2.3 Low-Level Features

We will just shortly discuss the lower layers of a database management system. These
components are out of the scope of this thesis and are just discussed for completeness.
The information given is summarized from [GMUW02] and [RG03]. We note, that data
gets more and more distributed. We mainly discuss these lower layers to give an idea of
the difference between the relational and the XML data model. For an XRMS that deals
with distributed data, additionally some new layer has to be introduced that distributes
queries across several machines.

Files and Access Methods

The content of the database is stored in small portions called pages. These pages are
stored on secondary memory. The files and access methods take care about which page
holds what piece of information. Furthermore, they manage the inner structure of pages.

The pages do not only contain the data itself, but also contain indexes, which are
necessary to efficiently find the requested information.

The files and access methods layer probably needs to be adapted for XML Repository
Management Systems, as trees have different storage requirements than relations. Even
if every tree could be stored in a relational database by storing the edge relation, the
data relation (i.e. which node has which data value) and the label relation (i.e. which
node has which label), this is certainly not the most efficient way to store or query the
data. Querying data using these relations would require a number of join operations that
is linear in the depth of the tree.

Buffer Manager

The buffer manager is responsible for transferring pages between main memory and
secondary memory. This does not only involve copying pages to main memory which are
requested by the upper layers and writing modified pages back to secondary storage. For
better performance the buffer manager should predict, which pages are needed next and
prefetch them to the main memory. On the other side the buffer manager need to choose
which pages to remove from main memory when space needs to be freed.

While the basic techniques of the buffer manager will not differ between relational and
XML databases, it might be necessary to adapt the prefetching and replacing strategies
to different access patterns of an XML Repository Management System.

Disk Space Manager

The disk space manager is responsible for allocating space in secondary memory. This is
necessary when the database grows or to store log files (see recovery).

The tasks of the disk space manager can be entirely performed by the underlying
operating system. In the case when the relations, indexes and log files are stored as
separate files in some filesystem, the operating system will take care of allocating the
necessary space when these files grow.

26 2 Database Management Systems

However, for big databases it is prudent to replace the generic algorithms of the
operating system by specialized algorithms of the DBMS, which can predict the growth
of the separate files. In this case the disk space manager has to manage the space on
behalf of the DBMS.

Concurrency

When several persons or programs are accessing the database at the same time they
should always see a consistent state of the database. This also holds in case one or more
concurrent accesses do modify the database.

Modifications to the database should be atomic, i.e. it should not be possible to
view an intermediate state of the database. This is ensured by transactions, whereby a
transaction can consist of one or several update queries. Even if one transaction does
modify several relations, all concurrent queries should either see the state before or after
these modifications. In no case they should see some intermediate state. This can be
accomplished by either locking the parts of the database that are to be modified or by
creating a copy of these parts. In the first case, all concurrent queries which need access
to the locked parts have to wait until the transaction is complete. In the second case, all
concurrent queries will only see the copy of the data and therefore the old state of the
database. The transaction and lock managers are responsible for providing a consistent
view of the database for all queries.

Recovery

The state of the database should also be consistent after a system crash or power failure.
Therefore the recovery manager will log all modifications to the database to some separate
space. After a crash, the recovery manager will compare the logs with the state of the
database and ensure that for each transaction it holds that it is either completely applied
to the database or that all modifications that have already been done to the database
are reverted to restore the state before the start of the transaction.

2.4 Distributed Data

Distribution of data is not mentioned in Figure 2.1, as database management systems
have mostly been studied and designed for standalone use. However, information has
become more and more distributed since the arrival of the Web. The distribution of
XML data is even essential in many areas such as e-commerce, collaborative editing,
or network directories [AGM09]. When dealing with such distributed XML data, it is
desirable to have a system that can grant a large amount of independence to individual
peers, while at the same time also being able to deal with the data as a whole. These
demands create new challenges for DBMS in general and for XRMS in particular. In
Chapter 8, we analyze how a good schema design for such distributed XML databases
can be achieved.

27

3 Preliminaries and Notation

In this chapter, we introduce the necessary notation to allow a formal exploration of the
topic starting with the definition of regular expressions and finite automata in Section 3.1.
Most importantly, we will introduce our tree model in Section 3.2. Afterwards, we will
give some formal definition of tree languages, which are mainly used in the second part
of the thesis. At last we will introduce tiling problems, which have no direct connection
to XML databases. However we will use them for several reduction proofs throughout
the thesis. At the end of this chapter we give an (incomplete) list of our used notation.

Table 3.1 at the end of this chapter gives an overview over commonly used symbols
and the (type of) objects that are referenced by this symbols.

3.1 Regular Languages

A language is a (possibly infinite) set of strings over a finite alphabet Σ.
For any language L, we define

• first(L) = {a ∈ Σ | ∃w ∈ Σ∗. aw ∈ L} to be the set of first symbols of L,

• followlast(L) = {a ∈ Σ | ∃v ∈ L,w ∈ Σ∗. vaw ∈ L} to be the set of symbols that
can follow after a string of L

Finite Automata

A (nondeterministic, finite) automaton (or NFA) A is a tuple (Q,Σ, δ, I, F), where

• Q is a set of states;

• δ : Q× Σ→ 2Q is a transition function;

• I is the set of initial states; and

• F is the set of accepting states.

By δ∗ we denote the extension of δ to strings, i.e., δ∗(q, w) is the set of states that can be
reached from q by reading w. If an automaton has a single initial state we usually denote
this state by q0. We define the size of an automaton to be the number of its states.

An automaton is deterministic (or a DFA), if I = {q0} is a singleton and |δ(q, a)| ≤ 1,
for all q ∈ Q, a ∈ Σ.

For simplicity we allow in DFA that for some q, a, δ(q, a) = ∅. Thus, we do not need
non-accepting sink states but rather use undefined transitions to “stop” a run of an

28 3 Preliminaries and Notation

automaton. As a consequence, in a minimal DFA, from all states an accepting state is
reachable.

For ease of notation we interpret δ as a (partial) function from Q× Σ to Q in the case
of DFAs.

An alternating (finite) automaton (or AFA) A is a tuple (Q,Σ, δ, I, F), which is defined
just as in an NFA but where Q is partitioned into E (existential states) and U (universal
states). The existential states behave exactly as in an NFA. That is, for an existential
state q, if δ(q, a) = P , there exists an accepting run for the remainder of the input word,
starting from at least one state in P . The universal states q require that, if δ(q, a) = P ,
there exists an accepting run for the remainder of the input word, starting from every
state in P . For details we refer to, e.g., [Yu97].

A regular language is a language that can be denoted by a finite automaton.

Regular Expressions

The regular expressions over Σ are defined as follows: ε, ∅ and every Σ-symbol is a regular
expression; and whenever R and S are regular expressions, then so are (RS), (R+ S),
and (R)∗. For readability, we usually omit parentheses in examples. Sometimes we write
R · S to emphasize that two expressions are concatenated. If X = {a1, . . . , an} ⊆ Σ is a
set of symbols then we may use X as an abbreviation of the expression a1 + · · ·+ an.

The language defined by a regular expression R, denoted by L(R), is defined as usual.

We denote the set of all regular expressions with RE. We consider two possible
extensions of regular expressions, as they are used in XML schema languages.

The first extension allows the one-or-more operator. Let R be a regular expression,
then (R)+ is a regular expression, where L((R)+) = L((R)(R)∗). We denote the set of
regular expressions with the additional one-or-more operator with RE+.

The second extension are counters. Let n,m be natural numbers with 0 ≤ n < m and
R be a regular expression (with counters), then R[n,m] and R[n,∗] are regular expressions
with counters, where

• L(R[n,m]) = L(RR . . . R︸ ︷︷ ︸
n times

(ε+R(ε+R(. . .)))︸ ︷︷ ︸
m−n times

); and

• L(R[n,∗]) = L(RR . . . R︸ ︷︷ ︸
n times

R∗).

It is well-known that XML schema languages use deterministic (sometimes also called
one-unambiguous) regular expressions [BKW98]. We have a closer look at this class of
regular expressions in Chapter 7.

We define the size |r| of a regular expression r to be the number of occurrences of
alphabet symbols, i.e. |ε| = |∅| = 0, |a| = 1 for every alphabet symbol a, |(r1 + r2)| =
|(r1r2)| = |r1|+ |r2| and |(r1)∗| = |(r1)[n,m]| = |r1| for regular expressions r1 and r2.

3.2 Tree Model 29

3.2 Tree Model

For XML, the W3C published the Document Object Model (DOM) as an official stan-
dard [WLA+00]. It captures all features of XML documents, e.g., it distinguished element,
attribute text and entity nodes.

As most parts of this thesis focus on theoretic analysis, we prefer a simpler model,
which captures the intrinsic difficulty of the DOM model but allows for simpler reasoning
with less cases that need to be distinguished. In this model we do not distinguish different
types of nodes, instead we assume that each node has a node id, a label and a data value.

In detail, we consider labeled directed trees with data values. To this end, we assume
pairwise disjoint, infinite sets V of nodes, D of data values and L of labels.

Definition 3.1 An XML tree t is a tuple (V,E, lab,dv,≺c), where

• V ⊆ V is a finite set of nodes,

• E ⊆ V × V is a set of edges,

• lab : V → L is a labeling function,

• dv : V → D is a function assigning to every node a data value, and

• ≺c is a partial order that orders the children of each node linearly.

We further require that t = (V,E) is a directed tree with a unique root, denoted root(t),
such that all edges are directed away from root(t).

We refer to the set of labels of a tree t by lab(t), and to the set of data values by dv(t).
We often omit ≺c from tree descriptions, when the order is of no importance.

If (u, v) ∈ E then we say that u is the parent of v and v is a child of u. The descendant
relation E+ is the transitive closure of E and the ancestor relation the reversal of the
descendant relation.

The child string child-string(v) of a node v is the list of labels of the children of v
ordered according to ≺c.

The ancestor string ancestor-string(v) of a node v is the list of labels of the ancestors
of the node starting with the root and ordered according to the descendant relation.
We demonstrate these definitions based on the tree representation in Figure 1.2. The
ancestor string of the node v10 is root persons person and the child string of node v6

is owner content.
Even if we assume that every node has a data value, we will not always depict every

data value. We will usually only depict those data values that are important for a specific
example.

To define integrity constraints, we use the equality relation on data values. However,
we do not assume any other relation on data values such as linear orders.

In Chapters 4 and 5, were we deal with actual schema languages for XML, we will
additionally use some terminology from the DOM model. Especially we have to distinguish
between element and attribute nodes and to consider different namespaces in these
chapters.

30 3 Preliminaries and Notation

3.3 Tree Languages

A tree language is a set of trees. Tree languages can for example be specified by various
types of schema languages, by tree automata or by some logic. We usually denote tree
languages by the capital letter T . If S is some schema in some schema language, we
denote the tree language specified by S with T (S). We denote the set of all possible trees
with T .

We will have a closer look at schema languages in the first part of this thesis. As this
part concentrates on syntactical description of XML documents, we will mostly ignore
the data values of trees in this part of the thesis.

A very important schema language are Document Type Definitions. A Document Type
Definition (DTD) D : Σ→ 2Σ∗ over a set of element labels Σ is a function that assigns
to every element label a ∈ Σ a regular language La.

A tree t = (V,E, lab,dv,≺c) is valid wrt. a DTD D denoted by t |= D, if for every
node v ∈ V it holds that child-string(v) ∈ D(lab(v)).

A DTD is usually defined by a set of productions

a; R,

where a ∈ Σ and R is a regular expression. We write a; R ∈ D to denote that the rule
a; R is contained in the definition of the DTD.

For our investigations of the implication problem for X2R-constraints in the second
part of this thesis, we will consider two kinds of schema languages for XML-documents.
As a schema language with large expressiveness we use the class Reg of regular tree
languages. However, very often schemas for XML documents only restrict the set of
allowed elements in a content model in a simple fashion. We mainly concentrate on a
setting where the order of siblings in an XML document is ignored and thus we use the
following important restriction of DTDs: simple DTDs. We use the definition of [KW07],
which we basically repeat here.

Given an alphabet Σ, a regular expression over Σ is called simple, if it is of the form
s1 · · · sn, where for each si, there is a letter ai ∈ Γ such that si is either ai, ai?, a+

i or a∗i
and for i 6= j, ai 6= aj . A simple DTD (sDTD) is a DTD where the right-hand-side of
each production is simple.

For all our lower bound results even the following further restriction of simple DTDs
suffices. In an extremely simple DTD (esDTD), only the set of allowed labels is fixed,
that is every content model has the same regular expression (a∗1 . . . a

∗
`), where {a1, . . . , al}

is the set of allowed labels.
Simple DTDs have unique minimal models in the following sense as already observed

and used in [KW07].

Lemma 3.2 Let D be an sDTD and ` a label that occurs in some (finite) tree that
conforms to D. Then there exits a unique (with respect to structure and labels) minimal
tree t` such that for every tree t and every induced subtree t′ with a root node labeled `,

• t` can be obtained by removing some nodes from t′, and

3.4 Tiling Problems 31

• if t′ is replaced by t` in t, the resulting tree still conforms to D.

We refer to the trees of the form t` as minimal D-trees. It should be noted that if a
label c occurs in a minimal D-tree t` then its induced subtree in t` is just tc.

It can easily be tested whether for some label ` from an sDTD the tree t` actually exists
and, therefore, ` can occur in a (finite) model of D. We therefore assume throughout
that an sDTD only contains useful labels.

For our reasoning algorithms, we are interested in small (representations of) counter-
example trees. It is easy to see that t` can be of exponential size in the size of D. Thus,
an sDTD alone can already enforce minimal models of exponential size. We will therefore
use a compact representation of trees conforming to an sDTD D to be defined next.

For a given tree t and sDTD D we define the D-expansion [t]D as the tree resulting
from t by application of the following process. If there is a node v with label ` with a
child u that has a label `′ that is disallowed below an `-node by D then [t]D is undefined.
Otherwise, as long as there are nodes v with some label ` such that for some `′ ∈ D(`)
v has no child with label `′, a copy of t`′ (as guaranteed by Lemma 3.2), in which all
nodes have new, pairwise distinct data values, is added below v. If it exists, [t]D is the
unique minimal tree conforming to D and containing t as a subtree. We note that in
[t]D, every node v can uniquely be identified by a pair (u,w), where u is a node from t
and w a (possibly empty) sequence of labels from D of length at most |D|.

3.4 Tiling Problems

We will use tiling problems in reduction proofs throughout the thesis.
A tiling instance is a tuple U = (U, u0, uF , V,H), where

• U is a finite set of tiles;

• u0 is the first tile;

• uF is the final tile

• H ⊆ U × U , are the horizontal constraints; and

• V ⊆ U × U , are the vertical constraints.

Given a tiling instance U = (U, u0, uF , V,H), a tiling is a mapping

λ : {0, . . . , n} × {0, . . . ,m} → U.

A tiling is valid, if

• the first tile is u0 and the last tile is uF , i.e. λ(0, 0) = u0 and λ(n,m) = uF ; and

• the horizontal and vertical constraints are met, i.e. (λ(i, j), λ(i + 1, j)) ∈ H for
i ∈ [0, n), j ∈ [0,m] and (λ(i, j), λ(i, j + 1)) ∈ V for i ∈ [0, n], j ∈ [0,m).

32 3 Preliminaries and Notation

We consider the following problems:

Tiling
Given: a tiling instance U = (U, u0, uF , V,H)
Question: Does there exist a valid tiling λ?

CorridorTiling
Given: a tiling instance U = (U, u0, uF , V,H),

a number n in unary
Question: Does there exist a valid tiling λ that has width n?

ExponentialCorridorTiling
Given: a tiling instance U = (U, u0, uF , V,H),

a number n in unary
Question: Does there exist a valid tiling λ that has width 2n?

Theorem 3.3 ([van97, CGLV02])

(a) Tiling is undecidable.

(b) CorridorTiling is pspace-complete.

(c) ExponentialCorridorTiling is expspace-complete.

The intuitive idea behind the hardness proofs for tiling problems is that each row of a
tiling represents a configuration of a Turing machine and a complete tiling represents a
run of a Turing machine. The horizontal and vertical constraints ensure that the run
is correct. In the literature often an initial and last row encode the initial and final
configuration of the Turing machine. In the case of Tiling and ExponentialCorridorTiling,
the input only contains the parts the first and last row encoding the input and output.
The Tiling problem has therefore the same complexity as the acceptance problem of a
Turing machine and the CorridorTiling and ExponentialCorridorTiling problems have the
same complexity as the acceptance problem of space bounded Turing machines.

For simplicity reasons, we define our tiling instances with an initial and a final tile
instead of an initial and a final row. It can be easily seen that these variants are inter-
reducible, by first changing the tiling instance such that tiles in the first and last row
occur exactly once and cannot occur anywhere else (by adding copies of these tiles to U
and modifying H and V accordingly) and then changing H in such a way that the first
tile uniquely identifies all tiles in the first row.

In some proofs, we assume that for each valid tiling instance it holds that (λ(i, n), λ(i+
1, 0)) ∈ H for each row i < m. This allows us to represent a tiling as a string without
the need to take special care for the horizontal constraints across row borders. Again, it
is easy to see that this can be acomplished by adjusting the input instance accordingly,
i.e., by adding another tile that works as row separator and corresponding changes in H
and V .

3.4 Tiling Problems 33

Symbol used for
Σ set of integrity constraints (only in Part II)

Σ, Γ finite alphabet (Σ only used in Part I)
A, B finite automata
A edge relation in patterns

D, S DTD, Schema, regular tree language
D set of all data values
E edge relation in tree

H, V constraints in tiling problems
I problem instances

K, K sets of key constraints
L string language
P set of propositions
T set of trees
T set of all trees
U set of tiles
U tiling instances
V node set in trees
X set of variables in tree patterns

a, b, c symbols from finite alphabet
d, e data values

f, g, h functions
i, j, k natural numbers
` natural number, abstract label

n,m natural numbers
p, q states in finite automata
p tree patterns
t trees

u, v, w nodes in a tree
u tile from a tiling instance
δ transition function of a finite automaton
σ integrity constraints
τ target integrity constraint in implication instances (only in Part II)
τ typing (only in Chapter 8)
κ key constraint (over strings)
π embeddings of tree patterns in trees
ρ relational constraint
µ XML-to-relational mapping

[i, j], [i, j) intervals of natural numbers
[v, w] path in a tree (from node v to node w)
2M powerset (of M)

Table 3.1: Symbols and notation used in the thesis.

35

Part I

Schema Definition Languages

36

37

4 Defining the Structure of Trees

In the introduction we have described our running example of a content management
system. We have given a few syntactic constraints, to which the database for this system
should obey. In Part I of this thesis, we have a closer look on how to specify such types
of constraints, that is, how to specify the structure of trees. In this chapter we will see
how syntactic constraints can be specified using Document Type Definitions (DTDs) or
XML Schema Definitions (XSDs). We will therefore extend our running example to see
the difference in expressiveness between those two schema specification languages. In
Chapter 5, we will introduce the pattern based schema specification language BonXai,
which combines the simplicity of DTDs with the expressivity of XML Schema. All these
schema languages have in common that they use deterministic regular expressions to
describe the allowed sequences of children of nodes in the tree. In Chapter 7, we will
have a brief look at some properties of this type of regular expressions. We will close
this part of the thesis in Chapter 8 by looking at schema design for distributed XML
repositories. We are especially interested in schema designs so that validity of a global
combined document can be checked locally at all peers contributing to this document.

We start by giving a DTD and an XML Schema, so that valid trees fulfill the following
constraints, which we already know from the introduction. Note that as we are mostly
interested in describing the structure of the tree, we have left out constraints that only
restrict the domain of data values of some nodes.

• The root element of the XML document is labeled root and has two child elements
labeled users and documents.

• The users element has arbitrarily many child elements all labeled person.

• Each person element has two child elements labeled firstname and lastname respec-
tively and arbitrarily many child elements labeled user-id

Document Type Definitions constitute the first schema language for XML and are
most well-known for their simplicity. Basically, DTDs are a grammar-based formalism
where element declarations are entirely context insensitive. That is, the content-model
for an element is solely dependent on the name of that element. In Figure 4.1, we have
depicted a DTD such that all valid trees obey the given constraints.

From the theoretical point of view, a DTD is a function D : Σ→ 2Σ∗ mapping labels
(of nodes) to allowed sequences of children. A document is valid wrt. a DTD, if for
every node v it holds that the child string of v is contained in D(lab(v)), where lab(v)
is the label of v. In DTDs the allowed sequences of children are specified by regular

38 4 Defining the Structure of Trees

<!ELEMENT root (users, documents)>

<!ELEMENT users (person)*>

<!ELEMENT person (firstname, lastname, (user-id)*)>

<!ELEMENT documents (document)*>

<!ELEMENT document (owner, real-document)>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT user-id (#PCDATA)>

<!ELEMENT owner (#PCDATA)>

Figure 4.1: A DTD describing our CMS database

expressions1. Regular expressions use the operators concatenation (,), disjunction (|),
zero-or-more (*), one-or-more (+) and optional (?). Sub-expressions can be grouped with
round brackets. The rule

<!ELEMENT person (firstname, lastname, (user-id)*)>

from the DTD in Figure 4.1 expresses that every node labeled person has as first child
a node with label firstname followed by a child with the label lastname followed by
arbitrarily many nodes with the label user-id. The keyword #PCDATA used in the last
four rules of the DTD says that the matched nodes are text nodes which are nodes
without a label just containing some text. We mostly ignore these text nodes, as they
are not interesting for the structure of the tree. Rules with the keyword ATTLIST instead
of ELEMENT can be used to specify the list of allowed attributes for an element node.

4.1 Example: A Toy Markup Language

We will now discuss a fictional (toy) markup language that we will use to discuss the
main features of XML Schema. Furthermore we will use this example to introduce the
BonXai schema language in the next chapter. We first describe the markup language and
an example document informally and then we will define a DTD and an XML Schema
for it.

Example 4.1 (An example document) Consider the XML fragment in Figure 4.2 with
content formatted in a fictional markup language. The document is divided into template,
userstyles, which contains user-defined style definitions, and content. The content

part contains the actual text of the document, with markup (bold, font changes, etc.).

1To be more precise: by deterministic regular expressions. We have a look on this class of regular
expressions in Chapter 7.

4.1 Example: A Toy Markup Language 39

<document xmlns="http://mydomain.org/namespace">

<template>

<section>

<titlefont name="SomeFont" size="42"/>

<style></style>

<section>

<titlefont size="23"/>

</section>

</section>

</template>

<userstyles>

<style name="userdefined1">

<color color="red"/>

</style>

<style name="...">

...

</style>

</userstyles>

<content>

<section title="Introduction">

In this paper we discuss ...

<section title="Motivation">

Our problem is important because ...

<bold>This text is bold</bold><italic>and this is italic</italic>

<style name="userdefined1">

This text is red and uses a different font.

</style>

</section>

</section>

<section title="...">

...

</section>

</content>

</document>

Figure 4.2: An XML-document

Below the content node, the text is structured by section elements, which can be nested
to form, subsections, subsubsections, etc.

The template element should describe the default formatting of the text within content.
One could think that template defines ACM Journal style, for example. Within template,
the default formatting of sections is specified within the section child of template and the

40 4 Defining the Structure of Trees

default formatting of subsections within the section grandchild. So, a difference between
template and content is that, in template, there is at most one section element per
nesting depth. For the sake of the example, the rationale is that the default formatting
of all sections at the same level should be the same. Furthermore, template does not
contain text since all the actual text is within content.

The userstyles element contains a list of style elements. Each such style element
should be thought of as being either some user-defined style (e.g., a fancy font for bold
mathematics). Each style element has a unique name, which can be referred to from
within content. In our example, we only declared one user-defined style userdefined1.

4.2 A DTD for the Markup Language

We chose our example such that there are elements within content and within template

that have the same element names but different semantics, notably, the section ele-
ment. Similarly, style has a different semantics if it is used within userstyles, within
template, or within content.

DTDs do not have the expressive power to take these differences into account and must
define a common content model for all elements with the same name. That is, a DTD
can only define one rule for section independent of where a section element occurs in
the XML-document.

Example 4.2 (An example DTD for Example 4.1) Assuming an entity named markup,
defined as

<!ENTITY % markup "bold|italic|font|style|color">

we could define section from Example 4.1 in a DTD as follows:

<!ELEMENT section (#PCDATA|section|%markup;)*>

<!ATTLIST section title CDATA #IMPLIED>

A complete DTD for which the XML-document is valid is given in Figure 4.3. We present
this entire DTD because it is instructive to compare it with the XSD which we expose
next and with the BonXai schema which we define later and is equivalent to the XSD.

4.3 An XML Schema for the Markup Language

Figure 4.4 depicts a tree representation of the XML document of Figure 4.2. Nodes
labeled text in the figure are text nodes as described in the DOM model. We do not care
about the contents of these nodes. The tree representation is crucial for understanding
the expressiveness of XML Schema (and, therefore, also the expressiveness of BonXai
in the next chapter). Intuitively, XML Schema can distinguish between elements of the
same name, when the sequence of labels that occur on the path from the root to the
element is different. This means that XML Schema can distinguish the section elements

4.3 An XML Schema for the Markup Language 41

<!ELEMENT document (template, userstyles, content)>

<!ELEMENT template section>

<!ELEMENT userstyles style*>

<!ELEMENT content section*>

<!ENTITY % markup "bold|italic|font|style|color">

<!ELEMENT section (#PCDATA|titlefont|section|%markup;)*>

<!ATTLIST section title CDATA #IMPLIED>

<!ELEMENT bold (#PCDATA|%markup;)*>

<!ELEMENT italic (#PCDATA|%markup;)*>

<!ELEMENT font (#PCDATA|%markup;)*>

<!ATTLIST font name CDATA #IMPLIED

size CDATA #IMPLIED>

<!ELEMENT style (#PCDATA|%markup;)*>

<!ATTLIST style name CDATA #IMPLIED>

<!ELEMENT titlefont EMPTY>

<!ATTLIST titlefont name CDATA #IMPLIED

size CDATA #IMPLIED>

<!ELEMENT color (#PCDATA|%markup;)*>

<!ATTLIST color color CDATA #REQUIRED>

Figure 4.3: A DTD describing the XML document in Figure 4.2.

within content from those within template, for example. Indeed, the former have the
labels section content document on the path to the root, whereas the latter have
section template document. (Similarly, XML Schema can also distinguish between
style within userstyles, within template, or within content.)

We next develop an XSD for our example markup language which will be able to
differentiate the elements with the same name but different semantics. XSDs can take
context into account through the explicit use of types.

Example 4.3 (An example XSD for Example 4.1) An XSD describing the markup
language of Example 4.1 is presented in Figures 4.5 to 4.7. Figure 4.5 contains the
definition of the root document node and the definition of the markup group, which we
defined similarly to the markup entity in the DTD to avoid any unnecessary verbosity.

Types in XML Schema can be specified in two different ways. They can be defined
anonymous directly below some element. We have done this with the types of the root node

42 4 Defining the Structure of Trees

document

template

section

titlefont
@name=”SomeFont”

@size=”42”

style

font
@name=”Times”

@size=”12”

section

titlefont
@size=”23”

userstyles

style
@name=

”userdefined1”

font
@name=

”MyFancyFont”

color
@color=”red”

style
@name=”. . . ”

. . .

content

section
@title=”Introduction”

text section
@title=”Motivation”

text bold

text

italic

text

style
@name=

”userdefined1”

text

section
@title=”. . . ”

. . .

Figure 4.4: Tree representation of the XML document in Figure 4.2.

and the nodes directly below the root node. On the other hand they can be defined with
names. These types are defined directly below the xs:schema node and can be referenced
using a type attribute inside xs:element nodes. This is the way how we defined all other
types. All our type names start with a capital T so that the reader can easily distinguish
them from element names.

The XSD distinguishes between two types of sections: Tsection and TtemplateSection.
The former should be used within content and the latter one within template. It is
instructive to view this in terms of the tree representation of our sample document,
depicted in Figure 4.4. The type of a section element is determined by the type of its
parent. That is, when the parent of such an element is labeled content or is a section

element with type Tsection, the section can contain text and markup. On the other hand,
if the parent is labeled template or is a section with type TtemplateSection, the section

element cannot contain text, it can only contain formatting instructions. Similarly, the
XSD contains three types that can be used for style: TtemplateStyle (for style elements
below template), TnamedStyle (for style elements below userstyles, and TstyleRef
(for style elements below content).

The use of types in XSDs to define context is not unrestricted. The Element Declarations
Consistent constraint, which is enforced by the XML Schema Specification [GSMT+12,
Section 3.8.6.3] prohibits the use of the same element occurring in the same content
model with different types.2 One consequence of this constraint is that XSDs can only
identify the context of an element based on the labels of elements occurring on the path
from the root to that element, the so-called ancestor path. In [MNSB06], it was shown
that the kind of constraint which can be put on such an ancestor path by an XSD can

2A detailed discussion on the implications of this constraint can be found in [MNSB06, MNS07].

4.3 An XML Schema for the Markup Language 43

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema xmlns="http://mydomain.org/namespace"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://mydomain.org/namespace"

elementFormDefault="qualified">

<xs:element name="document">

<xs:complexType>

<xs:sequence>

<xs:element name="template">

<xs:complexType>

<xs:sequence minOccurs="0">

<xs:element name="section" type="TtemplateSection"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="userstyles">

<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="style" type="TnamedStyle"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="content">

<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="section" type="Tsection"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:group name="markup">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="bold" type="Tmarkup"/>

<xs:element name="italic" type="Tmarkup"/>

<xs:element name="style" type="TstyleRef"/>

<xs:element name="font" type="Tfont"/>

<xs:element name="color" type="Tcolor"/>

</xs:choice>

</xs:group>

Figure 4.5: An XSD describing the XML document in Figure 4.4 — part 1.

44 4 Defining the Structure of Trees

<xs:complexType name="TtemplateSection">

<xs:sequence>

<xs:element name="titlefont" type="TtemplateFont" minOccurs="0"/>

<xs:element name="style" type="TtemplateStyle" minOccurs="0"/>

<xs:element name="section" type="TtemplateSection" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TtemplateFont">

<xs:attribute name="name" type="xs:string" use="optional"/>

<xs:attribute name="size" type="xs:integer" use="optional"/>

</xs:complexType>

<xs:complexType name="TtemplateStyle">

<xs:all>

<xs:element name="font" type="TtemplateFont" minOccurs="0"/>

<xs:element name="color" type="TtemplateColor" minOccurs="0"/>

</xs:all>

</xs:complexType>

<xs:complexType name="TtemplateColor">

<xs:attribute name="color" type="xs:string"/>

</xs:complexType>

<xs:complexType name="TnamedStyle">

<xs:all>

<xs:element name="font" type="TtemplateFont" minOccurs="0"/>

<xs:element name="color" type="TtemplateColor" minOccurs="0"/>

</xs:all>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Tsection" mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:group ref="markup"/>

<xs:element name="section" type="Tsection"/>

</xs:choice>

<xs:attribute name="title" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Tmarkup" mixed="true">

<xs:group ref="markup"/>

</xs:complexType>

Figure 4.6: An XSD describing the XML document in Figure 4.4 — part 2.

4.3 An XML Schema for the Markup Language 45

<xs:complexType name="TstyleRef" mixed="true">

<xs:group ref="markup"/>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Tcolor" mixed="true">

<xs:group ref="markup"/>

<xs:attribute name="Tcolor" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Tfont" mixed="true">

<xs:group ref="markup"/>

<xs:attribute name="name" type="xs:string" use="optional"/>

<xs:attribute name="size" type="xs:integer" use="optional"/>

</xs:complexType>

</xs:schema>

Figure 4.7: An XSD describing the XML document in Figure 4.4 — part 3.

always be captured by a regular expression and usually even by so-called linear XPath
expressions [KS07], which are Core XPath expressions that do not branch.3 The latter
insight influences the design of BonXai, as we will see in the next chapter, to make such
contexts explicit through the addition of patterns over ancestor paths.

3Consequently, linear XPath expressions can only reason about paths in trees. In the context of tree
pattern queries, linear XPath expressions are sometimes also referred to as path queries.

47

5 BonXai

In this chapter, we will introduce the BonXai schema language and compare it with
existing schema languages, especially Document Type Definitions (DTDs) and XML
Schema.

In Section 5.1, we will therefore show two BonXai schemas for the toy markup language
introduced in the previous chapter, a simple one, showing the basic BonXai syntax and
a slightly more complex one exploiting the extended expressivity compared to DTDs.
Afterwards, in Section 5.2, we treat the principles behind BonXai by means of several
examples mostly based on the toy markup language. We explore in Section 5.3, how
BonXai can be used as an analysis tool for XML Schema. The design of BonXai is
influenced by existing XML schema languages. We discuss these in Section 5.4.

In the next chapter we provide a solid theoretical background for BonXai and in
Chapter 13 we describe the FoXLib library, which contains — among other algorithms

— an example implementation of the conversion algorithms between BonXai and XML
Schema and tools helping debugging XML Schema and BonXai definitions.

5.1 BonXai Schemas for the Markup Language

We now discuss some BonXai schemas for the markup language described in Chapter 4.1.
Actually, we give two BonXai schemas. The BonXai schema in Figure 5.1 is equivalent
to the DTD given in Figure 4.3, while the BonXai schema in Figure 5.2 exploits the
additional expressiveness of BonXai to precisely match our running example’s markup
language. It is equivalent to the XSD given in Figures 4.5–4.7.

Both examples use a compact syntax inspired by Relax NG [CM01]. Like a DTD, a
BonXai schema is a collection of rules. The right-hand side of a rule denotes a content
model as usual. The left-hand side can be either a label or a regular expression if more
expressiveness is needed. We use a regular expression syntax which resembles XPath
expressions since this allows users to also write linear XPath expression on left-hand
sides. The semantics is that for an XML document to match the schema, the children of
nodes in the document selected by a left-hand side expression when evaluated from the
root, should match the content model denoted in the right-hand side of the rule. For
instance, the rule

template//section = { element titlefont?, element style?, element section? }

stipulates that section elements occurring somewhere below a template element can
contain a titlefont child, a style child, and a section child, whereas the rule

content//section = mixed { attribute title, (element section | group markup)* }

48 5 BonXai

target namespace http://www.example.com/MyDocument

namespace xs = http://www.w3.org/2001/XMLSchema

global { document }

groups {

group markup = { element bold | element italic | element font |

element style | element color }

}

grammar {

document = { element template, element userstyles, element content }

template = { element section }

userstyles = { (element style)* }

content = { (element section)* }

section = mixed { attribute title, (element titlefont | element section

| group markup)* }

bold = mixed { (group markup)* }

italic = mixed { (group markup)* }

font = mixed { attribute name, attribute size, (group markup)* }

style = mixed { attribute name, (group markup)* }

titlefont = { attribute name, attribute size }

color = mixed { attribute color, (group markup)* }

@title = { type xs:string }

@name = { type xs:string }

@size = { type xs:string }

@color = { type xs:string }

}

Figure 5.1: A BonXai schema equivalent to the DTD in Figure 4.3.

stipulates that elements occurring somewhere below a content element should contain
a title and may contain text (indicated by the keyword mixed) with markup. The
keyword mixed allows mixed content, i.e., it is allowed to interleave text with XML
tags. In the BonXai schema in Figure 5.2, / and // stand for the XPath axes “child”
and “descendant”, respectively. We denote concatenation, disjunction, Kleene star, and
“optional” by “,”, “|”, “*”, and “?”, as in DTDs. The operator “&” stands for unordered
concatenation, which is known as xs:all in XSD. If an expression does not start with
/ or //, we implicitly assume that it starts with //. This way simple labels are just a
special case of regular expressions.

5.1 BonXai Schemas for the Markup Language 49

target namespace http://www.example.com/MyDocument

namespace xs = http://www.w3.org/2001/XMLSchema

global { document }

groups {

attribute-group fontattr = { attribute name?, attribute size? }

group markup = { (element bold | element italic | element style |

element font | element color)* }

}

grammar {

document = { element template, element userstyles, element content }

content = { (element section)* }

template = { (element section)? }

userstyles = { (element style)* }

content//section = mixed { attribute title,(element section|group markup)* }

content//style = mixed { attribute name, group markup }

content//font = mixed { attribute-group fontattr, group markup }

content//color = mixed { attribute color, group markup }

(bold|italic) = mixed { group markup }

template//section = { element titlefont?, element style?, element section? }

template//style = { element font? & element color? }

userstyles/style = { attribute name, element font? & element color? }

(userstyles|template)//color = { attribute color }

(userstyles|template)//(font|titlefont) = { attribute-group fontattr }

@name = { type xs:string }

@color = { type xs:string }

@title = { type xs:string }

@size = { type xs:integer }

}

Figure 5.2: A BonXai schema equivalent to the XSD in Figures 4.5–4.7.

The main difference with the corresponding XSD is that contexts are now defined
explicitly. Another way of viewing the difference between XSD and BonXai is top-down
versus bottom-up. XSDs carry all relevant information about the root-path in a top-
down fashion, encoded in types, while BonXai, instead, looks upward from a node, thus
separating types from their inference. Furthermore, as XSDs employ types, context has

50 5 BonXai

to be specified in terms of automata, while BonXai can use the more user-friendly regular
expressions or linear XPath expressions.

5.2 BonXai at a Glance

BonXai schemas consist of up to five blocks. First, there is a namespace block, declaring
all namespaces used in the schema. The second block is called the global block and
specifies which element names can occur at the root of documents that match the schema.
Third, there is an optional group block, which can declare the equivalent of XSD groups.
The fourth block is called the grammar block and is the actual core of the schema. The
grammar block contains the definitions of the rules that define the structure of documents.
Finally, there is an optional constraints block which defines integrity constraints.

This chapter is not intended to discuss all details of the BonXai language and how
they correspond to XML Schema. Instead, we provide a high-level overview and refer
the reader to [MMN+14] for further details. We first discuss a few BonXai-specific
matters (ancestor patterns, child patterns, and priorities) and then we show how BonXai
seamlessly incorporates most of XML Schema language features (like differentiation
between elements/attributes, simple types, element- and attribute groups, namespaces,
constraints, schema imports, mixed types, default values, wildcard patterns).

Global Element Names Elements that are declared global in a BonXai schema can
occur as root elements in XML documents that match the schema. In our running
example, there is a single such element, called document. Global elements are the only
elements that can be referenced from foreign namespaces. The list of global elements
corresponds to the elements declared directly below the xs:schema node of an XML
Schema.

Ancestor Patterns A rule within the grammar-block of a BonXai schema is of the form

<ancestor pattern> = <child pattern>

The ancestor pattern (left of the equality sign) describes the context of the rule and should
be matched against paths in the tree that start from the root. Ancestor patterns are
variants of regular expressions, built from element names and attribute names (i.e. names
starting with @). The regular expressions have the operators union (|), concatenation
(/), descendant (//), Kleene star (∗), one-or-more (+), and zero-or-one (?). Sub-patterns
can be grouped using round brackets.

It should be noted that attribute names should only occur at the end of ancestor
patterns as in XML documents attributes cannot have any children. Therefore ancestor
patterns like /a/@b/c cannot match any nodes in a well formed XML document.

For convenience, a pattern that does not start with either /or // is implicitly assumed
to start with //. This allows to just use an element name as ancestor pattern to match
all elements of this name, as in DTDs.

5.2 BonXai at a Glance 51

Child Patterns In its simplest form, a child pattern is a regular expression describing
the content model of a set of elements. To allow some other features (e.g. groups) and
not introducing ambiguity, all element names have to be prefixed with the keyword
element. Regular expressions in child patterns are built using concatenation (,), union
(|), interleaving(&), Kleene closure (*), one-or-more (+), zero-or-one (?) and counting
({n,m}). The upper bound of counters may be * instead of a number to express that
there is no upper bound. Sub-expressions can be grouped using round brackets. The
use of the interleaving operator is restricted, to reflect the restrictions imposed by the
all-pattern of XML Schema. (The restrictions for XML Schema are described in Section
3.8.2 in [GSMT+12].) In plain words, these restrictions say that no content model should
use an interleaving operator and at the same time a union or a concatenation operator.
Furthermore, in content models containing an interleaving operator, counters are only
allowed directly above element declarations in the syntax tree of the regular expression.

Instead of a child pattern there can be a reference to a type described in an XML
schema, as described below under “References to foreign namespaces”. For compatibility
with XML we require that rules where the ancestor pattern contains any attribute names,
the child pattern is a reference to a simple type. Again, the reason is that attributes are
not allowed to have any children in XML documents.

Attributes Attributes are specified at the beginning of child patterns, that is, child
patterns can have an optional list of attribute declarations before the start of the element
declarations. Attributes are separated by comma and can be followed by a ?, indicating
that the attribute is optional.

Priorities It is possible to define BonXai rules such that two or more rules match the
same path. When such a multiple match occurs, BonXai gives priority to the rule that
occurs lowest in the schema. To illustrate this, assume that we would change the ancestor
pattern content//section to section. Then we would have the rules

section = mixed { attribute title, (element section | group markup)* }

template//section = { element titlefont?, element style?, element section? }

in the schema. Both rules are matched by a section element that is below a template

element. In this case, the rule for template//section takes priority and therefore the
semantics of the modified schema are the same as the semantics of the original schema.
The rationale behind priorities is that a developer can first write down rules that generally
apply in the schema and write down the special cases and exceptions later. We introduced
priorities in BonXai because they were required for ensuring full compatibility with XML
Schema’s expressive power. We explain this matter in more detail in Chapter 6.3.

Groups Groups can be used in BonXai to abbreviate parts of child patterns that are
common to several different patterns (similar to entities in DTD and groups in XML
Schema). In our running example, we use the group markup, to abbreviate the disjunction
of the elements bold, italic, etc. Groups are declared in the groups block and can be
used using the keyword group inside child patterns.

52 5 BonXai

Attribute groups can be used analogously to groups. They are prefixed by the keyword
attribute-group, as for example in the rules for font-elements in Figure 5.2.

Namespaces BonXai has full namespace support. The target namespace is declared
using the keyword target namespace. Other namespaces can be declared using the
syntax namespace <prefix> = <namespace URI>. The target namespace will be used
as default namespace for all names, which are not prefixed with a namespace prefix.
Names in other namespaces can be expressed by <prefix>:<local name>, as in XML
Schema.

Mixed and nillable content models Mixed or nillable content models are declared using
the keyword mixed, respectively, nillable, in front of the child pattern. Both keywords
can be combined.

Default and fixed values Default values for attributes and elements using a simple type
can be declared using the syntax type <typename> default "<value>". Fixed values
can be declared analogously.

Integrity Constraints BonXai allows to express the same integrity constraints as XML
Schema (i.e., unique, key, and keyref). The term “keyref” is taken from XML Schema,
where it denotes a foreign key constraint. As in XML Schema, keys should have a name,
so that keyrefs can refer to them. The general syntax of key constraints is

key <name> <ancestor pattern> { <selector> { <fields> } },
where the ancestor pattern is used to select the elements for which the key should be
defined and selector and fields have the same meaning as in XML Schema. The syntax
for unique constraints is the same, apart from the fact that unique constraints do not
have a name. In a keyref, the semantics of <name> is that it should be the name of the
key it refers to.

Example 5.1 (Keys for Example 4.1) To express in our running example that names of
user-defined styles should be unique, we can use the key constraint

key stylekey /document { //userstyles/style { @name } }.
It says that, below the document root, paths that match the linear XPath expression

//userstyles/style/@name uniquely identify paths that match //userstyles/style

(as in XML Schema). Finally, we can express that every style used in content should
be declared in userstyles by the foreign key constraint

keyref stylekey /document { //style { @name } }.

References to foreign namespaces BonXai allows to refer to content of foreign XML
Schemas, so that content that is defined elsewhere does not need to be re-defined within
the BonXai schema. In particular, it is possible to refer to foreign elements, attributes,
and XML Schema simple- or complex types. We explain how foreign content can be
referenced and how we intend the use of foreign references in BonXai.

5.2 BonXai at a Glance 53

target namespace http://www.example.com/MyCMS

namespace doc=http://www.example.com/MyDocument

global { root }

grammar {

root = { element users, element documents }

users = { element person* }

person = { element name, element user-id* }

documents = { element document* }

document = { element owner, elementref doc:document }

name = { type xs:string }

user-id = { type xs:string }

}

Figure 5.3: BonXai schema describing our CMS database.

Global elements of foreign namespaces can be referenced by using the elementref key-
word inside child patterns. (In XML Schema it is only possible to refer to foreign elements
if they are global elements in the foreign schema. We inherit this restriction.) In Fig-
ure 5.3 we have depicted a BonXai schema for our content management system. The rule

document = { element owner, elementref doc:document }
says that documents inside the CMS should be validated against the (global) element
document from the namespace http://www.example.com/MyDocument, which is declared
in the BonXai schema from Figure 5.2. Note that in the content management system
there are document nodes from two different namespaces. There are document nodes
from the CMS namespace itself, which have as children an owner node (from the CMS
namespace) and a document node from the markup language namespace containing the
actual document.

To provide another example, we want to extend our markup language with support
for SVG vector images. We can accomplish this by adding the namespace declaration
namespace svg=http://www.w3.org/2000/svg and extending the group markup with
elementref svg:svg.

Similarly, foreign global attributes can be referenced by using the attributeref

keyword. For example, if we want to be able to add XLink1 references to documents, this
can be accomplished by adding namespace xlink=http://www.w3.org/1999/xlink to
the namespace declarations and extending the content model of the document rule with
attributeref xlink:href?. (We explain how to import a bigger fragment of the XLink
language when we discuss wildcards next.)

1XLink is a language intended to allow embedding of hyperlinks and some other meta-information to
arbitrary XML documents in a standardized way.

54 5 BonXai

References to types (in foreign XML Schemas) are mainly intended to refer to simple
types like xs:integer and xs:string. Type references are expressed by replacing the
right-hand side of a rule with { type ns:typename }, where type is a keyword, ns

should be a declared namespace, and typename the name of the target type inside
namespace ns. In our running example, the rule @title = { type xs:string } express
that all title attributes should use the type string which is declared in the XML
Schema namespace.

In general, it is also possible (but perhaps not encouraged) to refer to foreign XML
Schema complex types. For example, the rule //foo = { type svg:svgType } would
state that each element with name foo has the type svgType of the svg namespace.
(However, we feel that using elementref svg:svg instead, whenever possible, is more
elegant.)

In summary, although BonXai is intended to be a language that reduces the use of
types to a minimum, we do allow references to foreign types. The reasons for this decision
are that it allows the use of XSD simple types and that we like to allow users to easily
import (e.g., well-known, standard) types which are defined elsewhere. It should be
noted that, whenever an element is declared to have an (XSD-)type, no BonXai rules are
applied to nodes below this element, as the set of allowed subtrees for this element is
entirely determined by the type.

Wildcards Wildcards are expressed by any-patterns in XML Schema. Note that XML
Schema wildcards can be restricted to certain namespaces and it can be declared whether
elements matched by any-patterns should be checked against some schema declaration
or not. BonXai provides the same mechanism for wildcards. For example, to allow
arbitrary foreign markup, we could extend the markup group with any {lax namespace

{##other}}, meaning, that elements from other namespaces are allowed and should be
validated, if a declaration is present. As in XML schema, the validation policy can be
changed to strict (a declaration has to be present) or skip (the subtree below matched
elements is not validated at all).

It is also possible to allow arbitrary attributes using the keyword anyattribute. As
for arbitrary elements, the wildcard can be restricted to certain namespaces. For example
to allow arbitrary XLink information to be added to document roots, we can extend the
childpattern of the document rule by

anyattribute {strict namespace {http://www.w3.org/1999/xlink}}.
The strict keyword says that the content should be validated and validation should fail
if the XLink declaration is not present.

Annotations Annotations can be used to add further information to a schema. In
BonXai, annotations can be added before every rule. Annotations have no semantic
meaning for the schema. However they might have a meaning for software used to create
and edit BonXai schemas.

Our implementation (see Chapter 13) uses annotations to preserve type names when
converting XSDs to BonXai schemas. This way the user can easily grasp the correspon-

5.3 BonXai at Work 55

dence between XML Schema complex types and BonXai rules. When converting BonXai
schemas to XSDs, these annotations are used to generate meaningful XSD complex type
names. For example, our implementation uses the annotation

@typename=MyTypename

//a = { ... }

with the meaning that a complex type created for the rule //a = { ... } should be
named MyTypename when converting to XML Schema. In theory, it may be possible that
more than one XSD complex type needs to be created for a single BonXai rule. In this
case our implementation adds numbers after the given name.

Unconstrained Elements It is theoretically possible to write BonXai schemas which do
not constrain certain ancestor paths. For example, if a BonXai schema would only have
the two rules

/a = { element b, element c}

//b = { ... }

then the c-child of the root in a corresponding document does not have a matching
ancestor pattern. In this case, BonXai allows any content below this c-child. Concretely,
we translate this case to XML Schema’s anytype, which is the most general type in XML
Schema [PGM+12, Section 3]. We treat such elements the same as elements that refer to
an XSD-type (see the last paragraph of References to foreign namespaces). Therefore, as
a consequence, no BonXai rules are matched against descendants of the c-child of the
root.

5.3 BonXai at Work

We now discuss a few more specific use cases for BonXai to illustrate that BonXai is not
just a “readable syntax for XSDs” but can also be used to perform some more serious
tasks more efficiently.

Analyzing existing XSDs Existing XSDs can be converted to BonXai to analyze their
structural complexity. Such a BonXai inspection can, e.g., give an idea of the amount
of structural expressiveness which goes beyond DTDs and where it sits. In addition,
the selection patterns provided by BonXai provide direct insight into the definition of
elements depending on their context. As such, the BonXai translation, converting the
machine readable syntax of XSDs in the more human-readable compact syntax of BonXai,
and the associated highlighting features in our GUI help users to understand schema
definitions more quickly and easily. The selection patterns in the left-hand sides of
BonXai rules give users immediate insight on where a given complex type is used in an
XML document. Since such selection patterns are basically specified in a fragment of
XPath, users familiar with XML technology can already benefit from this feature without
having to learn yet another standard.

56 5 BonXai

Example 5.2 In our running example, the BonXai rules

template//section = { element titlefont?, element style?, element section? }

content//section = mixed { attribute title, (element section | group markup)* }

give immediate insight in the difference between the complex types TtemplateSection

and Tsection from Figure 4.6. The former specifies the structure of section-descendants
of template elements in the tree; and the latter of section-descendants of content

elements.

Evolving from a DTD to an XSD BonXai can be used to move from a DTD to an XSD
rather painlessly while, at the same time, taking advantage of the extra expressiveness.
One can convert the given DTD into BonXai, add the desired extra structural features
directly in the BonXai schema, and convert the result to XSD.

Example 5.3 The BonXai schema in Figure 5.1 is equivalent to the DTD in Figure 4.3.
By only a few modifications it can be extended to the BonXai schema from Figure 5.2,
which can then be exported to an XSD equivalent to the one in Figures 4.5 to 4.7.

Schema Evolution Schema evolution refers to updating a schema to reflect a re-structur-
ing of the underlying data. We distinguish two use cases regarding schema evolution,
depending on whether we want to modify an existing XSD or an existing BonXai schema
using our system. In the latter case, schema evolution can simply be done by editing the
BonXai schema. In the former case, the workflow is roughly the following: Convert the
XSD to BonXai; alter the schema by specifying additional constraints or changing some
content models; and re-export the schema to XSD.

The highlighting features of the system, mapping patterns in BonXai rules to complex
types in the generated XSD fragment provide the developer with control to inspect the
induced changes in the original XSD more rapidly and accurately.

Especially the priority system used by BonXai can be very helpful in schema evolution.
For example, in our running example, sections can be nested arbitrarily deeply. Assume
that we want to change the schema such that the nesting depth of sections is at most
three. In the BonXai schema in Figure 5.2, this can be achieved by inserting the rule

content/section/section/section = { attribute title, group markup }

at the end of the rules that start with content. The semantics of this rule would be that
subsubsections only have a title attribute and markup, but no section children.

If one would want to perform the equivalent change directly in XML Schema, one
would be required to make three complex types for sections below content: one for each
allowed nesting depth. Incidentally, when converting the updated BonXai schema back
to XSD, the converter produces exactly these three complex types.

5.4 A Comparison with Other Schema Languages for XML 57

Debugging invalid XML documents w.r.t. an XSD When an XML document is invalid
with respect to an XSD, BonXai can offer a transparent explanation when the mismatch
is caused by a complex type violation. To this end, the existing XSD can be converted to
BonXai. The system can highlight where an element mismatch occurs. The left-hand
sides of the BonXai rules can offer more insight in terms of simple patterns for which
kinds of elements are affected than the complex-type names provided by the XSD. (In
this respect, tracing complex-type definitions in large XSDs to find such a source of
errors is much like debugging source code that consists of GOTO-statements.) Again,
the highlighting features of the system can aid the developer to understand how changes
in patterns affect the invalid XML document.

Developing new Schemas / Using BonXai Stand-Alone As mentioned before, BonXai
is not primarily meant as a replacement for XSDs, but to a large extent it can be used
as such. The system can be used to develop schemas from scratch and to debug them.
When the schema is finished, XML documents can be validated directly against the
BonXai schema. Of course, the BonXai schema can also be exported to an XSD as well
and XML documents can then be validated against the XSD using state of the art XML
validators for XSDs.

For stand-alone use, BonXai’s main strength lies in its succinct and transparent way
for defining the structure of XML documents. BonXai does not (yet) have a syntax for
defining XML Schema simple types. Therefore, simple types always need to be imported
from an existing XSD. One way to do this is to write a structurally very simple XSD
that only defines a set of simple types (that is, without complex types). This XSD can
be imported into the BonXai schema, which can then use the simple types from the XSD
and define structural aspects through its grammar.

5.4 A Comparison with Other Schema Languages for
XML

As already stated before, BonXai borrows concepts from several existing schema languages
for XML. The purpose of this section is to give an overview of the most well-known of
those languages and discuss their relationship with BonXai.

Following [MS06], DSD2 [DSD02] (Document Structure Description 2.0) is a language
developed by the University of Aarhus and AT&T Research Labs whose primary goal is
to be simple yet expressive. Like BonXai, DSD2 is based on rules which must be satisfied
for every element in the input document. BonXai and DSD2 are incomparable in how
context is defined. While DSD2 is far more expressive than DTDs, its exact expressiveness
in formal language theoretic terms is unclear. It allows context to be defined in terms of
Boolean expressions which can refer to structural predicates like parent and ancestor, but,
unlike BonXai, also allows to look downward using predicates like child and descendant.
BonXai on the other hand harnesses the full power of regular languages on the ancestor

58 5 BonXai

path, while DSD2 seems to remain within the star-free regular languages (on the ancestor
path). For this reason, DSD2, on a structural level, is incomparable to XML Schema.

Relax NG [CM01] has been developed within the Organization for the Advancement
of Structured Information Standards (OASIS). Like DSD2, its main goal is to combine
simplicity with expressivity. In formal language theoretic terms, the expressiveness of
Relax NG corresponds to the unranked regular tree languages which strictly includes
XML Schema [MLMK05, MNSB06]. Like XML Schema, Relax NG is grammar based
and utilizes types to define context. However, Relax NG schemas are not restrained
by the Unique Particle Attribution constraint or the Element Declarations Consistent
constraint. So, unlike XSDs and therefore BonXai, the context of an element in Relax NG
can depend on the complete tree. As BonXai strives for simplicity it utilizes a readable
compact syntax which is inspired by that of Relax NG.

Schematron [Sch99] is a rule-based language based on patterns, rules and assertions.
Basically, an assertion is a pair (φ,m) where φ is an XPath expression and m an error
message. The error message is displayed when φ fails. A rule groups various assertions
together and defines by means of an XPath expression a context in which the grouped
assertions are evaluated. Patterns then group various rules together. Schematron is not
so much intended as a stand-alone schema language but can be used in cooperation with
existing schema languages. BonXai shares the use of XPath-expressions with Schematron,
although BonXai restricts them to a very small subset (linear expressions) to ensure
compatibility with XML Schema.

Co-constraints is an overloaded term which generally refers to a mechanism for verifying
data interdependencies. While DSD, Schematron, and Relax NG quite naturally allow
to express co-constraints, XSDs are rather limited in this respect. The latter motivated
the formulation of extensions of DTDs and XSDs, named DTD++ [FGMV04] and
SchemaPath [CMV04], with XPath expressions to express co-existence and co-absence of
element names and attributes. These extensions share with BonXai the use of XPath
to express conditions but differ from BonXai in that they increase the expressiveness
beyond that of XML Schema.

59

6 The Theory Underlying BonXai:
Core XSD and Core BonXai

In this chapter, we explain the underlying theory of BonXai. In particular, we provide

• a compact and clear formal model of core BonXai schemas;

• a theoretical foundation for the BonXai priority system;

• a formal back and forth translation procedure between core XML Schema and core
BonXai;

• an analysis of the blow-up of these conversions;

• practically relevant fragments of core XML Schema and core BonXai that can be
efficiently translated into the other formalism; and

• proof of worst-case optimality for the conversions.

Our aim is to provide a precise mathematical description of BonXai’s core which abstracts
away from unavoidable cosmetics like namespaces and data types, and which offers a
quick understanding of the essentials of the language. The presentation of the translations
between BonXai and XML Schema fulfills a similar purpose and, in addition, makes
the relation between BonXai and XML Schema apparent. In particular, the translation
provides insight to where one language can be more succinct than the other.

To concentrate the presentation on the logical core of the translation instead of on bells
and whistles, we introduce a high-level abstraction of BonXai and utilize an abstraction
of XML Schema which is standard in the literature.

6.1 A Formal Model for XML Schema Definitions

An XML Schema uses a finite set of element names and complex type names. We therefore
fix finite sets EName and Types of element names and complex type names, respectively.
The set TEName of typed element names is then defined as {a[t] | a ∈ EName, t ∈ Types}.
In an XML Schema, a typed element name a[t] could, for example, be written as
<xs:element name="a" type="t"/>. Our abstraction of an XML Schema closely follows
the definition from [MLMK05, MNSB06] and is also used in [MNS07]:

60 6 The Theory Underlying BonXai

Definition 6.1 An XSchema Definition (XSD) is a tuple X = (EName,Types, ρ, T0)
where EName and Types are finite sets of elements and types, respectively, ρ is mapping
from Types to regular expressions over alphabet TEName, and T0 ⊆ TEName is a set of
typed start elements. Furthermore, the following two conditions hold:

Element Declarations Consistent (EDC) There are no typed elements a[t1] and a[t2]
in a regular expression ρ(t) with t1 6= t2. Furthermore, there are no typed elements
a[t1] and a[t2] in T0 with t1 6= t2.

Unique Particle Attribution (UPA) Each regular expression ρ(t) is deterministic.

The EDC constraint can be found in [GSMT+12, Section 3.8.6.3] and the UPA con-
straint in [GSMT+12, Section 3.8.6.4].

We sometimes also refer to ρ(t) as the content model associated to t. For ease of
notation we extend the definition of ρ to typed element names as follows:

ρ(a[t]) = ρ(t) for every a[t] ∈ TEName.

A typing of an XML document D w.r.t. X associates, to each node u of D, a type of
the schema. Formally, a typing of D w.r.t. X is a mapping µ from Nodes(D) to TEName.
A typing µ is correct if it satisfies the following three conditions:

• µ(root(D)) ∈ T0.

• For each node u ∈ Nodes(D), we have µ(u) ∈ {lab(u)[t] | t ∈ Types}.

• For each node u ∈ Nodes(D) with children u1, . . . , un from left to right, we have
µ(u1) · · ·µ(un) ∈ L(ρ(µ(u))).

An XML document D conforms to an XSD X if there exists a correct typing µ of D
w.r.t. X. Notice that typings are unique due to the EDC condition, that is, there can be
at most one correct typing for a given document D w.r.t. a given XSD X.

Example 6.2 We present an XSchema Definition for a fragment1 of the XML Schema
in Figures 4.5 to 4.7 to illustrate XSchemas. We can abstract the schema as XSD
X = (EName,Types, ρ, T0), where

• EName = {document, content, section, style, bold, italic, font, color, template,
userstyles}

• Types = {Tdocument, Ttemplate, Tuserstyles, Tcontent, TtemplateSection,
TtemplateStyle, TtemplateFont, TtemplateColor, TnamedStyle,
Tsection, Tmarkup, TstyleRef, Tfont, Tcolor}

1We focus on the elements of the schema; since this is the part where the complexity lies when
converting between XML Schema and BonXai.

6.1 A Formal Model for XML Schema Definitions 61

document
Tdocumenttemplate

Ttemplate

section
TtemplateSection

titlefont
TtemplateFont

style
TtemplateStyle

font
TtemplateFont

section
TtemplateSection

titlefont
TtemplateFont

userstyles
Tuserstyles

style
TnamedStyle

font
TtemplateFont

color
TtemplateColor

style
TnamedStyle

. . .

content
Tcontent

section
Tsection

section
Tsection

bold
Tmarkup

italic
Tmarkup

style
TstyleRef

section
Tsection

. . .

Figure 6.1: Typing for the XML document in Figure 4.4 and the XSD in Figures 4.5
to 4.7.

• ρ is defined as follows (some parts omitted):
Tdocument→ template[Ttemplate] userstyles[Tuserstyles] content [Tcontent]
Ttemplate → (section[TtemplateSection])?
Tuserstyles → (style[TnamedStyle])∗

Tcontent → (section[Tsection])∗

Tsection → (bold [Tmarkup]] + · · ·+ color [Tcolor] + section[Tsection])∗

· · ·

• T0 = {Tdocument}

In the XML Schema, we defined some types inline. These types are called anonymous
types in XML Schema and do not have a name. In this example, we denote these types
by Tdocument, Ttemplate, Tuserstyles, and Tcontent. We did not specify the function ρ
completely since it would make the example rather verbose. Notice that we also omitted
rules from this example that would use the xs:all operator (respectively, the &-operator
in BonXai). Indeed, we do not consider this operator in the present chapter to simplify
presentation. The operator & could, in fact, simply be added to the regular expressions
that we use for specifying content models in XSchemas and BonXai. It would make the
discussion in this chapter more verbose (because we have different regular expressions for
ancestor strings than for child strings) but the translation between XSchema and BonXai
that we present further on would be essentially the same. For similar reasons, we do not
consider attributes and minoccurs/maxoccurs constraints in XML Schema.

The correct typing for the XML document in Figure 4.4 according to the XSchema in
Example 6.2 is denoted in Figure 6.1. A typing of the XML document according to the
XML Schema in Figures 4.5 to 4.7 would look very similar.

62 6 The Theory Underlying BonXai

6.2 A Formal Model for BonXai Schemas

A BonXai schema is abstracted as follows.

Definition 6.3 A BonXai Schema Definition (BXSD) is a pair B = (EName, S,R) where
S ⊆ EName is a set of start elements and R is an ordered list r1 → s1, . . . , rn → sn of
rules, where

• all ri are regular expressions over the alphabet EName and

• all si are deterministic regular expressions over the alphabet EName.

For each i = 1, . . . , n, we say that the rule ri → si has index i. Let D be an XML
document and u a node of D. A rule ri → si is relevant for u if i is the largest index
such that anc-strD(u) ∈ L(ri). Notice that a node u has at most one relevant rule in
B. An XML document D conforms to the BXSD B if the label of root(D) is in S and,
for each node u ∈ Nodes(D), if ri → si is relevant for u, then ch-strD(u) ∈ L(si). The
definition of relevant rules reflects the priority system in BonXai: rules with a higher
index have higher priority.

Our abstraction of BonXai Schema Definitions requires expressions si to be determin-
istic. This restriction corresponds to the Unique Particle Attribution (UPA) restriction
from XSDs [GSMT+12, Section 3.8.6.4]. In particular, this restriction is necessary to
make BXSDs expressively equivalent to XSDs.

Example 6.4 The formal abstraction of the BonXai schema in Figure 5.2 is the BXSD
B = (EName, S,R) where

• EName = {document, template, userstyles, content, section, style, title}

• S = {document}

• R is the ordered list containing rules (some parts omitted):

//document → template userstyles content
//content → section∗

//template → section
//userstyles→ style∗

//content//section → (bold + · · ·+ color + section)∗

· · ·
//template//section → titlefont? style? section?

· · ·
Here, we wrote the left-hand-sides of BonXai rules as in the previous chapter.
Formally, in this chapter, // abbreviates the regular expression EName∗.

If we ignore the types in Figure 6.1, it represents a tree (with some parts omitted) that
would be valid against this BXSD.

6.3 Priorities in BonXai 63

6.3 Priorities in BonXai

In this section we explain some fine points of the priority-based semantics of rules in
BonXai schemas. Priorities were mainly introduced to avoid compatibility problems with
XML Schema. However, we think they can also be convenient as we will explain below.

In the theory of pattern-based schemas for XML (of which BonXai is an example), two
alternative semantics for multiple matches of rules have been investigated [GN11, KS07]:
existential semantics and universal semantics. We say that the ancestor-pattern of rule r

= {s} matches a node n in an XML tree, if the string of element names from the root
of the document to n matches the regular expression r. The two semantics can now
informally be defined as follows:

• Universal semantics: for each node n in the XML tree and each rule r = {s} for
which the ancestor pattern matches n, the children of n must match s.

• Existential semantics: for each node n in the XML tree, there must be at least one
rule r = {s} for which the ancestor pattern matches n and the children of n match
s.

Thus, under universal semantics, we would require a matching element to match all
content model definitions of relevant rules and under existential semantics, we would
require a matching element to match at least one content model definition of a relevant
rule. However, in practice, we cannot apply any of these two semantics if we want
to be compatible with the Unique Particle Attribution rule of the W3C XML Schema
specification. The Unique Particle Attribution rule requires content model definitions
to be deterministic regular expressions (sometimes also called one-unambiguous regular
expressions [BKW98]).

One can show that both universal and existential semantics would give BonXai expres-
sivity beyond XML Schema. The intuitive reason both existential and universal semantics
would make BonXai too powerful is that, for existential semantics to be translatable in
XSDs, languages that can be defined by deterministic regular expressions would need to
be closed under finite unions. To be able to translate universal semantics in XSDs, they
would need to be closed under intersection. However, they are closed under neither oper-
ation (see Chapter 7 for references), which rules out universal semantics and existential
semantics as equally expressive candidates.

A “quick and dirty” solution to deal with this problem could be to require ancestor
patterns in rules to have an empty intersection. However, we feel that this would be very
user-unfriendly. Consider again our running example in Figure 5.2. The two ancestor
patterns template//section and content//section have a non-empty intersection
since both could, in theory, match a word that has an occurrence of template, followed
by content, followed by section (even though such a word cannot occur as a path in
trees defined by the schema). Changing the two ancestor patterns to mend this problem
would make the schema less readable. We therefore feel that this option would lead to
unreadable schemas and a requirement that users would have to be experts in formal

64 6 The Theory Underlying BonXai

language theory (rewriting regular expressions such that they have an empty intersection
and still state what is meant).

We show in the next Section that the priority-based semantics of BonXai does not
have the expressivity problems of universal or existential semantics, by giving conversion
algorithms from the core of BonXai to XML Schema and back; and by observing that the
Unique Particle Attribution constraint is preserved. Furthermore, we already explained
in the last chapter that priorities are a useful feature of the BonXai schema language.

6.4 Translations Between Schemas

In this section, we discuss how to translate back and forth between XML Schema and
BonXai. We discuss the translation from XML Schema to BonXai first and the converse
later.

Translation from XML Schema to BonXai

We present a translation algorithm from XSDs to BXSDs. This algorithm is the core of a
procedure that we implemented to translate XML Schema into BonXai [MNNS12]. The
algorithm consists of two phases. The first phase converts an XSD into an intermediate
data structure, which is called a DFA-based XSD. We will define such a DFA-based XSD
formally, because it is a representation of schemas that is very convenient in proofs. In
the second phase, the DFA-based XSD is translated to the BXSD.

DFA-based XSDs were introduced in [MNS07] (Definition 6) as an alternative charac-
terization of XML Schema Definitions. We now define DFA-based XSDs as in [MNS07],
with a minor difference: we require their content models to be deterministic regular
expressions. This extra condition is necessary to reflect the UPA condition of XSD.

Definition 6.5 A DFA-based XSD (with deterministic content models) is a tuple (A, S, λ),
where A = (Q,EName, δ, q0) is a DFA with initial state q0 and without final states such
that q0 has no incoming transitions, S ⊆ EName is the set of allowed root element names
and λ is a function mapping each state in Q \ {q0} to a deterministic regular expression
over EName. Furthermore, for every state q ∈ Q and every element name a occurring in
λ(q), we have that δ(q, a) is non-empty.

In the remainder of this chapter, S usually equals {a | δ(q0, a) is non-empty}. (The
intuition is that, for each element a ∈ S, the automaton A can read a string that starts
with a. Since S is simply the set of root elements, λ does not map q0 to a regular
expression.) However, we sometimes use fully defined DFAs (which are DFAs in which
|δ(q, a)| = 1 for every state q and label a) and therefore we need to explicitly mention S
in general. Since we only consider DFA-based XSDs with deterministic content models
in this thesis, we henceforth simply refer to them as DFA-based XSDs.

An XML document D satisfies (A, S, λ) if the root node is labeled with an element
name from S and, for every node u, δ∗(anc-strt(u)) = {q} implies that ch-strD(u) is in
the language defined by λ(q).

6.4 Translations Between Schemas 65

We now explain how to translate a given XSD X = (EName,Types, ρ, T0) into an
equivalent DFA-based XSD in linear time. The procedure is an adaptation from procedures
in [MNSB06, GN11] which were developed for slightly different models of XSDs.2

Lemma 6.6 (Adapted from Lemma 7 in [GN11]) Each XSD can be translated into an
equivalent DFA-based XSD in linear time.

Proof. Let X = (EName,Types, ρ, T0) be an arbitrary XSD. The equivalent DFA-based
XSD (A, S, λ) with A = (EName, Q, δ, q0) is constructed by Algorithm 1. We provide
additional explanation for the algorithm. In line 3, δ(q0, a) is well-defined thanks to the
EDC constraint for XSDs (that states that t is uniquely determined by a). Similarly,
in line 4 we have that X fulfills the EDC constraint. Therefore, δ(t1, a) is well-defined
and A is guaranteed to be a deterministic automaton. Finally, in line 5, µ(ρ(t)) denotes
the regular expression obtained from ρ(t) by replacing every typed element a[t] by the
element a. Notice that, since X fulfills the UPA constraint, we have that µ(ρ(t)) is
a deterministic regular expression. Therefore, (A, S, λ) is a DFA-based XSD and has
deterministic content models. The fact that (A, S, λ) can be constructed from X in linear
time is immediate from the algorithm. The equivalence between (A, S, λ) and X is easily
seen.

We now show how to translate DFA-based XSDs into equivalent BXSDs. The transla-
tion is similar to the proof of Theorem 7.1 ((a) ⇒ (d)) in [MNSB06].

Lemma 6.7 Each DFA-based XSD (A, S, λ) can be translated into an equivalent BXSD
B with linearly many rules in |A|.

Proof. Let (A, S, λ) be a DFA-based XSD with A = (EName, Q, δ, q0). Algorithm 2
specifies how to obtain the equivalent BXSD B = (EName, S,R). In line 2, the regular
expression rq defines the language of the DFA A in which q is the only accepting state,
i.e., the language of the automaton (EName, Q, δ, q0, {q}). Since each expression sq on
line 3 is deterministic, the right-hand sides of rules in R are deterministic as well. Finally,
R contains the rules rq → sq, for each q ∈ Q, in arbitrary order.

The reason why the ordering of the rules in R in the proof of Lemma 6.7 is not important
is that, for each pair of states q1 6= q2 from A, we have that L(rq1) ∩ L(rq2) = ∅. The
latter holds because A is a DFA. Furthermore, the BXSD B can have regular expressions
that are exponentially larger than |A| in general. This cannot be avoided3 because A is
a DFA and the worst-case conversion from a DFA to a regular expression is well-known
to be exponential [EZ76]. In Section 6.5 we discuss classes of schemas that capture most
cases in practice and that do not lead to such a blow-up.

2One consequence of the slightly different models of XSDs is that the translation in [GN11] is quadratic,
whereas it is linear in our case.

3Proving that an exponential blow-up cannot be avoided is more technical than just this observation,
see Section 6.6.

66 6 The Theory Underlying BonXai

Algorithm 1 Translating an XSD to an equivalent DFA-based XSD.

Input: XSD X = (EName,Types, ρ, T0)
Output: DFA-based XSD (A = (Q,EName, δ, q0), S, λ) equivalent to X

1: S := {a | ∃t ∈ Types such that a[t] ∈ T0}
2: Q := {q0}] Types
3: For each a[t] ∈ T0, δ(q0, a) := t
4: For each t1 ∈ Types and a ∈ EName such that a[t2] occurs in ρ(t1), δ(t1, a) := t2
5: For every t ∈ Types, λ(t) := µ(ρ(t)) . µ(ρ(t)) is obtained from ρ(t)

by replacing every a[t] with a

Algorithm 2 Translating a DFA-based XSD into an equivalent BXSD.

Input: DFA-based XSD (A = (Q,EName, δ, q0), S, λ)
Output: BXSD B = (EName, S,R) equivalent to X

1: for every state q ∈ Q do
2: rq := a regular expression for the DFA (Q,EName, δ, q0, {q})
3: sq := λ(q)

4: R := rq1 → sq1 , . . . , rqn → sqn , where {q1, . . . , qn} = Q

Translation from BonXai to XML Schema

The translation from BonXai to XML Schema follows a similar overall outline as the
reverse translation. Again, we use DFA-based XSDs as an intermediate representation in
the translation. That is, we first translate BXSDs into DFA-based XSDs and translate
the latter to XSDs. However, the present translation is more technical than the one
before.

We first give the translation steps and we prove later that they are worst-case optimal.

Lemma 6.8 Each BXSD B can be translated into an equivalent DFA-based XSD (A, S, λ)
for which |A| is at most exponential in |B|.

Proof. Let B = (EName, S,R) be a BXSD, where R = r1 → s1, . . . , rn → sn. We
translate B into (A, S, λ) as described in Algorithm 3. On line 2 we want the DFAs
Ai = (EName, Qi, δi, q

i
0, Fi) to be minimal and complete. Here, a DFA Ai is complete

when δi(q, a) is defined for every q ∈ Qi and a ∈ EName. A DFA can be made complete by
adding an extra state to which all previously non-defined transitions lead. Furthermore, it
is well-known that every regular language has a unique minimal, complete DFA. (Notice
that, since regular expressions are exponentially more succinct than deterministic finite
automata, Ai can be exponentially larger than ri in the worst case.)

The DFA-based XSD (A, S, λ) is then constructed through a product automaton: in
line 3, we define A to be the product A1×· · ·×An. More precisely, A = (Q,EName, δ, q0),
where Q = Q1 × · · · × Qn, q0 = (q1

0 , . . . , q
n
0) and, for every state (p1, . . . , pn) ∈ Q and

every a ∈ EName, we have δ((p1, . . . , pn), a) = (q1, . . . , qn) where, for every i, δ(pi, a) = qi.
Notice that A can be exponentially larger than |B| and does not have accepting states.

6.4 Translations Between Schemas 67

Algorithm 3 Translating a BXSD to an equivalent DFA-based XSD.

Input: BXSD B = (EName, S,R), where R = r1 → s1, . . . , rn → sn
Output: DFA-based XSD (A, S, λ) equivalent to B, with A = (Q,Σ, δ, q0)

1: for each i = 1, . . . , n do
2: Ai := minimal complete DFA (Qi,EName, δi, q

i
0, Fi) for L(ri)

3: A := A1 × · · · × An . A has state set Q1 × · · · ×Qn
4: for each (q1, . . . , qn) ∈ Q1 × · · · ×Qn do
5: if ∃i ∈ {1, . . . , n} such that qi ∈ Fi then
6: i := largest number such that qi ∈ Fi
7: λ((q1, . . . , qn)) := si
8: else
9: λ((q1, . . . , qn)) := (EName)∗

The content models of the DFA-based XSD are defined in lines 7 and 9. Line 7 is the
case where at least one of the automata A1, . . . ,An accepts, i.e., at least one BXSD rule
matches. The content model of the relevant state in the DFA-based XSD is then defined
to be the content of the highest-priority matching BXSD rule. Line 9 is the case where
no BXSD rule matches. Here, according to the definition of BXSDs, every child-string
should be allowed. We therefore must allow the content (EName)∗. It can be shown that
B is equivalent to (A, S, λ).

It should be noted that Algorithm 3 is optimized for readability and not for efficiency.
It is straightforward to change Algorithm 3 such that it only computes reachable states
of A. Note that whether a state is reachable also depends on the right-hand sides of the
rules, because a transition δ(p, a), for which the label a does not occur in λ(p), can never
be taken in a conforming document.

Lemma 6.9 (Adapted from Lemma 7 in [GN11]) Each DFA-based XSD can be translated
into an equivalent XSD in linear time.

Proof. Let (A, S, λ) be a DFA-based XSD, where A = (EName, Q, q0, δ). We construct
an equivalent XSD X = (EName,Types, ρ, T0) in Algorithm 4. In line 4 of the algorithm
we implicitly use that δ(q, a) is non-empty for every state q and every element name a
occurring in λ(q).

We note that the resulting XSD can be “minimized” efficiently using a minor adaptation
of the minimization algorithm for XSDs from [MN07]. (More formally, it is possible to
efficiently produce an XSD such that the set Types is minimal among all equivalent XSDs.
Also, the expressions rq do not become larger.) The difference with the minimization
algorithm from [MN07] would be that the deterministic regular expressions rq should not
be minimized. (In fact, minimizing deterministic regular expressions is np-hard, as we
will show in Chapter 7.4.

68 6 The Theory Underlying BonXai

Algorithm 4 Translating a DFA-based XSD to an equivalent XSD.

Input: DFA-based XSD (A, S, λ) with A = (Q,EName, δ, q0)
Output: XSD X = (EName,Types, ρ, T0) equivalent to (A, S, λ)

1: Types := Q
2: T0 := {a[δ(q0, a)] | a ∈ S, δ(q0, a) 6= ∅}
3: for each state q ∈ Q do
4: rq := expression obtained from λ(q) by replacing each symbol a with a[δ(q, a)]
5: ρ(q) = rq

6.5 Efficient Translations for Fragments

Even though the translations between XSD and BonXai given in the previous Section
are provably optimal, as we will see in Section 6.6, they can be exponential in the worst
case. In this section, we argue why we do not expect this to be a problem in practice.
In particular, we prove that the translation is polynomial for a restriction of XSDs that
accounts for the overwhelming majority of schemas in practice. An examination of 225
XSDs from the Web revealed that in more than 98% the content model of an element
only depends on the label of the element itself, the label of its parent, and the label of its
grandparent [MNSB06]. This motivates the study of the following class of DFA-based
XSDs.

Definition 6.10 A DFA-based XSD is k-suffix, if the type of an element only depends of
the last k symbols of its ancestor string. More precisely, a DFA-based XSD (A, S, λ) with
A = (Q,EName, δ, q0) is k-suffix based if A(w1a1 · · · ak) = A(w2a1 · · · ak) for all strings
w1, w2 over EName and symbols a1, . . . , ak ∈ EName.

Hence, 98% of the XSDs in the aforementioned study have a corresponding 3-suffix
DFA-based XSD. Actually, this DFA-based XSD can be obtained simply by applying the
construction of Lemma 6.6 to the given XSD. Furthermore, according to Lemmas 6.6
and 6.9, the translations between XSDs and DFA-based XSDs are straightforward and
very efficient. We therefore do not revisit these constructions and focus on translations
between (k-suffix) DFA-based XSDs and BXSDs. The BXSDs corresponding to this class
of schemas can be defined as follows.

Definition 6.11 A regular language L is a suffix language if L = {w} or L = L(EName∗w)
for some word w. It is a k-suffix language if, additionally, |w| ≤ k. A BXSD (EName, S,R)
is k-suffix based if, for every rule r → s in R, the left-hand side r is a k-suffix language.

The following theorem considers the translation from k-suffix based BXSDs and k-suffix
DFA-based XSDs. It is similar in flavor to Proposition 5.2 in [KS07], but considers rules
with a priority system as in BonXai. Kasneci and Schwentick avoided this issue by
assuming that rules have pairwise disjoint left-hand-side languages.

Theorem 6.12 Each k-suffix based BXSD can be translated in polynomial time into an
equivalent k-suffix DFA-based XSD of linear size.

6.5 Efficient Translations for Fragments 69

Proof. Let B = (EName, S,R) be a k-suffix based BXSD with R = (w1 → s1, . . . , w` →
s`, //w`+1 → s`+1, . . . , //wn → sn). So, each string w1, . . . , wn has length at most k.

The equivalent k-suffix DFA-based XSD D = (A, S, λ) with A = (Q,EName, δ, qε) can
be defined as follows. Let P = {w | ∃ string v over EName for which wv ∈ {w1, . . . , wn}}
be the set of prefixes of all wi and let Q := {(qw, j) | w ∈ P, j ∈ {0, 1}} be a set of states
representing all prefixes and indicating whether the “current prefix” is still a prefix of
the whole word. Then we define

δ((qw, j), a) =

{
(qv, j) if wa = v

(qv, 1) otherwise

where v is the longest suffix of wa in P . Furthermore we let λ((w, 1)) = si, where i > `
is the highest index such that wi is a suffix of w, and λ((w, 0)) = si, where i ≤ ` is
the highest index such that wi = w. The construction of D from B is easily seen to
be polynomial. Equivalence between B and A can be immediately seen since A follows
the standard approach for pattern matching with automata. Furthermore, D fulfills the
k-suffix property by definition.

We now consider the reverse direction. An important difference with Theorem 6.12
is that this direction is exponential in k, that is, it needs k to be constant in order to
be polynomial. However, as we noted before, in 98% of the schemas occurring in the
practical study of [MNSB06], we see that k ≤ 3.

Theorem 6.13 Let k be a constant. Each k-suffix DFA-based XSD can be translated in
polynomial time into an equivalent k-suffix based BXSD.

Proof. Let D = (A, S, λ) with A = (Q,EName, δ, q0) be a k-suffix DFA-based XSD. The
BXSD B = (EName, S,R), where B consists of the rules

//a1/a2/ . . . /ak → α, for which λ(δ(q0, a1a2 . . . ak)) = α, and

/a1/a2/ . . . /a` → α, for which ` < k and λ(δ(q0, a1a2 . . . a`)) = α.

Note that the ordering of the rules does not matter as the ancestor patterns describe
pair-wise disjoint languages, where the first kind of rules describes all elements of depth
at least k and the second kind of rules describes all elements at depths less than k.

By construction it is obvious that the BXSD B is equivalent to D, as D is k-suffix
based. It is easy to see that B contains less than |EName|(k+1) rules and that B can be
computed in polynomial time if k is fixed.

Finally, we note that it is easy to decide if a given XSD can be translated efficiently
into a BXSD, i.e., whether it corresponds to a k-suffix DFA-based XSD (where k can
either be fixed in advance or not). Questions of this kind were investigated in [CMM13].

70 6 The Theory Underlying BonXai

6.6 Worst-Case Optimality of the Translation Algorithms

We now prove that both translation algorithms are worst-case optimal wrt. the size of
the resulting schemas. In particular, we show that both conversions from Section 6.4 can
lead to exponential size blow-ups in general, i.e. when not restricting to the fragments
given in Section 6.5.

From BonXai to XML Schema

We prove that the translation from BXSDs to XSDs is worst-case optimal.

Theorem 6.14 There exists a family of BXSDs (Bn)n∈N such that, for each n, the
BXSD Bn has size O(n) but the smallest XSD equivalent to Bn has size at least 2n.

Proof sketch. Let n ∈ N be arbitrary. Let Bn = (ENamen, Sn, Rn) be the BXSD with
ENamen = {a, a1, . . . , an, b1, . . . , bn}, Sn = {a1, . . . , an}, and Rn consisting of the follow-
ing rules:

//a → ε
//(b1 + · · ·+ bn) → ε
//(a1 + · · ·+ an) → (a+ a1 + · · ·+ an)

//a1//a1//a → b1
//a2//a2//a → b2

...
...

...
//an//an//a → bn

Again we wrote the regular expressions on the left-hand-side of rules with // as an
abbreviation for EName∗. This schema defines a set of unary (i.e., non-branching) trees
and its semantics is the following. If the ancestor path of an a-element contains, for each
1 ≤ i ≤ n, at most one ai element, its content model is ε. Otherwise, if j is the largest
number such that aj occurs at least two times on the path to the a element, then this a
element has bj as a child.

It can be proved with techniques from [MN07] that the smallest XSD equivalent to the
above BXSD is exponentially large in n. Intuitively, in order to decide which bi is the
child under an a, the types of the XSD needs to keep track of the largest j, for which aj
has already occurred twice, and, worse, the set of i > j, for which ai has already occurred
once.

From XML Schema to BonXai

When converting an XML Schema (XSD) to a BonXai Schema Definition (BXSD) using
the procedures in Lemmas 6.6 and 6.7 it is possible that the BXSD is exponentially larger
than the XSD. The source of this exponential blow-up lies in Algorithm 2 which is used
in Lemma 6.7. More precisely, line 1 constructs a regular expression equivalent to a DFA,
which is well known to be exponential in the worst case [EZ76].

We will now show that this blow-up cannot be avoided in general, which means that,
in this sense, our conversion algorithm is worst-case optimal. Recall, however, that our

6.6 Worst-Case Optimality of the Translation Algorithms 71

conversion which we showed in Lemma 6.7 does not produce a large number of rules
in the BXSD. Indeed, if the DFAs that Algorithm 2 encounters on line 2 only produce
polynomially large regular expressions, then the whole conversion is polynomial as well.
We discussed a particularly relevant such case in Section 6.5.

The proof of the following Theorem is rather technical. It is based on the proof
in [EZ76]. The hard part of our proof is to show that the exponential blowup cannot be
avoided by a clever use of the priorities in BonXai.

Theorem 6.15 There exists a family (Xn)n∈N of XSDs such that, for each n, Xn has
size O(n2) but the smallest BXSD equivalent to Xn has size at least 2Ω(n).

Before we can give the proof of Theorem 6.15, we need a lemma that bounds the size
of regular expressions for left derivatives of languages (left derivatives were defined by
Brzozowski [Brz64]). To this end, the left derivative of a string language L with respect
to a string w, denoted by ∂w L, is defined as

∂w L = {v | wv ∈ L}.

The left derivative of a language L with respect to a language X, denoted by ∂X L, is
defined as

∂X L = {v | ∃w ∈ X such that wv ∈ L}.

We denote by depth(α) the depth of the parse tree for α.

Lemma 6.16 Let α be a regular expression and X be an arbitrary language. Then there
exists a regular expression α′ for the language ∂XL(α), such that |α′| ∈ O(depth(α)|α|).

Proof. For a language L, let prefix(L) = {v | ∃w. vw ∈ L} be the set of all prefixes of
strings in L. We construct α′ inductively as follows.

∂X ∅ = ∅

∂X ε =

{
ε if ε ∈ X
∅ otherwise

∂X a =

ε+ a if X ∩ {ε, a} = {ε, a}
a if X ∩ {ε, a} = {ε}
ε if X ∩ {ε, a} = {a}
∅ otherwise

∂X (α1 + α2) = ∂X α1 + ∂X α2

∂X (α1 · α2) = (∂X1
α1) · α2 + ∂∂L(α1)X α2

∂X α
∗ = (∂∂L(α∗)X (ε+ α)) · α∗

It can be shown by a straightforward induction that all inductive definitions given above
are correct.

It remains to show that |α′| ≤ depth(α)|α|. We show |α′| ≤ depth(α)|α| by an induction
on the structure of α. For the induction base case, we observe that |α| = |α′| = 1 in

72 6 The Theory Underlying BonXai

the cases where |α| is an atomic expression. Applying the induction hypothesis to the
equations above gives us

• |α′| ≤ depth(α1)|α1|+ depth(α2)|α2| in the case α = α1 + α2;

• |α′| ≤ depth(α1)|α1|+ |α2|+ depth(α2)|α2| in the case α = α1 · α2; and

• |α′| ≤ (depth(α)− 1)|α1|+ |α1| in the case α = α∗1.

In all three cases we can conclude |α′| ≤ depth(α)|α| using the fact that |α1|+ |α2| ≤ |α|
and max(depth(α1),depth(α2)) = depth(α)− 1. This concludes the proof.

Now we are ready to prove Theorem 6.15.

Proof of Theorem 6.15. We leverage a technique by Ehrenfeucht and Zeiger [EZ76], who
showed that there exists a class of languages (Zn)n∈N, such that Zn can be accepted by
a DFA of size O(n2) but cannot be defined by a regular expression of size smaller than
2n−1.

For every n ∈ N we let Σn = {aij | i, j ∈ {1, . . . , n}}. We call i the source and j the
target of a symbol aij . We define Zn as

Zn = {w1 · · ·wm ∈ Σ∗n | ∀i ∈ {1, . . . ,m− 1},∃j, k, l such that wiwi+1 = ajkakl}.

That is, in every word in Zn, the target of a symbol and the source of the following
symbol must be equal. Every word w ∈ Σ∗n \ Zn has a first symbol ai` whose target `
does not coincide with the source of the following symbol. We call ` the error index of w.

We now construct a family (Xn)n∈N of XSDs, such that Xn is of size O(n2) and
the smallest BXSD equivalent to Xn has size 2Ω(n). We define Xn by its DFA-based
XSD (An, Sn, λn). To this end, we let Sn = Σn and choose the components of An =
(Q ∪Q′,Σn, δ, q1) as follows.

• Q = {qi | 1 ≤ i ≤ n} and Q′ = {q′i | 1 ≤ i ≤ n};

• for every qi ∈ Q and aj` ∈ Σ, δ(qi, aj`) =

{
q` if i = j

q′i if i 6= j

• and, for every q′i ∈ Q′ and aj` ∈ Σ, δ(q′i, aj`) = q′i,

• for every qi ∈ Q, λ(qi) = ε ∪ Σ,

• for every q′` ∈ Q, λ(q′`) = ε ∪ Σ ∪ {a``a``}.

In other words, An is a DFA that tests whether a word is in Zn and remembers, for
words not in Zn, their error index.

The documents valid with respect to Xn are thus characterized by the following two
properties.

• All label sequences over Σn are allowed in paths.

6.6 Worst-Case Optimality of the Translation Algorithms 73

• The only allowed kind of branching is binary branching of the form aij → a``a``
below nodes whose ancestor path contains a Zn-error with error index `.

We note that, as branching can only take place below an error, and the first error of a
path is unique, in every document there can be binary branching a``a`` with at most one
kind of symbols.

It is straightforward that Xn is of size O(n2). To show that every BXSD B equivalent
to (An, Sn, λn) is of size 2Ω(n) we prove that B must have at least one ancestor pattern
of size 2Ω(n).As already mentioned, it is known from [EZ76] that every regular expression
for Zn is of size 2Ω(n). Actually Ehrenfeucht and Zeiger prove a stronger result:

Proposition 6.17 ([EZ76, Theorem 4.1]) For every n ∈ N, there is a string g ∈ Zn,
such that every regular expression α with vgw ∈ L(α) for some v and w and L(α) ⊆ Zn
is of size 2Ω(n).

For our purposes, we need a slightly stronger version:

Proposition 6.18 For every n ∈ N, there are strings g1, . . . , gn ∈ Zn such that h =
g1g2 . . . gn ∈ Zn and for every i ∈ {1, . . . , n},

• gi contains no symbol from {a1i, . . . , ani}; and

• every regular expression αi with vgiw ∈ L(αi) for some v and w and L(αi) ⊆ Zn
is of size 2Ω(n).

Proof of Proposition 6.18. First we note that Proposition 6.17 still holds, if we replace
the condition L(α) ⊆ Zn by L(α) ⊆ Zm, for any m > n. This is because symbols outside
Σn are useless for strings from Zn, and therefore any regular expression for Zn over Σm
could be translated into an expression of (at most) the same size over Σn by replacing
every symbol outside Σn with ∅.

By the same kind of reasoning it follows that, for every i ∈ {1, . . . , n}, Proposition 6.17

also holds with respect to strings in Zn over Σ
(i)
n = Σn \ {aij , aji | j ≤ n} and expressions

over Σn. Let thus, for every i, hi ∈ Zn be a string over Σ
(i)
n such that every regular

expression α with vihiwi ∈ L(α) for some vi and wi and L(α) ⊆ Zn is of size 2Ω(n). By
choosing vi and wi as suitable one-letter strings we obtain strings gi = vihiwi with the
stated properties.

Let now B be a BXSD for (An, Sn, λn). Our goal is to show that B has at least one
ancestor pattern of size 2Ω(n). We can assume w.l.o.g. that B does not contain any rule
with a child expression allowing content models aiiaii and ajjajj , for i 6= j. To this end,
let us assume such a rule α exists and there is a string z = a1 . . . am matching the left
hand side of α such that some document in L(B) contains z as its ancestor path. If no
such z exists, α can be deleted from B without changing its language. On the other
hand, if such a document exists, α allows the document in which below the z-path two
leaves labeled aii occur and the document in which below the z-path two leaves labeled
ajj occur, contradicting the definition of the language of Xn.

74 6 The Theory Underlying BonXai

We call any rule allowing a content model aiiaii a ti-rule and any other rule a t-rule.
We emphasize that, as we just showed, a rule can only be a ti-rule, for one index i.

We consider strings (as ancestor paths) from Zn of the form s = hks′, with h from
Proposition 6.18, k ≥ 1 and s′ ∈ Σ∗n. Clearly, strings can be matched by several rules,
but for each string s, B must have a last rule rs : αs → βs whose left hand side matches
s. However, several strings can possibly share the same last rule.

Let, for every such s,
α′s = ∂hk−1g1...gj αs,

where j = 0 if αs is a t-rule and j = i− 1 if αs is a ti-rule. We note that gj+1 . . . gns
′ ∈

L(α′s) by construction. By Lemma 6.16, it follows that |α′s| = O(|αs|2) and therefore
|αs| = Ω(

√
|α′s|).

For each string s = hks′ ∈ Σ∗n one of the following conditions must hold, for some
` ∈ {1, . . . , n}.

(1a) L(α′s) ⊆ Zn.

(1b) L(α′s) 6⊆ Zn, rs is a t`-rule, and every string in L(α′s) \ Zn has error index `.

(2a) L(α′s) 6⊆ Zn, rs is a t`-rule, and there exists a string in L(α′s) \ Zn with error index
j 6= `.

(2b) L(α′s) 6⊆ Zn and rs is a t-rule.

Let us assume first that, for some s = hks′ ∈ Σ∗n, one of the cases (1a) or (1b) holds.
In case (1a), we can conclude from Proposition 6.18 that α′s is of size 2Ω(n). Therefore

αs is of size
√

2Ω(n) = 2Ω(n).
In case (1b), we construct a regular expression γ from α′s by replacing each occurrence

of a symbol ai` with i ∈ {1, . . . , n} by ∅. By construction, γ has the following properties:

• |γ| ≤ |α′s|;

• L(γ) ⊆ Zn, since every string in L(α′s) \ Zn has a symbol ai` for some i; and

• g` ∈ L(γ), as g` ∈ L(α′s) and g` contains no symbol ai` by definition.

We can conclude from Proposition 6.18, that γ and therefore α′s is of size 2Ω(n). We can
conclude again that αs is of size 2Ω(n), as well.

We can thus assume from now on that, for every s = hks′ ∈ Σ∗n, one of the cases (2a)
or (2b) applies. We are going to show next that this implies that the number of rules
in B must be infinite, a contradiction from which we can conclude the statement of the
theorem. More precisely, we show that for each string of the form s = hks′ ∈ Σ∗n, there
is a string z = hk−1z′ ∈ Σ∗n such that rz comes strictly after rs in the list of rules of B.
Clearly, repeated application of this statement yields a sequence of at least k rules with
ascending indexes. As the process can be started with an arbitrary k, we get the desired
contradiction.

Let thus s = hks′ ∈ Σ∗n, for some k ≥ 1. By our assumption, either condition (2a) or
(2b) holds for α′s.

6.7 Further Research on the BonXai Schema Language 75

We first consider the case that rs is a t`-rule, for some ` ∈ {1, . . . , n} and (2a) holds
with some string w ∈ L(α′s) \ Zn with error index j 6= `. Let us assume towards a
contradiction that rs is the last rule (in the order of rules) matching z = hk−1g1 . . . g`−1w.
Then the document consisting of a path with label sequence z arriving at some node v
with two leaf children labeled by a`` below v, is valid for B, a contradiction as the error
index of z is not `. Therefore, there must be another rule in B after rs whose left hand
side matches z and whose right hand side does not allow the content model a``a``.

We next consider the remaining case that rs is a t-rule and (2b) holds. Let w ∈
L(α′s) \ Zn with some error index j and let us assume towards a contradiction that rs is
the last rule matching z = hk−1w. Then the document consisting of a path with label
sequence z arriving at a node v with two leaf children labeled by ajj is not valid for B, a
contradiction.

Therefore, again there must be another rule in B after rs whose left hand side matches
z and whose right hand side allows the content model ajjajj .

Thus, we have shown that for each string of the form s = hks′ ∈ Σ∗n, there is a string
z = hk−1z′ ∈ Σ∗n such that rz comes strictly after rs in the list of rules of B, and we are
done.

This completes the proof that B has size 2Ω(n).

6.7 Further Research on the BonXai Schema Language

In Chapter 5, we introduced the BonXai schema language, which should aid in developing
good schemas for XML documents and databases. Despite we have given a profound
theoretical background for the BonXai schema language in the current chapter, the
language is still a working draft, which requires further work. For a fully functional
schema language at least support for specifying simple types is missing. Other required
and/or desirable features need to be identified by actual XML designers. Therefore, the
BonXai editor and the underlying FoXLib library that will be presented in Chapter 13
need to be deployed to a wider audience. Until now, only a few university researchers
have used the software.

Additionally, also the theory behind BonXai can be improved. While we have presented
fragments of BonXai and XML Schema that can be efficiently converted back and forth,
we would like to have better algorithms for converting more general schemas. Czerwinski
et al. [CMM13] have researched the separability problem of regular languages. To create
a BonXai schema, we do not need exact representations of the regular languages in
the left-hand sides of the rules. It is sufficient, if we can separate the languages used
in different rules. Czerwinski et al. concentrated on the decision problem (Can two
languages be separated using a simpler language?). It is not immediately clear how to
compute the separating language itself. Further research in this direction might lead to
nicer BonXai schemas, which use simpler expressions in the left-hand sides of the rules.

77

7 Deterministic Regular Expressions

In this chapter we will have a closer look on the Unique Particle Attribution enforced
on all DTD and XML Schema definitions. The BonXai schema specification language,
we have introduced in Chapter 5 inherited this restriction from XML Schema to be
compatible with XML Schema.

In the literature this kind of regular expressions is known as one-unambiguous regular
expressions or deterministic regular expressions (DREs) [BKW98, BGMN09]. We will
continue to use the term deterministic regular expression.

Intuitively, a regular expression is deterministic when the following holds. When
reading the input string from left to right, the expression always allows to match each
symbol of that string uniquely against a position in the expression, without looking
ahead.

Formally, let r̄ stand for the regular expression obtained from r by annotating every
alphabet symbol with its position in the expression. For example, for r = b∗a(b∗a)∗

we have r̄ = b∗1a2(b∗3a4)∗. A regular expression r is (weakly) deterministic if there are
no strings waiv and wajv

′ in L(r̄) such that i 6= j for no a ∈ Σ. We denote the class
of deterministic regular expressions (without counters) by DRE. For an overview over
different classes of (deterministic) regular expressions, we direct the reader to the next
section.

The expression (a + b)∗a is not deterministic as already the first symbol in the
string aaa could be matched by either the first or the second a in the expression. The
equivalent expression b∗a(b∗a)∗, on the other hand, is deterministic. Brüggemann-Klein
and Wood showed that not every (non-deterministic) regular expression is equivalent
to a deterministic one [BKW98]. Thus, semantically, not every regular language can be
defined with a deterministic regular expression.

We call a regular language DRE-definable if there exists a deterministic regular
expression defining it. The classical example for a regular language that is not DRE-
definable is (a+ b)∗a(a+ b).

In Section 7.1, we will explain the differences between several classes of regular
expressions that have been investigated in the literature. Section 7.2 looks at the problem
given a language L, can this language be defined with deterministic regular expressions.
We therefore introduce the orbit property originally introduced by Brüggemann-Klein
and Wood [BKW98], which is a powerful tool to show that some regular language cannot
be described by deterministic regular expressions. We give a summary over known results
on closure properties and descriptional complexity of deterministic regular expressions in
Section 7.3. Finally, we show in Section 7.4 that minimization of deterministic regular
expressions is np-complete.

78 7 Deterministic Regular Expressions

7.1 Weak vs. Strong Determinism

In the literature, additional to (weakly) deterministic regular expressions, as they are used
in W3C standards, strongly deterministic regular expressions are considered [GGM12].

A regular expression is strongly deterministic, if it is deterministic and additionally
for every sub-expression r∗ or r[n,m] that has as topmost operation a Kleene star or a
counter, it holds that first(r) ∩ followlast(r) = ∅.

Intuitively this restriction enforces that it is always clear which Kleene star or counter
is used if the previous input symbol was matched by some symbol ai of the expression
and the current symbol is matched by a symbol symbol bj with j ≤ i.

The simplest regular expression, which is not strongly deterministic, is (a∗)∗ as it
is not clear whether the inner or outer Kleene star should be used. Formally, it can
be observed that first(a∗) ∩ followlast(a∗) = {a} 6= ∅. The expression (a[2,3])[2,3] is not
strongly deterministic as it is not clear which counter to increment when reading the
third a in the string aaaa. The equivalent expression a[4,9] is strongly deterministic.

With RE, RE#, DREw, DRE#
w , DREs, DRE#

s we denote the different classes of
(deterministic) regular expressions, where # denotes a class with counters and the
subscripts w and s denote weak and strong determinism respectively.

Document Type Definitions use expressions from DREw and XML Schema definitions
use expressions from DRE#

w for the description of their content models. If we use the
term deterministic regular expression or DRE without further specification, we always
refer to DREw.

Let L(X) be the class of languages that can be expressed with X, where X is a class
of regular expressions. The following theorem characterizes the relative expressiveness of
the considered classes of regular expressions.

Theorem 7.1 ([BKW98, GGM12]) It holds that

L(DREw) = L(DREs) = L(DRE#
s) (L(DRE#

w) (L(RE) = L(RE#).

We want to shortly explain all inequivalences and equivalences in this theorem. For a
more detailed analysis of weak and strong determinism, we refer to [GGM12].

The canonical expression showing that L(DREw) 6= L(DRE#
w) is (a[2−3](b + ε))∗.

Obviously this expression is in DRE#
w (as no alphabet symbol occurs twice). However

there is no equivalent expression in DREw. This can be shown by applying Algorithm 5,
which is described below.

It is known that every language over a unary alphabet that can be described by an
expression from DRE#

w can also be described by an expression from DREw. Therefore
the language L((aaa)(a+ ε)) which is not in L(DREw) (this can again be proved with
Algorithm 5) shows that L(DRE#

w) 6= L(RE).

A regular expression r ∈ L(RE#) can be converted to a regular expression without
counters by replacing every sub-expression r[n,∗] with rnr∗ and every sub-expression r[n,m]

with rn(ε+ r(ε+ r(. . .))) with m− n occurrences of (ε+ r . . .). The same construction
works to convert expressions from DRE#

s to expressions from DREs. The definition of

7.2 Orbit Property and DRE Definability 79

RE DRE#
w DREw, DREs, DRE#

s

DFA • unknown ∈ ptime [BKW98]
DFA with logsize alphabet • unknown ∈ nlogspace [LBC14]

NFA, RE • unknown pspace-c [CDLM13, LBC14, BGMN09]
RE# • unknown expspace-c [CDLM13]

DRE#
w • • ∈ expspace

DREw, DREs, DRE#
s • • •

Table 7.1: Complexities for the problem given a language using the formalism on the
right, can the language be expressed using the formalism on the top.

strong determinism ensures that the resulting expression is still strongly deterministic.
This shows the equivalence L(DREs) = L(DRE#

s).

The equivalence L(DREw) = L(DREs) stems from the fact that every expression from
L(DREw) can be converted to star normal form1 and every expression in star normal
form is strongly deterministic.

7.2 Orbit Property and DRE Definability

Given a regular expression or a finite automaton, it is a natural problem to compute an
equivalent regular expression which lies inside some class X or to ask whether such an
expression exists at all.

In Table 7.1, we have summarized known complexities for the decision problem given a
regular expression r or finite automaton A in class X does there exist a regular expression
r′ in class Y , such that L(r) = L(r′). In cases where L(X) ⊆ L(Y) the answer is trivially
true. These cases are marked with • in the table. The expspace upper bounds are by
conversion to a regular expression without counters, which gives an exponential blowup.

It should be stressed that the class DRE#
w , which is used in XML Schema definitions,

needs further research. In particular it is still not known whether it is decidable given a
regular language L (as regular expression or finite automata), whether L is in L(DRE#

w).
As there are little to no results available for this class, we will concentrate on the other
classes of deterministic regular expressions.

Brüggemann-Klein and Wood have shown that the class of DRE-definable languages
is a strict subset of the regular languages [BKW98]. Towards this proof they have
introduced the orbit property.

For a state q, the orbit of q, denoted O(q), is the strongly connected component of A
that contains q. We call q a gate of O(q) if q is final, or q has an outgoing transition that
leaves O(q). With G(q) we denote the set of all gates of O(q).

1The star normal form and the conversion of weakly deterministic regular expressions into star normal
form are described in [BK92].

80 7 Deterministic Regular Expressions

An automaton A has the orbit property if, for every pair of gates q1, q2 in the same
orbit the following properties hold:

1. q1 is final if and only if q2 is final; and,

2. for all states q outside the orbit of q1 and q2, there is a transition (q1, a, q) if and
only if there is a transition (q2, a, q).

Towards a decision algorithm for DRE-definability, we need some additional notation.
The set of consistent symbols of an orbit O(q), denoted by Sq is the set

Sq = {a | ∃q′ ∈ O(q). ∀q′′ ∈ G(q). δ(q′′, a) = q′}.

With other words, starting from every gate q, a consistent symbol a always reaches the
same state.

The cut-automaton AS of an automaton A with only one orbit is derived from A by
removing all transitions starting in a final state labeled with a consistent symbol. Note
that in an automaton with only one orbit the gates coincide with the final states.

The orbit language of q is the language defined by the sub-automaton of A consisting
of the orbit of q in which the initial state is q and the final states are the gates of O(q).
The orbit languages of A are all orbit languages of q for all states q of A.

The following theorem combines several results from [BKW98].

Theorem 7.2 ([BKW98])

(a) Not every regular language is DRE-definable.

(b) Let A be a minimal DFA. Then L(A) is DRE-definable if and only if A has the orbit
property and all orbit languages of A are DRE-definable. If A consists exactly of one
orbit, A is DRE-definable if and only if the set S of consistent symbols is not empty
and L(AS) is DRE-definable.

(c) Let A be a DFA. Then it is decidable in quadratic time in the size of A, whether the
language of A is DRE-definable.

A consequence from Theorem 7.2 is that minimal DFAs which do not fulfill the orbit
property cannot describe DRE-definable languages. Showing that the minimal DFA for
some language does not fulfill the orbit property is therefore a canonical way of showing
that a language is not DRE-definable.

Theorem 7.2 directly gives a decision algorithm for testing DRE-definability, which
we depicted as Algorithm 5. This algorithm can be modified such that it computes a
deterministic regular expression for L(A) of at most exponential size in the case where
L(A) is DRE-definable [BKW98].

Building on top of the work from [BKW98], [CDLM13] and [LBC14] showed indepen-
dently of each other that it is decidable in polynomial space, whether a language given
by an NFA is DRE-definable.

7.3 Closure Properties and Descriptional Complexity of DREs 81

Algorithm 5 BKW-Algorithm to test DRE-definability

1: function BKW(A = (Σ, Q, δ, q0, QF))
2: if A does not have the orbit property then reject
3: if A has exactly one orbit then
4: S := {a | ∃q′ ∈ O(q).∀q′′ ∈ G(q).δ(q′′, a) = q′}
5: if S = ∅ then reject
6: if BKW(AS) rejects then reject
7: else
8: for each orbit O of A do
9: if BKW(AO) rejects then reject

10: accept

Theorem 7.3 ([CDLM13, LBC14]) It is decidable in polynomial space in the size of a
given NFA A, whether L(A) is DRE-definable.

Furthermore, [LBC14] also gives an improved upper bound for DRE-definability of
languages given by DFAs with small alphabets.

Theorem 7.4 ([LBC14]) It is decidable in non-deterministic logarithmic space in the
size of a given DFA A with alphabet Σ such that |Σ| ∈ O(log(|A|)), whether L(A) is
DRE-definable.

7.3 Closure Properties and Descriptional Complexity of
DREs

Unlike many other classes of languages, especially unlike regular languages, DRE-definable
languages are not closed under many of the usually considered operations.

It has been observed that DRE-definable languages are not closed under union [BKW98],
intersection [CHM11] or complement [GN08]. DRE-definable languages are also not closed
under concatenation [BKW98], reversal2 (the reverse of L((a+ b)a(a+ b)∗) is not DRE-
definable) or Kleene star [BKW98]. These results hold for alphabets with at least two
symbols. For unary alphabets, the picture is a bit different. DRE-definable languages
over a unary alphabet are trivially closed under reversal (the language does not change)
and they are closed under intersection and Kleene star, as was shown in [LMN12]. They
are not closed under union, concatenation and complement.

Even if the DRE-definable languages describe only a subset of the regular languages,
it is nice to know which blow-ups to expect when converting a regular language given
by a finite automaton or regular expression to a deterministic regular expression. It is
also interesting to know which blow-ups to expect when applying certain operations on
deterministic regular expressions, at least in the cases where the result is DRE-definable.

2The reversal of a language L is the set of strings {an · · · a1 | a1 · · · an ∈ L}.

82 7 Deterministic Regular Expressions

Finite Languages Infinite Languages
RE DRE DFA Case exists? Ref Case exists? Ref

Θ(n) Θ(n) Θ(n) yes trivial yes trivial
Θ(n) 2Ω(n) 2Ω(n) yes [KW80, BKW98] yes [LMN12]
2Ω(n) 2Ω(n) Θ(n) no [EKSW04] ?
Θ(n) 2Ω(n) Θ(n) yes unpublished3 yes [LMN12]

Ω(nlogn) Ω(nlogn) Θ(n) yes [GJ08] ?

Table 7.2: Descriptional Complexity for DREs

These questions where investigated by Katja Losemann in her diploma thesis [Los10]
and in continuation in [LMN12].

We present the known results for blow-ups caused by conversion between REs, DFAs
and DREs in Table 7.2. A line of this table which is marked with “yes”, expresses that
there exists a family (Ln)n∈N of (in)finite DRE-definable languages, such that minimal
representations of Ln satisfy the given size bounds.

It is well known that there exist families of languages such that minimal DFAs are
exponentially larger than minimal REs and vice versa. An interesting result from [LMN12]
is that there exists a family of languages, such that minimal regular expressions and
minimal DFAs are small but minimal deterministic expressions are exponentially larger.
The intuitive reason is that the considered family of languages can be represented
succinctly using regular expression and using determinism but not both at the same
time. In a way, deterministic regular expressions inherit the disadvantages from both
deterministic automata and regular expressions.

7.4 Minimization

It would be nice, if deterministic regular expressions could be efficiently minimized and if
for each DRE-definable language there would exist a unique minimal DRE.

Unfortunately minimal DREs are not unique (not even up to permutation of unions)
and minimization of DREs is np-hard. A direct consequence is that there exist no unique
minimal representation of DTDs and XML Schema and minimization of DTDs and XML
Schema descriptions is np-hard.

There are several canonical ways to phrase a decision problem for minimization. We
use the following variant.4

3A proof will appear in the full version of [LMN12].
4Another variant would be to ask, whether a given expression is minimal. The complexity of both

variants is the same.

7.4 Minimization 83

MinDRE
Given: A deterministic regular expression α, a number k.
Question: Does there exist a deterministic regular expression α′, such

that L(α′) = L(α) and |α′| ≤ k?

Theorem 7.5 MinDRE is np-complete.

Proof. The upper bound follows is by guessing a deterministic regular expression of size
at most k and checking whether it is equivalent to the given expression. Equivalence of
DREs can be checked in polynomial time by conversion to DFAs.

The proof of the lower bound is by reduction from the np-complete Independent Set
Problem.

IndependentSet
Given: An undirected Graph G = (V,E), a number k.
Question: Does there exists a set VI ⊆ V of nodes in G, such that

|Vi| ≥ k and there is no edge between nodes from VI?

Given an instance (G = (V,E), k) of the independent set problem with V = {v1, . . . , vn},
we construct an instance (α, k′) of the minimization problem.

Let n = |V | and m = |E|. For the expression α, we will use the alphabet Σ = V ∪E∪X,
where X = {x1,1, . . . , xn,n} is a set of n2 new symbols.

Let Ei be the set of edges incident to vi and Xi = {xi,j | {vi, vj} /∈ E}. Let furthermore
αi = vi · (Ei +Xi) and βi = (vi + ε) · (Ei +Xi). We define α as

α = α1 + · · ·+ αn + E +X

and k′ = |α| − kn. Note that the symbols from X are only used to ensure that each
subexpression αi is of the same size. This finishes the construction of α.

We continue with the correctness proof. We first show that if there exists an independent
set VI of size k, then there exists a DRE γ of size k′.

Let VI be an independent set of G of size k. We construct the deterministic expression

γ = γ1 + · · ·+ γn + Σ′, with

γi =

{
βi if vi ∈ VI
αi if vi /∈ VI

and Σ′ = Σ \ (first(γ1) ∪ · · · ∪ first(γn)).

It is easy to see, that γ is a regular expression for L(α). The size of γ is |α| − kn =
k′, as each use of βi instead of αi saves n alphabet symbols, which do not have to
occur in Σ′. Furthermore β is deterministic, as for each two subexpressions βi and βj ,
first(βi) ∩ first(βj) = ∅. Note that the intersection could only be nonempty if βi = γi,
βj = γj and vi and vj are adjacent in G. This would be a contradiction to VI being an
independent set of G.

We continue with showing that if there exists an expression γ of size at most k′ for
L(α), then there exists an independent set VI of G of size k.

84 7 Deterministic Regular Expressions

We say a regular expression δ is similar to a regular expression δ′, if δ can be transformed
into δ′ using only

• the law of commutativity of +, i.e., changing the order of disjuncts;

• the law of associativity, i.e., adding or removing of unnecessary brackets.

We use the following claim, which we show afterwards.

Claim 7.6 Every minimal DRE γ for the language L(α) is similar to an expression of
the form

γ1 + · · ·+ γn + Σ \ (first(γ1) ∪ · · · ∪ first(γn)),

where every γi is equal to either αi or βi.

Given a deterministic expression for L(α), which is of the form of Claim 7.6, we show
that VI = {vi | βi = γi} is an independent set forG. Assume in contradiction, that vi ∈ VI ,
vj ∈ VI , and ek is an edge connecting vi and vj in G. Then ek ∈ first(βi) ∩ first(βj), as
βi = γi and βj = γj . This is a contradiction to the assumption that β is a DRE.

It remains to show Claim 7.6. First, we observe that γ does neither contain ∅ (as
γ is minimal) nor a Kleene star (as the language is finite). As the language contains
more than one string, γ cannot be an atomic regular expression and therefore either
has a top-level concatenation or a top-level disjunction. For the ease of the proof, we
allow disjunctions with only one disjunct and interpret the case where γ has a top-level
concatenation as such a disjunction with only one disjunct. As we assume no unnecessary
brackets, none of the disjuncts can have a top-level disjunction itself. Therefore every
disjunct is atomic or has a top-level concatenation.

It remains to show that

(a) each of the disjuncts is either αi or βi (for some i) or an atomic symbol; and

(b) for each i ∈ [1, n], there exists a disjunct, which is αi or βi.

We can observe that for each disjunct γi = η1η2 that has a top-level concatenation it
holds that

• η1 and η2 are disjunctions of alphabet symbols and maybe ε, because the maximal
length of strings in the language is 2;

• η1 only contains symbols from V and maybe ε, because all other symbols only
occur as first symbols in strings of length one;

• η1 contains exactly one symbol vi and maybe ε; and

• η2 contains exactly the symbols Ei and Xi, where i is the index such that η1

contains the alphabet symbol vi.

7.5 Further Research on Deterministic Regular Expressions 85

The last two observations are because γ is a deterministic expression. Therefore, there
cannot be two disjuncts γi and γj with i 6= j, such that first(γi)∩ first(γj) 6= ∅. It follows
that η2 has to contain exactly the symbols Ei and Xi if vi ∈ L(η1). As Xi 6= Xj for i 6= j
it follows that η1 cannot contain vi and vj with i 6= j.

It can be easily seen that (a) and (b) follow from the last two observations. Note that
there has to be one disjunct for every vi ∈ V , as V ⊆ first(α).

Note, that we have used a specific definition of the size of a regular expression (number
of alphabet symbols). However the proof can be easily adopted to show hardness for
other sensible notions of the size of a regular expression.

We can easily see from the proof that minimal DREs are not unique (up to permutation
of disjunctions). We note, that different independent sets of the same size correspond to
different DREs of the same size.

7.5 Further Research on Deterministic Regular
Expressions

We have summarized known results about deterministic regular expressions, which are
used in Document Type Definitions, XML Schema specifications and — for compatibility
reasons — also in BonXai. Even if our understanding of these expressions has gotten
better over the years, there are still unsolved problems. Especially the complexity of the
following problem is still open: Given a regular language, can this language be described
by a deterministic regular expressions with counters. It is even unknown whether this
problem is decidable. As a consequence, it is also not known whether the following
problem is decidable: Given a regular tree language S (by a tree automaton or by a
RelaxNG schema), can this tree language be described by an XML Schema? Aside from
this open problem, it would also be interesting to get a better understanding of which
languages can be described by deterministic expressions without counters. Up to now, we
only have the algorithm from Brüggemann-Klein and Wood [BKW98] to classify regular
languages into DRE-definable and not DRE-definable. It would be nice to have a more
intuitive description about which languages can be defined by DREs. However, such a
more intuitive description does not necessarily exist.

87

8 Schema Decomposition

In this chapter we focus on an important part of distributed XML Repository Management
Systems, namely on collections of XML documents and on schema design for such
collections. We abstract collections of XML documents as distributed XML documents.
These are XML documents that consist of several logical parts which are possibly located
on different machines.

Following Abiteboul et al. [AGM09], a distributed XML document consists of a root
document t, which is an XML tree that is stored locally at some site. Some of the leaves
of t are labeled with references f1, . . . , fn, which point to external resources r1, . . . , rn.
The extension ext(t) of t is then obtained by replacing each node fi with the XML tree or
XML forest provided by the resource ri referenced by fi. In other words, ext(t) is a large
XML document that is distributed over r1, . . . , rn. The root document t provides an
interface to this large XML document and obtains through its pointers fi the knowledge
of where to get access to the different parts. These parts can be maintained by different
peers and/or provided by programs or web service calls. We therefore sometimes also
refer to the fi as function calls.

We come back to our running example of a content management system. In such a
system a university employee might want to create a personal page consisting of

• some profile information like name, telephone number, location of the office;

• provided lectures; and

• most recent published articles.

Of course, she could simply produce such a document and add it to the content
management system. However she would need to update this information quite regularly.
Therefore, she prefers to reuse content stored in different systems.

For the sake of this example, the personal data is stored on a server of the faculty, the
provided lectures can be obtained from a central system of the university and her most
recent articles can be obtained from a bibliographic server of the department.

A straightforward solution is to provide hyperlinks to these resources, but this is
inconvenient as the reader of the page actually needs to follow these links to see the
underlying data. A slightly more advanced technique would be to use inline frames1 to
embed the remote content into the page. However, this technique allows only very limited
formatting. A much more convenient solution would be if the content management system
stores only references to the foreign data and, whenever2 the page is requested, fetches

1In HTML, an inline frame (iframe) creates a rectangular area to embed the referenced web page.
2Of course, some caching technique may be applied to reduce traffic and page load times.

88 8 Schema Decomposition

an up to date copy of the data to create the profile page. This way, the fact that the
information is stored on different servers would be invisible to readers of the page.

While it is easy to implement a system that just fetches the data and delivers it to the
client, there are some complications. The first one is checking that the data is valid, i.e.
that it satisfies a given schema. Usually, when a page is created or changed, the content
management system will check whether the syntax of the page is valid and if necessary
ask the editing person to correct any errors. If a page contains references, the referenced
content may change without notice. Furthermore, people updating the bibliographic
data or the list of lectures will not necessarily know about this profile page and not take
care whether their changes will invalidate the profile page. Therefore it is not possible to
validate the profile page at the point of time where the content of the page changes.

The solution is that the CMS has to check not only if the page is valid at the moment
of creation, but also if the page is valid for every possible content from the referenced
sources. It is reasonable to assume that the referenced pages do not contain garbage, but
instead always return a document t which is valid according to some known schema S.

The problem whether a document is valid for all possible contents of the referenced
documents is the soundness problem (of distributed documents).

Soundness of distributed documents
Given: a global schema S,

a distributed document t with function calls f1, . . . , fn,
local schemas S1, . . . , Sn

Question: Is the composed document ext(t) valid wrt. S for all
possible documents r1, . . . , rn with ri ∈ L(Si)?

In this chapter, we do not focus on the soundness problem. Instead we focus on
the more advanced problem of designing good schemas for distributed documents. We
describe the problem based on the “profile page example”: In the modified example all
university employees have a profile page as described above, which is stored as a single
document. These documents have to comply to some schema S. Now some webmaster
wants to organize the data for better management; that is, creating separate databases
for lectures, bibliographic information and administrative purposes. Then there should
be one (template) distributed document t, where only the parameters of the function
calls need to be adjusted for different persons.

There are several questions which arise in this setting. One of them is, given a
distributed document t (with function calls f1, . . . , fn) and a schema S, how to generate
good schemas S1, . . . , Sn for the queried web services. Abiteboul et al. have researched
this question [AGM09]. They call a sequence of schemas (S1, . . . , Sn) a typing τ and
according to them there are several degrees of desirability for typings: local typings,
maximal local typings and perfect typings.

Intuitively a typing is local, when all trees that can be constructed by replacing the
function calls with trees from the schemas of the typing are valid wrt. S (i.e., the typing
is sound) and all valid trees can be constructed this way (i.e., the typing is complete).
A typing τ = (S1, . . . , Sn) is maximal local, if it is local and there exist no typing

8.1 From XML Documents to Strings 89

τ ′ = (S′1, . . . , S
′
n) such that τ (τ ′, where inclusion is defined componentwise, i.e., τ ⊆ τ ′,

if and only if Si ⊆ S′i for all i ∈ [1, n]. A typing is perfect, if it is maximal and there exist
no sound typing which is incomparable to the given typing.

This rises immediately six decision problems. Given a design and a typing one may
ask whether the typing is local, maximal local or perfect and given a design one may ask
if local, maximal local or perfect typings exist.

We study these decision problems and improve the results of [AGM09]. In the database
theory context, there is a connection with the work of Calvanese et al. [CGLV02]. However,
their intention is orthogonal to ours. Stated with our definitions, they would start from a
global schema S and a typing τ and ask for a maximal schema of distributed documents
S′ for which τ is sound for (S, t(f1, . . . , fn)) for every t(f1, . . . , fn) ∈ S′.

8.1 From XML Documents to Strings

Abiteboul et al. studied the typing problems for DTDs, XML Schemas, and extended
DTDs [PV00] as schema languages.

It is known that several decision problems for DTDs and XML Schemas can be
reduced to corresponding problems on strings. For example, in [MNS09] it is shown
that containment and equivalence testing for DTDs and XML Schemas over a class of
regular expressions C has the same complexity as containment and equivalence testing
for C. This result was extended by [AGM09] in the context of perfect and (maximal)
local typings. In this sense, it follows from [AGM09, MNS09] that all the aforementioned
problems have the same complexity for DTDs as for the regular expressions that these
DTDs use. For this reason, as long as we are interested in DTD and XML Schema, we
can safely focus our study to strings instead of trees. In other words, we study designs
(R,w) and (A, w) where R is a regular expression, A is a finite automaton, and w is a
distributed string w0 f1 w1 · · · fn wn with function calls f1, . . . , fn and strings w0, . . . , wn.
It should be noted that the typing problems for Relax NG schemas [CM01] or extended
DTDs cannot be reduced to the string case if exptime 6= pspace.

8.2 Notation and Algorithmic Problems

Let Σ be a finite alphabet and Σf be a set of function calls, typically written as f or f1, f2,
etc. We recall the following notions from Abiteboul et al. [AGM09].

Definition 8.1 A distributed string is a string w = w0 f1 w1 . . . fn wn, where n ∈ N,
wi ∈ Σ∗ and fi ∈ Σf , for each i. We write w(f1 · · · fn) for w if we want to emphasize the
function calls. A design is a pair (L,w) consisting of a language L and a distributed
string w. We often specify designs as (A, w) or (R,w) for an automaton A or a regular
expression R.

90 8 Schema Decomposition

Definition 8.2 A typing τ for (L,w) is a sequence (L1, . . . , Ln) of nonempty languages
over Σ. We write w(τ) for the language

{w0v1w1 · · · vnwn | vi ∈ Li, 1 ≤ i ≤ n}.

Given a design (L,w) and a typing τ we call τ

• a sound typing for (L,w), if w(τ) ⊆ L,

• a complete typing for (L,w), if w(τ) ⊇ L,

• a local typing for (L,w), if w(τ) = L, i.e., if it is sound and complete,

• a maximal typing for (L,w), if it is sound and there exists no sound typing τ ′ for
(L,w), such that τ (τ ′, where inclusion is defined componentwise.

• a perfect typing for (L,w), if it is local and if for each sound typing τ ′ for (L,w) it
holds τ ′ ⊆ τ .

In this chapter, we consider the following algorithmic problems. Given a design
D = (L,w) and a typing τ ,

LOC: check whether τ is a local typing for D;

ML: check whether τ is maximal and local for D;

PERF: check whether τ is a perfect typing for D.

Given a design D = (L,w),

∃−LOC: check whether there exists a local typing for D;

∃−ML: check whether there exists a maximal local typing for D;

∃−PERF: check whether there exists a perfect typing for D.

For a k ∈ N, we denote by ∃−kLOC (resp., ∃−kML) the problem ∃−LOC (resp., ∃−ML)
where w in the given design (L,w) only contains k function calls.

The complexity of these problems might depend on the formalism in which the language
L is given and in which the typing has to be specified. For simplicity, we only study cases
where these two formalisms coincide. More precisely, we consider NFAs (as in [AGM09]),
DFAs, and DREs as specification formalisms. We denote the resulting algorithmic
problems as in LOC(DFA), where L and the target typing are specified by DFAs. Since
not all regular languages can be defined by DREs, we need to make clear what we mean
by ML(DRE). In ML(DRE) we want to know whether τ is local and there exists no sound
DRE-definable typing τ ′ such that τ (τ ′.3

The Table 8.1 summarizes complexity results for these problems.

3One could define this problem in two different manners: either τ ′ can be regular, or needs to be
DRE-definable. From our proof it follows that these two problems coincide.

8.3 Connections to Language Theoretic Problems 91

LOC ML PERF
NFA pspace-c [AGM09] PSPACE-c (8.28) pspace-c [AGM09]
DFA pspace-c [JR93] PSPACE-c (8.28,8.30) in PTIME (8.19)
DRE PSPACE-c (8.27) PSPACE-c (8.28,8.33) in PTIME (8.21)

∃−2LOC ∃−2ML ∃−PERF

NFA
pspace-h [AGM09]

pspace-c [AGM09]
in NEXPTIME (8.36)

DFA PSPACE-c (8.36,8.37) in PTIME (8.19)

DRE PSPACE-h (8.41)
PSPACE-h (8.41)

in PTIME (8.21)
in EXPTIME (8.42)

Table 8.1: Summary of complexity results. Results of this thesis are highlighted. All
results for REs are equal to the results for NFAs. The result for ML(NFA) was
already stated in [AGM09], we present a corrected proof. All these results
also hold for DTDs and XML Schemas using REs, NFAs, DFAs, and DREs
as content models. The numbers between brackets indicate the theorem
numbers in which the results are proved. We also prove that ∃−LOC(NFA)
and ∃−ML(NFA) are in EXPSPACE in general (Theorem 8.34).

Typings and Regular Languages

We recall some results on language equations that have direct consequences for the typing
problem. The next theorem follows immediately from Corollary 13 in [Bal04].

Theorem 8.3 ([Bal04]) Let (L,w) be a design. If (L,w) has a local (even: non-regular)
typing then it also has a regular, maximal local typing.

This theorem holds independently of the formalism in which L is specified, as the
considered problems are defined with respect to the languages. It gives a good reason
to restrict attention to regular typings as was suggested in [AGM09] and is also done
here. One particular consequence of this theorem is that the problems ∃−LOC(NFA) and
∃−ML(NFA) coincide. The same holds for ∃−LOC(DFA) and ∃−ML(DFA). However, the
existence of local typings does not guarantee the existence of local typings specified by
DREs (Theorem 8.38) and the existence of local typings specified by DREs does not
guarantee the existence of maximal local typings specified by DREs (Theorem 8.40).

8.3 Connections to Language Theoretic Problems

The algorithmic problems are very related to language theoretic problems studied in the
literature, especially ConcatenationEquivalence and Primality.

92 8 Schema Decomposition

The ConcatenationEquivalence problem tests given languages L1, . . . , Ln and L whether
L = L1 · L2 · · · · · Ln, that is whether the concatenation of the languages L1 to Ln is
equal to the language L.

Obviously ConcatenationEquivalence is equal to the special case of LOC, where w =
f1 . . . fn, that is where all strings between function calls are empty. On the other hand,
LOC can be easily reduced to ConcatenationEquivalence.4 Therefore the complexity
bounds for LOC are always the same as for the ConcatenationEquivalence problem for the
respective formalism of specifying languages.

The Primality problem asks given a language L, whether it can be decomposed into
two languages L1 and L2, such that L = L1 · L2 and L1 6= {ε} 6= L2.

In a similar way as LOC is related to the problem ConcatenationEquivalence, ∃−LOC is
also related to the Primality problem.

The investigation of language decompositions goes back to Conway [Con71], who was
interested in expressing a regular event E in the form f(F1, F2, . . .), wherein f is a regular
function and Fi are regular events. Language equations form a broad framework in
formal language theory in which such kinds of questions are considered (see [Kun07] for a
recent overview). The primality question for regular languages [SY99, Sal08] is a special
case of a language equation, which has been studied in depth, both for finite and infinite
languages [SY99, CFPR03, AF05, HSW06, SSY08, Sal08, Wie09].

The complexity of Primality(DFA) has been considered an open problem in Formal
Language Theory since the late 90’s (see Problem 2.1 in [Sal08]). Primality(DFA) is
decidable but no further lower or upper bounds are known [Sal08]. We pinpoint the
precise complexity of Primality(DFA) in Theorem 8.5: it is pspace-complete.

That the complexity of Primality was open for a long time indicates that it might be
non-trivial to figure out the precise complexity of ∃−LOC(DFA) and ∃−LOC(NFA), as
they are in a sense generalizations of Primality. As a step towards an answer to these
complexity questions we determine the precise complexity of ∃−LOC(DFA) for distributed
strings with at most two function calls, a case that already generalizes Primality(DFA).

Despite it is very connected to the ∃−2LOC problem, the connection is not as easy
as above. Especially Primality is not equivalent to the special case of ∃−2LOC where
w = f1 f2, as in the ∃−2LOC problem languages are allowed to consist only of the empty
word. Therefore the special case w = f1 f2 of ∃−2LOC always has a trivial solution
where one of the two languages is chosen to be {ε}. To overcome this problem, we define
a slightly different version of the Primality problem called StrongPrimality, where the
decomposed languages are not allowed to contain the empty word ε. Not very surprisingly,
we can show the same complexity bounds for Primality and StrongPrimality using the
same proof ideas.

In Lemma 8.29 we will show that there is a one-to-one correspondence between
decompositions L1 · L2 of a language L, where L1 and L2 do not contain ε and local
typings for the design (L#, f1 # f2 #), where L# = {a1#a2# . . . an# | a1a2 . . . an ∈ L}
results from L by adding a # after every symbol.

4Technically, this is only true if the used formalism for specifying languages is able to efficiently
represent singleton languages, that is languages containing exactly one string.

8.4 The Language Primality Problem 93

8.3.1 Proof Strategies

As seen above, our problems are clearly connected to language theoretic problems.
Therefore it is not surprising that some of our complexity bounds can be easily derived
from the respective complexity bounds of the underlying language theoretic problems.

All our lower bounds are pspace bounds. They are either derived from the Concatena-
tionEquivalence problem or the StrongPrimality problem of the respective formalism.

While the details of the proofs depend on the formalism, the overall proof ideas for our
upper bounds are more or less independent of the formalism used to specify languages.
The ideas are as follows:

LOC: Trivial reduction to ConcatenationEquivalence

ML: Test locality using ConcatenationEquivalence. Compute an automaton which de-
scribes the empty language if and only if the typing is maximal.

PERF: Compute the unique perfect typing if it exists and compare this typing with the
given one.

∃−LOC: Equivalent to ∃−ML for all formalisms which have at least the expressive power
of regular languages.

∃−ML: Test all (finitely many) typings which respect a certain normal form for locality
and maximality.

∃−PERF: Show that there always is only one candidate for a perfect typing. Compute
this candidate and test whether it is perfect.

In the next section, we will give all proofs for the complexity of the underlying language
theoretic problems (i.e. Primality and ConcatenationEquivalence). The section is mostly
self contained, i.e. the proofs do not refer to results obtained in other sections. Afterwards
we discuss the problems of testing whether a typing is perfect and whether there exists
a perfect typing in Section 8.5. In Section 8.6 we discuss the normal forms needed for
upper bound proofs. In Sections 8.7 and 8.8 we show the complexities for verifying a
given typing and testing whether a typing exists, respectively.

8.4 The Language Primality Problem

The Primality problem for formal languages is defined as follows. A non-trivial decomposi-
tion of a language L is a pair (L1, L2) of languages, L1 6= {ε} 6= L2 such that L = L1 ·L2.
A language is called prime if it does not have a non-trivial decomposition. Primality(X)
asks, given a representation X specified by formalism X , whether L(X) is prime.

We will show that Primality is pspace-complete for DFAs and DREs. Furthermore
from our investigations of ∃−2LOC, we can easily conclude a nexptime upper bound for
NFAs and REs. For the pspace upper bound we will use the notion of a decomposition
set as defined in [SY99].

94 8 Schema Decomposition

Let A = (Σ, Q, δ, q0, QF) be a DFA. A subset Q′ of Q is called a decomposition set of
A, if and only if

L(A) = L(A1)︸ ︷︷ ︸
L1

·
⋂
q∈Q′

L(Aq)︸ ︷︷ ︸
L2

,

where A1 = (Σ, Q, δ, q0, Q
′) and Aq = (Σ, Q, δ, q,QF) for each q ∈ Q′.

For the upper bound we will use the following lemma.

Lemma 8.4 Let L be a language given by a minimal DFA A = (Σ, Q, δ, q0, QF). If L is
not prime, then there exists a decomposition set Q′ of A.

Proof. Let La and Lb be languages, such that L = LaLb. We define Q′ to be Q′ = {q |
∃w ∈ La. δ∗(q0, w) = q}. It remains to show that Q′ is a decomposition set. Let therefore
be A1, Aq, L1 and L2 be defined as in the definition of a decomposition set with respect
to A and Q′.
L ⊆ L1L2: Let w be a string from L and w1 ∈ La and w2 ∈ Lb be two strings such

that w = w1w2. Such strings exists as L = LaLb. By definition of A1 it is obvious
that w1 ∈ L(A1) = L1. It remains to show that w2 ∈ L2, i.e., w2 ∈ L(Aq) for every
q ∈ Q′. Assume there exists a q ∈ Q′ such that w2 /∈ L(Aq). In this case let w′1 be
a string from La with δ∗(q0, w

′
1) = q. The string w′1w2 is in LaLb but not in L, as

δ∗(q0, w
′
1w2) = δ∗(q, w2) /∈ QF . This is a contradiction to the assumption that L = LaLb.

L ⊇ L1L2: Let w1 and w2 be strings such that w1 ∈ L(A1) and w2 ∈ L(Aq) for every
q ∈ Q′. Then δ∗(q0, w1) = q for some q ∈ Q′ by the definition of A1 and δ∗(q, w2) ∈ QF
by the definition on Aq. We can conclude that w1w2 ∈ L = L(A). This concludes the
proof.

For the lower bound, we use a result from literature. The problem ConcatenationUniver-
sality is a special case of ConcatenationEquivalence. It asks, given two languages L1 and L2

over the alphabet Σ, whether L1L2 = Σ∗. ConcatenationUniversality is pspace-complete,
when both languages are given by DFAs [JR93].

Now we have the ingredients to show the pspace-completeness of Primality.

Theorem 8.5 Primality(DFA) is pspace-complete.

Proof. We first prove that Primality is pspace-hard. We use a polynomial time reduction
from the complement of ConcatenationUniversality. Given two DFAs A1 and A2, we
construct a DFA A, such that L(A) is prime, if and only if L(A1) · L(A2) 6= Σ∗.

To this end, let A1 and A2 be two arbitrary DFAs. Without loss of generality, we can
assume that L(A1) and L(A2) are strict supersets of {ε}. Let Σ′ be a disjoint copy of Σ,
i.e., Σ′ = {a′ | a ∈ Σ} and we assume that Σ ∩ Σ′ = ∅. Let $ be a symbol not occurring
in Σ or Σ′. By A′1 and A′2 we denote the DFAs resulting from A1 and A2 by replacing
each character a from Σ with the corresponding character a′ from Σ′. We denote the
languages of A1, A2, A′1 and A′2 by L1, L2, L′1 and L′2, respectively. We let A be an
automaton for

L =def Σ∗ ∪ L1$L′2 ∪ L′1$L2 ∪ L′1$$L′2.

8.4 The Language Primality Problem 95

Claim 8.6 Either there is no nontrivial decomposition of L or the only nontrivial
decomposition is (La, Lb) with La = L1 ∪ L′1$ and Lb = L2 ∪ $L′2.

Before we prove this claim, we first show that L is not prime, if and only if L1 ·L2 = Σ∗.
If L is not prime, according to Claim 8.6, the only nontrivial decomposition is (La, Lb).
Since La ∩ Σ∗ = L1, Lb ∩ Σ∗ = L2 and L ∩ Σ∗ = Σ∗, we can conclude that L1 · L2 = Σ∗.

For the other direction we claim, that if L1L2 = Σ∗, then (La, Lb) is a decomposition
of L. Indeed, since each string in L can be written as a concatenation of a string in
La and a string in Lb and conversely, we have that L = LaLb. This ends the proof of
pspace-hardness.

We continue to show that Primality is in pspace. Let A be the DFA, for which we
want to know whether L(A) is prime.

The algorithm tests for each subset Q′ of Q, whether Q′ is a decomposition set. The
correctness of the algorithm follows from Lemma 8.4. It only remains to show that testing
whether Q′ is a decomposition set can be done in polynomial space. To this end, let B
be the following alternating automaton

(1) it simulates A on w and, whenever it enters a state from Q′ it non-deterministically
decides to continue the simulation or to proceed with (2),

(2) it verifies that the remainder w′ of w is in L(Aq) for every q ∈ Q′ by universally
branching to all states q ∈ Q′ and testing that δ∗(q, w′) ⊆ QF .

The equivalence of the AFA B with A can be tested in polynomial space (cf. [Var95]).
It remains to prove Claim 8.6: Let (Lc, Ld) be a decomposition of L. We first prove

that Lc ⊆ Σ∗ ∪ Σ′
∗
$ holds. First of all, since every string in Lc must be a prefix of a

string in L, observe that no string in Lc can contain symbols from Σ and Σ′ without
having a $-symbol in between. We now argue that

(a) no string in Lc can contain two $-symbols; and

(b) no string in Lc can have a Σ-symbol followed by $-symbol.

Indeed, towards a contradiction, if (a) or (b) would not be the case, then, since
LcLd ⊆ L, Ld can only contain strings from Σ′

∗
, because only Σ′-symbols are allowed

to occur after two $-symbols in L and after a Σ-symbol followed by a $-symbol. Since
Σ∗ ⊆ LcLd we then have that Σ∗ ⊆ Lc and ε ∈ Ld. Since Ld 6= {ε} ((Lc, Ld) is a
nontrivial decomposition) this implies that LcLd contains at least one string from Σ+Σ′+,
which contradicts LcLd ⊆ L. By symmetry, Ld does not contain any strings with two $
symbols either. We can conclude that both Lc and Ld contain strings with at least one $
symbol.

To show that Lc ⊆ Σ∗ ∪ Σ′
∗
$, it remains to prove that

(c) each string with a Σ′-symbol ends with a $-symbol.

Towards a contradiction, assume that Lc has a string s with a Σ′-symbol, that does not
end with a $-symbol. Since Lc only contains prefixes of L and since (a) and (b) hold,

96 8 Schema Decomposition

there are two possible cases: either s ∈ L(Σ′+) or s ∈ L(Σ′+$Σ+). The first case is
impossible as Ld does not contain any strings with two $ symbols. The second case is
also impossible as concatenation of s with a string from Lb with a $ symbol would yield
a string outside L.

As Ld contains no strings with two $ symbols, Lc contains at least one string in Σ′∗$.
Again by symmetry, we can conclude that Ld ⊆ Σ∗ ∪ $Σ′

∗
holds and that Ld contains at

least one string in $Σ′
∗
.

From LcLd∩Σ∗$Σ′
∗

= L1$L′2 we now immediately get Lc∩Σ∗ = L1 and, symmetrically,
Ld ∩ Σ∗ = L2.

Finally, from LcLd∩Σ′
∗
$$Σ′

∗
= L′1$$L′2 we obtain Lc∩Σ′

∗
$ = L′1$ and Ld∩$Σ′

∗
= $L′2

Thus, Lc = La and Ld = Lb and (La, Lb) is the only nontrivial decomposition of L.

This concludes the proof that Primality(DFA) is pspace-complete. It should be stressed
that the complexity of deciding whether a language can be decomposed into three
nontrivial languages is still unknown. The construction of an alternating automaton to
test primality does not carry over to decompositions into three languages in the sense
that the resulting automaton for the middle part can get exponentially large. Therefore
our construction only leads to an expspace upper bound in the case of more than two
languages.

In Section 8.8, we show an expspace upper bound for ∃−LOC(DFA) (Corollary 8.35).
This bound easily carries over to the problem of deciding whether a language given by a
DFA can be decomposed into three nontrivial languages. The used algorithm just needs
to be adapted that it checks whether all languages do not equal {ε}.

The following proof for StrongPrimality uses the same ideas as the proof for Primality
and only slightly different definitions of the languages to ensure that ε is not contained
in the languages.

Theorem 8.7 StrongPrimality(DFA) is pspace-complete.

Proof. The proof of the lower bound is again by a reduction from ConcatenationUniversality.
Thereto, let B1 and B2 be two DFAs. We construct a DFA A such that L(B1) ·L(B2) = Σ∗

if and only if there exist languages F1, F2 such that L(A) = F1 · F2 with ε 6∈ F1 and
ε 6∈ F2.

We first construct DFAsA1 for L1 = Σ·L(B1) andA2 for L2 = L(B2)·Σ. Clearly, neither
L1 nor L2 do contain the empty word. Furthermore, it is obvious that L(B1) ·L(B2) = Σ∗,
if and only if L1 · L2 = ΣΣ∗Σ.

Similarly as in the proof of Theorem 8.5 we let A be a DFA for

L =def ΣΣ∗Σ ∪ L1$L′2 ∪ L′1$L2 ∪ L′1$$L′2.

As in the proof of Theorem 8.5 L′1 and L′2 are copies of L1 and L2, respectively, over
an alphabet Σ′.

The proof of Claim 8.6 can almost literally be adapted to show that

• there is at most one possible decomposition of L into La = L1 ∪ L′1$ and Lb =
L2 ∪ $L′2;

8.4 The Language Primality Problem 97

• (La, Lb) is a decomposition of L if and only if L(A1) · L(A2) = ΣΣ∗Σ; and

• neither La nor Lb contain the empty word.

The upper bound proof is identical to the proof in Theorem 8.5, except that we need
to change the AFA B such that it additionally check that both languages do not allow
the empty string.

From our result that ∃−2LOC(NFA) and ∃−2LOC(RE) are in nexptime (Theorem 8.36),
we easily get an upper bound for Primality(NFA) and Primality(RE).

Theorem 8.8 Primality(NFA) and Primality(RE) are in nexptime.

We do not give a proof here, as it is identical to the proof of Theorem 8.36 with the
only difference, that the algorithm additionally needs to check that none of the two
languages equals {ε}.

Concatenation Universality for DREs

Before we can show hardness results for primality for deterministic regular expressions,
we need to show that ConcatenationUniversality is pspace-complete for DREs. Afterwards
we use the same proof idea as we already used to show hardness for DFAs.

Theorem 8.9 ConcatenationUniversality(DRE) is pspace-complete.

Proof. The upper bound is easily obtained by transforming R1 and R2 into NFAs and
the fact that ConcatenationUniversality is in pspace for NFAs. The lower bound is by
reduction from the complement of pspace-complete CorridorTiling [van97]. We give a
formal definition of CorridorTiling in Section 3.4.

Let U = (U,H, V, u0, uF , n) be an instance of the corridor tiling problem, where U is
the set of tiles, H and V are the horizontal and vertical constraints, u0 and uF are the
first and last tile5 and n is the width of the tiling. As explained in Section 3.4, we can
assume w.l.o.g. that for any valid tiling it holds that (t, t′) ∈ H for any pair of tiles such
that t occurs at the end of some row and t′ occurs at the beginning of the next row.

We construct DREs R1 and R2, such that Σ∗ = L(R1) · L(R2), if and only if there is
no corridor tiling for T . To this end, R1, R2 are designed such that L(R1) ·L(R2) accepts
all strings that do not encode valid corridor tilings, i.e., L(R1) · L(R2) catches all errors.
The rationale of our reduction is that R1 accepts all prefixes of encodings, and that R2

checks whether an error occurs in the beginning of the string that it reads. In this way,
R1 can “guess” where the error should occur and R2 can catch it.

Let Σ = U . We encode a corridor tiling as a string v = v1v2 . . . vm, where each vi
encodes one row of the tiling.

Let Hx denote the set of tiles that may be placed right of tile x and Vx the set of tiles,
that may be placed above x. The respective sets of forbidden tiles are denoted by Hx

and Vx.

5Remember, that our definition of CorridorTiling only uses a first and last tile, instead of a first and
last row.

98 8 Schema Decomposition

R1 is a regular expression which accepts any string that does not start with u0 or does
not use uF .

R1 = ε+ u0Σ∗ + u0uF
∗

With u0 and uF we abbreviate the sets Σ \ {u0} and Σ \ {uF }. R2 checks for errors
in horizontal or vertical constraints. It accepts the empty string and every string
w = a1a2 · · · ak, with k ∈ N such that either (a1, a2) /∈ H or (a1, an+1) /∈ V . More
precisely,

R2 = ε+
∑

x∈Σ\{uF }

x(HxΣ∗ +HxΣn−2VxΣ∗).

By construction, R1 and R2 are deterministic expressions of quadratic size. We show
that Σ∗ = L(R1) · L(R2) if and only if there is no corridor tiling for T .

We first show that if there is a string v such that v /∈ L(R1) · L(R2), then there is
a valid tiling. First, we observe that v starts with u0 and ends with uF , as otherwise
v ∈ L(R1). Furthermore v obeys all horizontal and vertical constraints. Otherwise, by
construction of R1 and R2, the prefix of v up to the first error would be in L(R1) and
the remaining suffix would be in L(R2).

On the other hand, if there exists a valid tiling of U , then for the string v encoding
this tiling it holds that v 6∈ L(R1) ·L(R2): first of all, v 6∈ L(R1), as v starts with u0 and
contains uF . It therefore suffices to show, that there is no prefix u of v with u ∈ u0uF

∗

such that the nonempty suffix w with u = vw is in w ∈ L(R2). But this holds because
all constraints are fulfilled, there is no such w, where the first tile in w violates the
constraints regarding its right or top neighbor.

As ConcatenationUniversality is a special case of ConcatenationEquivalence, the lower
bound carries over to ConcatenationEquivalence. The upper bound proof still works for
ConcatenationEquivalence. We get the following easy corollary.

Corollary 8.10 ConcatenationEquivalence(DRE) is pspace-complete.

Primality for Deterministic Expressions

Now we can continue to show pspace-completeness for Primality(DRE). We use the same
proof idea as for DFAs (reduction from ConcatenationUniversality), however there is one
additional complication: we need to show that the computed language is DRE-definable.
To accomplish this we will not start from arbitrary instances of the ConcatenationUniver-
sality problem, but instead use the instances produced by the reduction from CorridorTiling
to ConcatenationUniversality given in the proof of Theorem 8.9.

Theorem 8.11 Primality(DRE) and StrongPrimality(DRE) are pspace-complete.

Proof. The pspace upper bounds are immediate from the upper bounds of Primality(DFA)
and StrongPrimality(DFA), as deterministic regular expressions can be converted to
equivalent DFAs in polynomial time (Theorem 7.2).

For the lower bound for Primality, we reduce from the CorridorTiling problem. We give
a reduction function f, which results from composing the reduction function f1 from the

8.4 The Language Primality Problem 99

reduction of CorridorTiling to ConcatenationUniversality in the proof of Theorem 8.9 with
a function f2, which we describe here. The domain of f2 is the co-domain of f1.

Let therefore R1 and R2 be the regular expressions from the proof of Theorem 8.9.
With R′1 and R′2 we denote copies of R1 and R2 written with a disjoint copy Σ′ of the
alphabet Σ. Let L1, L2, L′1 and L′2 be the languages of R1, R2, R′1 and R′2. We will
show that there is a polynomial size DRE for the language

L = Σ∗ ∪ L1$L′2 ∪ L′1$L2 ∪ L′1$$L′2,

which concludes the proof, as we already know that L is prime if and only if L1 · L2 is
not the universal language (proof of Theorem 8.5) and that L1 · L2 is not the universal
language if and only if the tiling instance producing R1 and R2 has a valid corridor tiling
(proof of Theorem 8.9).

We first note that
Σ∗ +R1$R′2︸ ︷︷ ︸

Rx

+R′1$(R2 + $R′2)

is a RE for L. This RE is not yet deterministic, as R1 uses alphabet Σ. However, we can
get a DRE R by transforming Rx into a DRE as described in the following.

We can describe the language L(Rx) using the following expression

R1(Σ∗ + $R′2) +R1Σ∗,

where R1 = Σ∗ \ L(R1). Furthermore we know from the proof of Theorem 8.9 that
R1 = ε+ u0Σ∗ + u0uF

∗ and R1 = u0uF
∗uFΣ∗, where u0 = Σ \ {u0} and uF = Σ \ {uF }.

Hence, the language L(Rx) can be defined by the following deterministic expression

ε+ $R′2 + u0Σ∗(ε+ $R′2) + u0uF
∗($R′2 + uFΣ∗).

This concludes the proof for Primality(DRE).

We now show that StrongPrimality(DRE) is pspace-complete, again using a reduction
from CorridorTiling, where the reduction function f is a composition of the reduction f1

from CorridorTiling to ConcatenationUniversality and a function f2, we give below. We use
the construction from the proof of Theorem 8.7.

We only have to show, that there is a polynomial size DRE for the language

L = ΣΣ∗Σ + ΣL1$L′2Σ′︸ ︷︷ ︸
Lx

+Σ′L′1$L2Σ + Σ′L′1$$L′2Σ′,

to apply the same arguments as in Theorem 8.7.

We therefore give a DRE S2 for L2Σ:

S2 = uF +
∑

x∈Σ\{uF }

x(ε+HxΣ+ +HxΣn−2VxΣ+).

100 8 Schema Decomposition

As ε ∈ L(R2), each symbol from Σ is a string in L2Σ. This is the reason, why uF is
added and the ε term is moved inside the brackets of the first sum: we need to accept
every symbol from Σ. As every expression inside the first sum of R2 ends with Σ∗, we
can simply exchange Σ∗ with Σ+.

A DRE for L can be derived from R1 and S2 (and the corresponding expressions R′1
and S′2 that use Σ′ instead of Σ) again by expressing Lx with a deterministic expression
We can describe Lx by the expression

Σ
(
R1(Σ+ + $S′2) +R1Σ∗

)
and by the deterministic expression

Σ
(
ε+ $S′2 + u0Σ∗(ε+ $S′2) + u0uF

∗($S′2 + uFΣ∗).

For our lower bound proofs we still need a slightly stronger version of the StrongPrimality
problem, where the difference is, that we additionally require the factors to be definable
by almost starless DREs.

Definition 8.12

• A regular expression R is starless, if it does not contain the Kleene star and
ε /∈ L(R).

• A regular expression R is almost starless, if R is starless or R is in one of these
forms:

– R = ε,

– R = (a1 + · · ·+ an)∗, for some symbols a1, . . . , an,

– R = R1 +R2 for almost starless REs R1 and R2,

– R = R1 ·R2, where R1 is starless and R2 is almost starless, or

– R = R1 ·R2, where R1 and R2 are almost starless and ε /∈ L(R2).

Corollary 8.13

(a) It is pspace-hard to decide given an almost starless DRE R, if there exists a factor-
ization (L1, L2) of L(R), such that both languages can be defined by almost starless
DREs and both languages do not contain ε.

(b) It is pspace-hard to decide given almost starless DREs R, R1, R2, whether (R1, R2)
is a factorization of R.

Proof. We have shown in the proof of Theorem 8.11 that the only possible nontrivial
factorization of L (if L has a nontrivial factorization at all) is (La, Lb), with La = L1+L′1$
and Lb = L2+$L′2.6 It is easy to verify that the expressions from the proof of Theorem 8.11
are almost starless.

6L, La and Lb are defined exactly as in the proof of Theorem 8.11.

8.5 Perfect Typings 101

8.5 Perfect Typings

One of the main results of [AGM09] is that, if a perfect typing exists, there is only one
candidate typing that needs to be checked and that an NFA can be efficiently constructed
(the perfect automaton in [AGM09]) from which this typing can be directly inferred. If
this typing is local then it is perfect. Therefore, PERF(NFA) can be solved by generating
the candidate typing, testing whether it is local, and verifying whether it is equivalent to
the typing in the input.

We recall the complexity results from Abiteboul et al. [AGM09]:

Theorem 8.14 ([AGM09])
(a) PERF(NFA) is pspace-complete, and
(b) ∃−PERF(NFA) is pspace-complete.

The results can be easily transferred to regular expressions.

Corollary 8.15
(a) PERF(RE) is pspace-complete, and
(b) ∃−PERF(RE) is pspace-complete.

Proof. The upper bounds are by reduction to the corresponding problems for NFAs. We
just compute an NFA for every regular expression occurring in the input using polynomial
time and apply the algorithm for NFAs.

The lower bound proofs of Theorem 8.14 given in [AGM09] work without modification
for regular expressions.

The pspace-hardness for these problems comes from testing whether the generated
candidate typing is local. In other words, these problems are pspace-hard because testing
language equivalence for NFAs and REs is pspace-hard.

This motivated us to study the perfect typing problems for DFAs and for deterministic
regular expressions, which are known to have a ptime language equivalence test.

8.5.1 Perfect Typings for DFAs

We first study the perfect typing problems for DFAs and prove that PERF(DFA) and
∃−PERF(DFA) can be solved in polynomial time. Our overall technique is reminiscent to
the one used for proving Theorem 8.14, but the details are rather different. From a given
design D = (A, w), where A is a DFA, a candidate automaton (i.e., perfect automaton)
Ω̂(A, w) representing a typing τ can be computed in polynomial time such that D has a
perfect typing if and only if w(τ) = L(A). However, two remarks are essential here, in
order to understand the new difficulties: (1) the construction of Ω̂(A, w) is completely
different from the construction in [AGM09] and (2) it is not straightforward to check
w(τ) = L(A), because w(τ) is in general non-deterministic (this non-determinism arises
from the freedom to choose between remaining in a type τi or reading the string wi to
advance to τi+1). Even if τ consists only of DFAs, the equivalence test w(τ) = L is

102 8 Schema Decomposition

pspace-complete in general. We therefore need to adopt an approach in which we need
more structural insight in the problem, which is exactly our challenge.

Given a design D = (A, w), where A is a DFA (Q,Σ, δ, s, F) and w is a distributed
string w = w0 f1 . . . fn wn, we construct the candidate automaton Ω(D) as follows. We
use the extended alphabet Σ̂ = Σ] {σ0, . . . , σn} and the homomorphism h : Σ̂∗ → Σ∗,
where h(a) = a for any a ∈ Σ and h(σi) = wi for any i ∈ {1, . . . , n}.

By Â we denote the automaton derived from A by applying the inverse homomorphism
h−1 to A. More precisely, Â = (Q, Σ̂, δ̂, s, F), where

δ̂ = δ ∪ {(qa, σi, qb)|qb ∈ δ∗(qa, wi)}.

Since Σ and {σ1, . . . , σn} are disjoint, Â is deterministic. Furthermore it can be con-
structed in polynomial time.

The perfect automaton Ω̂ = Ω̂(A, w) is defined as the minimal DFA for

L(Â) ∩ L(σ0Σ∗σ1Σ∗ . . .Σ∗σn).

We can construct Ω̂ in polynomial time by performing the standard product construction
on Â and the (trivial) linear size deterministic automaton for σ0Σ∗σ1Σ∗ . . .Σ∗σn. Recall
our convention that minimal DFAs do not have (rejecting) sink states and therefore, for

some q and σi, δ̂(q, σi) might be empty. It should be noted that, as Ω̂ is minimal, Ω̂ only
depends on the design D = (L,w) and not on the concrete automaton representing L.

Example 8.16 Figure 8.2 illustrates our construction with two designs. The DFA A1

of the design D1 = (A1, f1 f2) is shown in Figure 8.2a (without the dashed transitions).
Â1 results from adding the dashed self-loops, as the strings w0, w1 and w2 are empty.
The perfect automaton Ω̂(D1) is shown in Figure 8.2b. Later, we will see that this design
does not have a perfect typing.

The right half of Figure 8.2 gives a more complicated example, where a perfect typing
actually exists. The design is D2 = (A2, f1 bc f2), where A2 is the DFA of Figure 8.2d,
without the dashed transitions. The DFA Â(D2) is the automaton in Figure 8.2d with the
dashed transitions. The two self-loops labeled with σ0 and σ2 at each state result again
from the empty strings w0 and w2. The perfect automaton is shown in Figure 8.2e.

For i ∈ [1, n], we define the local candidate automaton Ωi as follows. First, let Ω̂i be
the automaton obtained from Ω̂ by choosing

(i) as initial states those states q with some transition (r, σi−1, q), and

(ii) as final states those states p with some transition (p, σi, r
′).

Then, Ωi is the automaton obtained from Ω̂i by removing all transitions labeled with
some σj . Notice that, since A is deterministic, the only nondeterminism of Ωi is the

freedom to choose an initial state. We write ~Ω for (Ω1, . . . ,Ωn) and τΩ for the typing
(L(Ω1), . . . , L(Ωn)). Figures 8.2c and 8.2f display the respective local automata for the
designs of Example 8.16.

We need the following technical lemma:

8.5 Perfect Typings 103

1start 2 3
a b

σ0, σ1, σ2

σ0, σ1, σ2

σ0, σ1, σ2

(a) DFA Â1 for the design
D1 = ({ab}, f1 f2)

1

start

2 3 4

5

6
a

b

a

c

bc

d

σ0, σ2 σ0, σ2 σ0, σ2

σ0, σ1, σ2

σ0, σ2

σ0, σ2

σ1

(d) DFA Â2 for the design
D2 = ((ab)+c(bc)∗d, f1 bc f2)

1as

start

2a 3a

1b 2b 3b f

σ0 a b

a b

σ1 σ1 σ1

σ2

(b) Perfect automaton Ω̂(D1)

1

sstart

2 3 4a 5a

4b5b 6 f

σ0

a
b

a
c

b

c

b

c
d σ2

σ1
σ1

(e) Perfect automaton Ω̂(D2)

1astart 2a 3a

1b

start

2b

start

3b

start

a b

a b

(c) Local candidate automata
Ω1(D1) and Ω2(D1).

1start 2 3 4

5

a
b

a
c

bc
4

start

5 6

b

c
d

(f) Local candidate automata
Ω1(D2) and Ω2(D2).

Figure 8.2: Two designs: (a)–(c) has no perfect typing, (d)–(f) has a perfect typing.

Lemma 8.17 Let w = w0 f1 . . . fn wn be a distributed string, A be a DFA and τ =
(L1, . . . , Ln) be a sound typing for (A, w). Let τΩ be the typing obtained from Ω̂(A, w) as
described above. Then τ ⊆ τΩ.

Proof. To prove that τ ⊆ τΩ, we show Li ⊆ L(Ωi), for i ∈ [1, n]. To this end, we fix
i and vi ∈ Li. Furthermore, for each j 6= i, 1 ≤ j ≤ n, let vj be some string from
Lj and let v̂ = σ0v1σ1 · · · vnσn. As τ is sound, v = w0v1w1 · · · vnwn ∈ L(A). Since

v̂ ∈ σ0Σ∗σ1 · · ·Σ∗σn, also v̂ ∈ L(Ω̂). Furthermore, the accepting run of Ω̂ on v̂ induces a

sequence of transitions from δ̂∗:

s0
σ0−→ q1

v1−→∗s1
σ1−→ q2

v2−→∗ · · · σn−1−−−→ qn
vn−→∗sn

σn−−→ qa

By definition of Ωi we immediately get vi ∈ L(Ωi). Thus, τ ⊆ τΩ.

The following theorem is the technical core of this section. It proves that to test
whether a design has a perfect typing it suffices to test whether all local candidate

104 8 Schema Decomposition

automata have one initial state. Furthermore, the perfect typing is simply the vector of
local candidate automata.

Theorem 8.18 Let w = w0 f1 . . . fn wn be a distributed string and A a DFA, such that
L(A) ⊆ w0Σ∗w1 · · ·Σ∗wn. Let Ω̂, τΩ, and ~Ω = (Ω1, . . . ,Ωn) be defined as above. Then
the following statements are equivalent.

(a) There is a perfect typing for (A, w).

(b) τΩ is a perfect typing for (A, w).

(c) τΩ is a sound typing for (A, w).

(d) For each i, Ωi has exactly one initial state.

Proof. We show the implications (a) ⇒ (d) ⇒ (c) ⇒ (b) ⇒ (a).
(a) ⇒ (d): Let τ = (L1, . . . , Ln) be a perfect typing for (A, w). Towards a contradiction,
assume that, for some i ∈ [1, n], p 6= q are initial states of Ωi. Since by definition Ω̂ is mini-
mal, there exists a string u = uiσi · · ·unσn such that δ∗(p, u) ∈ F and δ∗(q, u) 6∈ F or vice
versa. We assume w.l.o.g. that δ∗(p, u) ∈ F — the other case is symmetric. Since by min-
imality of Ω̂ every state occurs in some accepting run and L(Ω̂) ⊆ σ0Σ∗σ1 · · ·σn−1Σ∗σn,
there exist strings

• v = viσi · · · vnσn with δ∗(q, v) ∈ F ,

• u′ = σ0u1σ1 · · ·ui−1σi−1 with δ∗(s, u′) = p,

• v′ = σ0v1σ1 · · · vi−1σi−1 with δ∗(s, v′) = q.

Thus, u′u and v′v are both accepted by Ω̂ and therefore ({u1}, . . . , {un}) and ({v1}, . . . ,
{vn}) are sound typings for (A, w). By perfectness of τ , both these typings are included
in τ , hence, for each i, {ui, vi} ⊆ Li. But this yields a contradiction as u′v is not accepted
by Ω̂, thus τ is not sound. Thus, we can conclude that (d) holds.
(d) ⇒ (c): Let, for each i, qi be the unique7 initial state of Ωi. Let, for each i, vi ∈ L(Ωi).
We need to show that w0v1w1 · · · vnwn ∈ L(A).

For each i, let si = δ̂∗(qi, vi). By construction of Ω̂i and uniqueness of initial states,

we have that δ̂∗(si−1, σi−1) = qi for each i (where s0 is interpreted as the initial state of

Ω̂). Furthermore, qa = δ̂(sn, σn) is the unique accepting state of Ω̂. Together,

s0
σ0−→ q1

v1−→∗s1
σ1−→ · · · σn−1−−−→ qn

vn−→∗sn
σn−−→ qa

is an accepting computation of Ω̂, hence for Â and therefore

s0
w0−−→∗q1

v1−→∗s1
w1−−→∗ · · · wn−1−−−→∗qn

vn−→∗sn
wn−−→∗qa

is an accepting computation of A.

7It should be noted that by construction qi is also the unique initial state of Ω̂i.

8.5 Perfect Typings 105

(c) ⇒ (b): Let v = w0v1w1 · · · vnwn ∈ L(A). It follows that τ = ({v1}, . . . , {vn}) is a
sound typing for (A, w). By Lemma 8.17, τ ⊆ τΩ and thus v ∈ w(τΩ), therefore τΩ is
complete, hence local. Applying Lemma 8.17 again, immediately yields that τΩ is perfect.
(b) ⇒ (a): Immediate.

Using Theorem 8.18, we can prove that the perfect typing problems are tractable for
DFAs.

Theorem 8.19

(a) PERF(DFA) is in ptime and

(b) ∃−PERF(DFA) is in ptime.

Proof. We start with (b). To test whether (A, w) has a perfect typing for a given a
distributed string w and a DFA A we first check if L(A) ⊆ w0Σ∗w1 · · ·Σ∗wn. This can
be easily done in polynomial time, as there is a DFA of linear size in w, for the language
w0Σ∗w1 · · ·Σ∗wn. If the inclusion does not hold, there can be no perfect typing, as there
can be no complete typing.

Next, we construct Ω̂(A, w) in polynomial time. We test in polynomial time if there
is an i ∈ [1, n] and (at least) two different states p and q, such that there are incoming
transitions in p and q labeled by σi in Ω̂. By Theorem 8.18, (A, w) has a perfect typing
if and only if there is no such i. This shows (b).

We continue with (a). To test whether a given typing τ is perfect for the design (A, w),
we first check as in (b) whether a perfect typing exists. If this is the case, it remains
to test whether τ = τΩ. The latter can be done in polynomial time as it only involves
equivalence tests for DFAs.

8.5.2 Perfect Typings for Deterministic Regular Expressions

In real DTDs and XML Schema specifications content models are described by deter-
ministic regular expressions (see Chapter 7). This raises the question how to solve the
perfect typing problem for DREs. We first show that the case of deterministic regular
expressions is quite different from the case of finite automata. In particular, there are
designs with perfect typings that cannot be specified by deterministic regular expressions.

Theorem 8.20 There is a design D = (R,w) with a DRE R for which the (unique)
perfect typing is not expressible by DREs.

Proof. We show that the perfect typing for the design D2 of Example 8.16 cannot be
specified by DREs. The global schema of D2 is specified by the DRE R = (ab)+c(bc)∗d.
As we argued in Example 8.16, the DFAs Ω1 = Ω1(D2) and Ω2 = Ω2(D2) describe a
perfect typing τ = (L(Ω1), L(Ω2)) for D2, since they both have only one initial state.

We show that there can be no DRE for L(Ω1), by showing that Ω1 does not fulfill
the orbit property as defined in Chapter 7.2. The minimal DFA for Ω1 is depicted in
Figure 8.2f and has state set {1, 2, 3, 4, 5}. Consider the orbit O(2) = O(3). Both states

106 8 Schema Decomposition

2 and 3 are gates of this orbit, as 2 is a final state and 3 has the transition δ(3, c) = 4,
which leaves the orbit.

In violation of the orbit property, 2 is final, but 3 is not. From Theorem 7.2 it follows
that there can be no DRE for L(Ω1).

Theorem 8.20 shows that DREs require some care. However, computing whether there
exist perfect typings is still feasible as stated in the next result.

Theorem 8.21

(a) PERF(DRE) is in ptime and

(b) ∃−PERF(DRE) is in ptime.

Proof. (a): Whether a typing τ = (L(R1), . . . , L(Rn)) with DREs R1, . . . , Rn is perfect for
a design D = (R,w) can be easily tested by translating R and each Ri into an equivalent
Glushkov automaton (in quadratic time) and applying the algorithm of Theorem 8.18.

(b): Given a design D = (R,w), where R is a DRE, an equivalent DFA A for R can
again be computed in quadratic time. If a perfect typing τ = L1, . . . , Ln for (A,w)
exists, it is unique and its DFA representation A1, . . . , An can be computed in polynomial
time (according to Section 8.5.1). Finally, it can be tested in ptime if every L(Ai) is
DRE-definable [BKW98].

We note, that the proof does not show that perfect typings can be computed in
polynomial time, as DREs can be exponentially larger than equivalent DFAs.

8.6 Normal Form Typings

For a given design there can be an infinite number of local typings. We show in this
section that we can reduce the search space considerably by only considering typings
of particular normal forms, which are based on automaton representations of the given
languages.

Let, in the following, A = (Q,Σ, δ, I, F) always denote some NFA. An A-transformation
is a mapping Q→ 2Q, i.e., a function that maps states of A to sets of states of A. For
a string w, we denote by TAw the A-transformation induced by w, i.e., the function
p 7→ δ∗(p, w). Given an A-transformation T we write Ltrans(A, T) for the set of strings
w with TAw = T . We say a typing (L1, . . . , Ln) is in A normal form (A-NF) if each Li is
a union of languages of the form Ltrans(A, T).

If A is a DFA we consider a stronger normal form: For two sets X,Y of states of A let
L∩(A, X, Y) denote the set of all strings w, for which δ∗(p, w) ∈ Y , for every p ∈ X. A
typing (L1, . . . , Ln) is in strong A-normal form (strong A-NF), if each Li is of the form
L∩(A, Xi, Yi), for some Xi, Yi ⊆ Q.

The idea behind the strong A-NF is, that each set X is chosen as a subset of the initial
states of the corresponding local automaton as constructed in Section 8.5. Each set Y is
then chosen as the set of states, such that a state of the next X-set is reached by reading
the next string wi.

8.6 Normal Form Typings 107

Remark The specialization of the strong A-NF with i = 2 and all wi = ε was already
used by Salomaa et al. [SY99] under the term decomposition sets. We used this special
case to show the pspace upper bound for Primality for DFAs in Section 8.4.

Remark It follows from the results of Section 8.5 that a perfect typing for a design (A, w)
with a DFA A is always in strong A-NF.

Even though local typings do not need to be of this particular simple type (as we will
see below), we show next that A-NF typings and strong A-NF typings deserve their
names.

Theorem 8.22 Let A be an NFA, and τ = (L1, . . . , Ln) a local typing for the design
D = (A, w(f1 · · · fn)).

(a) Then there exists an A-NF local typing τ ′ for D such that τ ⊆ τ ′.

(b) If A is a DFA there exists a strong A-NF local typing τ ′ for D such that τ ⊆ τ ′.

Proof. (a): For each i = 1, . . . , n we let

L′i =
⋃
w∈Li

Ltrans(A, TAw),

i.e., the set of strings for which there is some w ∈ Li with the same A-transformation.
Let τ ′ = (L′1, . . . , L

′
n). As, in particular, each string w ∈ Li is in L′i, we immediately get

τ ⊆ τ ′.
It remains to show that τ ′ is a sound typing for (A, w). To this end, let, for each i,

vi ∈ L′i. For each i, there is some ui ∈ Li with TAui = TAvi . As τ is a sound typing, A has
an accepting run on w0u1w1 · · ·unwn. As each vi has the same A-transformation as the
respective ui, w0v1w1 · · · vnwn is accepted by A as well.

(b): Let Y = {q0} be the singleton set containing the initial state of A. For each
i ∈ [1, n], we let L′i = L∩(A,Xi, Yi), where Xi =

⋃
q∈Yi−1

δ∗(q, wi−1) and Yi =
⋃
q∈Xi⋃

w∈Li δ
∗(q, w).

Let τ ′ = (L′1, . . . , L
′
n). As, in particular, each string w ∈ Li is also in L′i, we immediately

get τ ⊆ τ ′.
Clearly, τ ′ is in strong A-NF. It remains to show that it is a sound typing for (A, w).

Let therefore vi be a string from L′i for each i ∈ [1, n]. We use the following claim, which
we prove later:

Claim 8.23 For each i ∈ [1, n] the following conditions hold:

(i) For each q ∈ Yi, there is a string v ∈ w0L1 · · ·wi−1Li such that δ∗(s, v) = {q}.

(ii) w0L
′
1w1L

′
2 · · ·wi−1L

′
i ⊆ L(AYi).

Here, AYi denotes the automaton A with final state set Yi, i.e., AYi := (Q,Σ, δ, q0, Yi).

108 8 Schema Decomposition

By (ii) for every string vwn ∈ w0L
′
1w1 · · ·wn−1L

′
nwn we have p = δ∗(q0, v) ∈ Yn. We

can conclude by (i) that there is a string v ∈ w0L1w1 · · ·Ln such that δ∗(q0, v) = p. As
τ is sound, vwn ∈ L(A) and thus δ∗(p, wn) ∈ F .

We still need to proof Claim 8.23: We let Y0 = {q0} and prove (i) and (ii) by
simultaneous induction on i, for every i ∈ [0, n]. Clearly (i) and (ii) hold for i = 0 (as
they only refer to the empty string).

Now let i ≥ 1 and q ∈ Yi. By definition of Yi there are p ∈ Xi and w ∈ Li such that
δ∗(p, w) = q. By definition of Xi, δ

∗(r, wi−1) = p, for some r ∈ Yi−1. By induction, there
is a string v ∈ w0L1 · · ·wi−1Li−1 such that δ∗(q0, v) = r. Thus, δ∗(q0, vwi−1w) = {q}
and (i) follows.

Now let w0v1 · · ·wi−1vi be a string in w0L
′
1 · · ·wi−1L

′
i and p = δ∗(q0, w0v1 · · · vi−1). By

induction, p ∈ Yi−1. By definition of L′i there is a state q ∈ Yi such that δ∗(p, wi−1vi) = q.
Thus, δ∗(q0, w0v1 · · ·wi−1vi) = q ∈ Yi and (ii) follows.

Remark Clearly, if τ is a maximal local typing then τ ′ is equivalent to τ , as τ ′ ⊆ τ (τ
is maximal) and τ ⊆ τ ′ (by Theorem 8.22). Therefore, even if not every local typing has
an equivalent normal form typing but only is contained in a sound (and maximal) normal
form typing, we consider the term “normal form” adequate.

Theorem 8.22 shows that, if one is interested in the existence of a (local, maximal local,
perfect) typing, it is always sufficient to look for (strong) A-NF typings. Furthermore, it
shows that every maximal local typing is equivalent to some typing in normal form.

The next theorem shows why normal forms are interesting from a complexity-theoretic
point of view: we can define the languages in normal form typings by means of “small”
finite automata.

Theorem 8.24 Let A be an NFA, D = (A, w(f1 · · · fn)) a design, and τ = (L1, . . . , Ln)
a typing for D.

(a) If τ is in A-normal form then, for each i ∈ [1, n], there is a DFA B of exponential
size in |A| such that L(B) = Li.

(b) If A is a DFA and τ is in strong A-normal form, then, for each i ∈ [1, n], there is
an AFA B of polynomial size in |A| such that L(B) = Li.

Proof. (a) The DFA B simply keeps track of the transformation TAw induced by the input
string.

Let A = (Q,Σ, δ, I, F) be an NFA with state set Q = {q1, . . . , qm} and let L =⋃k
j=1 Ltrans(A, Tj) be an A-NF language. The DFA B is defined as ((2Q)m,Σ, δB , IB , FB),

where

• the transition function δB is defined by

δB((Q1, . . . , Qm), a) = (δ(Q1, a), . . . , δ(Q|Q|, a)).

Here, as usual δA(Qi, a) =
⋃
p∈Qi δA(p, a), for every i;

8.7 Verification of Typings 109

1start 2 3 4

5 6 7

a c d

c
db

c

b

c

Figure 8.3: Automaton A of Example 8.25

• the initial state set IB is ({q1}, . . . , {qm});

• FB consists of all states (Tj(q1), . . . , Tj(qm)), j ≤ k.

(b) Let A be a DFA and τ = (L1, . . . , Ln) a typing for D in strong A-normal form.
For each i, Li = L∩(A, X, Y) for some X and Y . Let B be the AFA that first universally
branches to the states in X and then simulates deterministically (on all branches) A on
w. Its accepting states are the states in Y .

We note that the bounds of Theorem 8.24 do not apply to DFAs for the languages
w(τ) as the concatenation of languages re-introduces nondeterminism. However, we can
conclude a double-exponential size bound for DFAs for the languages w(τ).

It is tempting to hope for stronger normal forms for typings. For example, if in
Theorem 8.22(b) all languages in τ ′ were of the form L∩(A, X, Y) with singleton X, then
we could use polynomial-size NFAs instead of polynomial-size AFAs in Theorem 8.24(b).
However, the following example shows that this is not possible and that therefore, our
normal forms are, in a sense, optimal.

Example 8.25 Let A be a DFA for the language ac+d + (bc)+d. and D = (A, f1 c f2).
A is depicted in Figure 8.3. The only local (and thus also maximal local) typing for D is
τ = (ac∗ + b(cb)∗, d) = (L∩(A, {1}, {2, 3, 5, 7}), L∩(A, {3, 6}, {4})).

Notice that there is no single state q of A such that there exists a local typing of the
form (L∩(A, X1, Y1), L∩(A, {q}, Y2)) for D.

8.7 Verification of Typings

In this section, we study the complexity of testing whether a given typing is local or
maximal local for a given design. To test whether a given typing is local has the same
complexity as the ConcatenationEquivalence problem for the same formalism of specifying
languages.

Lemma 8.26 Let X be a formalism to specify languages such that, given a word w, one
can construct a representation of the singleton language {w} in X in logarithmic space.
Then LOC(X) can be logspace reduced to ConcatenationEquivalence(X) and vice versa.

110 8 Schema Decomposition

Proof. Obviously ConcatenationEquivalence(X) is the special case of LOC(X), where all wi
are ε. For the other direction, let (L,w0 f1 w1 f2 . . . fn wn) be a design and (L1, L2, . . . , Ln)
be a typing, where all languages are given by the formalism X . For i ∈ {0, . . . , n} we
compute representations Xi such that L(Xi) = {wi}. The given typing is local, if and
only if L = X0L1X1 . . . LnXn. By assumption, all Xi can be computed in logspace.

Corollary 8.27 The problems LOC(NFA), LOC(DFA), LOC(RE), and LOC(DRE) are
pspace-complete.

Proof. The result follows from Lemma 8.26 and the fact that ConcatenationEquivalence
is pspace-complete for DFAs [JR93] (and therefore also for NFAs and REs) and DREs
(Corollary 8.10).

The result for LOC(NFA) was already published in [AGM09].

Theorem 8.28 The problems ML(NFA), ML(DFA), ML(RE) and ML(DRE) are in pspace.

Proof. We start with ML(NFA). Let D = (A, w). We first show that a local typing
τ = (L1, . . . , Ln) is not maximal for D if and only if there is an i, 1 ≤ i ≤ n and an
A-transformation T such that

(1) (L1, . . . , Li−1, Ltrans(A, T), Li+1, . . . , Ln) is sound for D and

(2) Ltrans(A, T)− Li 6= ∅.

The “if” statement holds by definition of “maximal”. For the “only if” statement let
us assume that τ (τ ′′, for some local typing τ ′′. By Theorem 8.22, there is an A-NF
typing τ ′ = (L′1, . . . , L

′
n) such that τ ′′ ⊆ τ ′, thus τ (τ ′. Therefore, there is some i such

that Li (L′i. By definition of A-NF typings there is an A-transformation T such that
Ltrans(A, T) ⊆ L′i but Ltrans(A, T) 6⊆ Li.

Whether a given typing τ is maximal and local can thus be tested as follows.

(a) Test whether τ is local.

(b) For each i and T .

• Check (1) and (2) above.

If there exist i and T such that (1) and (2) do not hold, than τ is not maximal.
To test (1) it is sufficient to construct an NFA A′ for

w(L1, . . . , Li−1, Ltrans(A, T), Li+1, . . . , Ln) ∩ L

and to verify that L(A′) = ∅. It is not hard to see, that there is such an NFA of
exponential size which can be represented succinctly in polynomial space and therefore
its non-emptiness can be tested in (nondeterministic thus also deterministic) polynomial
space.

Condition (2) can be easily tested in polynomial space.

8.7 Verification of Typings 111

This finishes the proof for the upper bound of ML(NFA). The upper bound for ML(DFA)
follows immediately, as it is just a special case of ML(NFA). The upper bound for ML(RE)
follows easily by converting the regular expressions to polynomial size NFAs.

It remains to prove the upper bound of ML(DRE). For testing maximal locality, we
translate the given DREs into NFAs and use the upper bound algorithm from above. It is
not obvious that this is correct: a typing defined by DREs could be found non-maximal
by the algorithm because there is a larger typing that is not DRE-definable. However, if
there exists a larger typing that is not DRE-definable, then there is also a larger typing
that is DRE-definable. The reason is that, for every DRE-definable language L and
string w, the language L ∪ {w} is also DRE-definable (Lemma 10 in [BGMN09]). Let
τ = (L1, . . . , Ln) be a DRE-definable typing and τ ′ = (L1, . . . , L

′
i, . . . , Ln) be a larger non

DRE-definable typing. Than the typing τ ′′ = (L1, . . . , Li ∪{w}, . . . , Ln) with w ∈ L′i \Li
is a larger typing than τ and DRE-definable. Thus τ cannot be a maximal DRE-definable
typing. This shows that ML(DRE) is in pspace.

We note that the result for ML(NFA) was already stated in [AGM09]. However, the
presented proof for the upper bound is not correct. It claims that, for a design (L,w) a
typing τ = (L1, . . . , Ln) is not maximal, if there is an i, such that

w(L1, . . . , Li−1, Li, Li+1, . . . , Ln) ∩ L 6= ∅.

This is not true: if L = {a, aa} and w = f1 f2, the typing τ = (L1, L2) with L1 = {ε, a}
and L2 = {a} is maximal, even though the string aa is in w(L1, L2) ∩ L.

Lower Bounds for Maximal Local Typings

To show pspace lower bounds for ML(DFA) and ML(DRE), we exploit the pspace-hardness
of StrongPrimality for DFAs and DREs.

For each language L with ε /∈ L, let L# be the language

L# = {a1#a2# . . .#an | a1a2 . . . an ∈ L}

and L# be the language

L# = {a1#a2# . . .#an# | a1a2 . . . an ∈ L},

where # is a fresh symbol that does not occur in L. Furthermore for each language
L with ε /∈ L, we define the design D#

L to be D#
L = (L#, f1 # f2 #). For the opposite

transformation, we define for each string v and each language L, the string v\ and
language L\, that result from v and L, by removing all occurrences of #.

The following lemma will be crucial in our lower bound proofs for ML and ∃−ML.

Lemma 8.29 For any language L, it holds that

(a) every decomposition L = L1L2 of L with ε /∈ L1 ∪ L2 translates to a local typing

(L#
1 , L

#
2) for D#

L ; and

112 8 Schema Decomposition

(b) every local typing (L1, L2) of D#
L translates to a decomposition L = L\1L

\
2 of L, such

that ε /∈ L\1 ∪ L
\
2.

Proof. We first prove (a). To this end, suppose that there is a nontrivial strong factoriza-

tion (L1, L2) of L (in which neither L1 nor L2 contain ε). We claim that then, (L#
1 , L

#
2)

is a local typing for D#
L . To this end, for the direction L#

1 ·# · L
#
2 ·# ⊆ L#, let u ∈ L#

1

and v ∈ L#
2 . Since u 6= ε 6= v, we have that both u and v start and end with Σ-symbols,

u#v# alternates between Σ-symbols and #, and that u\v\ ∈ L. Hence, u#v# ∈ L# by
definition of L#. Conversely, let s be a string in L# and let s\ be obtained from s by
removing all occurrences of #. By definition of L#, s\ ∈ L. Therefore, there exist u ∈ L1

and v ∈ L2 with u 6= ε 6= v such that uv = s. Hence, u##v## = s with u# ∈ L#
1 and

v# ∈ L#
2 .

Towards (b), suppose that there is a local typing τ = (L1, L2) for D#
L . We will prove

that then (L\1, L
\
2) is a nontrivial decomposition of L with ε /∈ L\1 ∪ L

\
2. First of all, since

all strings in L# start with a Σ-symbol and alternate between Σ-symbols and #, we have

that all strings in L\1 and L\2 have length at least one.

So it remains to prove that L = L\1L
\
2. To this end, let s be a string in L and let s# be

its corresponding string in L#. Since (L1, L2) is a local typing, there exist u ∈ L1 and
v ∈ L2 such that s# = u ·# · v ·#. Since u and v start and end with a Σ-symbol, we have

that s = u\v\ and u\ 6= ε 6= v\. Conversely, let u be a string in L\1 and v be a string in L\2.
Since (L1, L2) is a local typing, there exists a string s# ∈ L# such that u##v## = s#,
where u# and v# are the strings corresponding to u and v. But by definition, s ∈ L.
Therefore we also have that L1L2 ⊆ L and (L1, L2) is indeed a nontrivial decomposition
of L such that neither language contains ε.

Now we can show lower bounds for the ML problem.

Lemma 8.30 ML(DFA) is pspace-hard.

Proof. The language L = ΣΣ∗Σ ∪ L1$L′2 ∪ L′1$L2 ∪ L′1$$L′2 constructed in the proof of
Theorem 8.7 has the decomposition (La, Lb) with La = L1 ∪ L′1 and Lb = L2 ∪ $L′2, if
and only if L(A1) · L(A2) = Σ∗ and no nontrivial decomposition otherwise (proof of
Theorem 8.7, Claim 8.6).

The reduction from the proof of Lemma 8.29 translates every nontrivial decomposition
of the language L into a typing for the design D#

L = (L#, f1 # f2 #) and vice versa.

We can therefore solve the original ConcatenationUniversality instance by testing whether
τ = (L#

a , L
#
b) is a local typing for D#. As there can be no other local typing for D#

(which follows from Claim 8.6), τ is a local typing for D#, if and only if it is a maximal
local typing for D#.

As DFAs for the languages L#, L#
a and L#

b can be constructed from the given DFAs
A1 and A2 in logspace, we have a logspace-reduction from the pspace-hard problem
ConcatenationUniversality to ML(DFA).

8.7 Verification of Typings 113

At first glance, it looks trivial to adopt the proof of Lemma 8.30 to ML(DRE). However
it is not clear whether the used languages are definable by DREs and whether DREs for
the languages can be computed in logspace.

Given a DRE R for a language L it is easy to compute a DRE R# for the language L#

by replacing every occurrence of a symbol a with a ·#. However it is more complicated
to produce DREs for the language L#.

For the proof of Lemma 8.41 we need some preparation. We use the following fact:

Fact 8.31 ([BKW98]) Let R1 and R2 be DREs (none of which denote ∅).

(a) R1 +R2 is a DRE if and only if first(R1) ∩ first(R2) = ∅.

(b) R1 ·R2 is a DRE if and only if followlast(R1) ∩ first(R2) = ∅.

Lemma 8.32

(a) For any almost starless DRE R, the language L# = {a1# · · ·#an | a1 · · · an ∈ L(R)}
can be represented by a DRE R# which is polynomial in the size of R.

(b) The DRE R# can be constructed in polynomial time.

Proof. We first define a recursive function f, which defines a DRE for L(R)# from an
almost starless DRE R.

f(R) =

R if R = a or R = ε
ε+X(#X)∗ if R = X∗

f(R1) + f(R2) if R = R1 +R2

R# f(R2) if R = R1R2 and ε /∈ L(R2)
f(R1)(ε+ # g(R2)) if R = R1R2 and ε ∈ L(R2)

where a is some symbol from Σ, R1 and R2 are almost starless DREs, and X =
(a1 + · · ·+ an) for some symbols a1, . . . , an. We note that by definition of almost starless
DREs, R1 has to be starless in the last case, i.e., f(R1) does not end with (#X)∗ in the
last case.

The function g used in the definition of f is identical to f with the difference that it
maps R to an expression that cannot generate ε.

g(R) =

f(R) if ε /∈ L(R)
∅ if R = ε
g(R1) + g(R2) if R = R1 +R2

X(#X)∗ if R = X∗

Clearly, f can be computed in logarithmic space. By induction (and case inspection) it
is also easy to see that f(R) is indeed an RE for L(R)#.

It remains to show that f(R) is a DRE if R is an almost starless DRE. This is again
shown by induction and the cases R = a, R = ε, R = X∗, are straightforward. The case
R = R1 + R2 follows by Fact 8.31 (a): As R1 + R2 is a DRE, first(R1) ∩ first(R2) = ∅.

114 8 Schema Decomposition

However, first(R) = first(f(R)) holds for every DRE R and thus, again by Fact 8.31 (a),
f(R1 +R2) is also a DRE.

For starless DREs R it is easy to show that followlast(R) = ∅. Thus, Fact 8.31 (b)
implies (in both possible cases) that f(R1 ·R2) is a DRE.

Now we can prove the lower bound for ML(DRE).

Lemma 8.33 ML(DRE) is pspace-hard.

Proof. Let R, R1 and R2 be almost starless DREs such that R has at most one nontrivial
factorization. From Corollary 8.13b we know that testing whether L(R) = L(R1) · L(R2)
is pspace-hard.

By Lemma 8.29 we know that L(R) = L(R1) · L(R2), if and only if (L(R1)#, L(R2)#)

is the only (and therefore maximal) local typing for D#
L(R) = (L(R)#, f1 # f2 #) and

by Lemma 8.32 we can construct DREs for L(R1)# and L(R2)# in polynomial time.
Furthermore it is easy to construct a DRE for L(R)# in polynomial time. This concludes
the proof.

8.8 Existence of Typings

In the last section, we verified given typings. Now, we turn to the problem of testing
whether there exists a typing of a certain kind.

We can conclude from Theorem 8.3, that the problems ∃−LOC and ∃−ML coincide for
NFAs, DFAs and REs.

Theorem 8.34 The problem ∃−LOC(NFA) is in expspace.

Proof. According to Theorem 8.22, it suffices to test A-normal form typings and according
to Theorem 8.24, each language Li in an A-NF typing (L1, . . . , Ln) can be represented
by a DFA of exponential size in |A|. We can conclude that w0L1w1 · · ·Lnwn can be
represented by an NFA of exponential size. Since equivalence between such an NFA and
A can also be tested in exponential space, we can test ∃−LOC(NFA) in expspace by
testing whether any A-NF typing is local for L(A).

Corollary 8.35 The problems ∃−LOC(DFA), ∃−LOC(RE), ∃−ML(NFA), ∃−ML(DFA)
and ∃−ML(RE) are in expspace.

Proof. The result carries over to ∃−LOC(DFA), as DFAs are a special case of NFAs. It
carries over to ∃−LOC(RE) by a simple reduction to ∃−LOC(NFA) which computes an
NFA for the given regular expression. Finally the result carries over to ∃−ML(NFA),
∃−ML(DFA) and ∃−ML(RE) as these problems coincide with ∃−LOC(NFA), ∃−LOC(DFA)
and ∃−LOC(RE).

We can prove better upper bounds in the case of only two function calls.

Theorem 8.36

8.8 Existence of Typings 115

(a) ∃−2LOC(NFA) is in nexptime.

(b) ∃−2LOC(RE) is in nexptime.

(c) ∃−2LOC(DFA) is in pspace.

Proof. We start with (a). Let D = (A, w) be a design, where A = (Q,Σ, δ, I, F) is an
NFA and w is of the form w0 f1 w1 f2 w2. The algorithm that decides whether such a
design has a local typing simply guesses an A-NF typing τ = (L1, L2) and verifies that it
is indeed a local typing, i.e., that L(A) = w0L1w1L2w2.

As τ is in A-normal form, L1 and L2 can be written as L1 = ∪T∈T1Ltrans(A, T) and
L2 = ∪T∈T2

Ltrans(A, T) for two sets T1 and T2 of A-transformations, respectively. Clearly,
each of the sets T1 and T2 is of at most exponential size in |A| and can thus be guessed
within exponential time.

Thus, it remains to be shown that the equality L(A) = w0L1w1L2w2 can be tested in
exponential time. To this end, we construct an NFA B of exponential size in |A|+ |w|
that accepts the symmetric difference of L(A) and w0L1w1L2w2. Thus the equality holds
if and only if L(B) 6= ∅, which can be tested in logarithmic space in |B| and thus in
exponential time.

The basic idea is that B simultaneously simulates A and tests whether the input string
can be split into w0v1w1 and v2w2 such that Tv1 ∈ T1 and Tv2 ∈ T2. To this end, B
maintains Tv after reading w0v and it guesses the A-transformation induced by v′ of the
remaining string v′w2.

States of B are of the form (D,T1, T2,m,Z0, . . . , Zk, Y1, . . . , Yl, f), where

• D ⊆ Q,

• T1 and T2 are A-transformations,

• Z0, . . . , Zk, Y0, . . . , Yl, f are from {0, 1}, where k = |w1| and l = |w2|.

• m ∈ {0, . . . , |w0|}.

The intended meaning of a state (D,T1, T2,m,Z0, . . . , Zk, Y1, . . . , Yl, f) is as follows:

• If B has only read a prefix v of w0 so far then D = δ∗(s, v) and m = |v| and we do
not care about the other components.

• If B has read a string of the form w0v then

– D = δ∗(s, w0v);

– T1 = Tv;

– T2 is some A-transformation (which B guesses is Tv′ for some string v′ such
that the remainder string is v′w2);

– for every i, Zi = 1 if and only if v is of the form xy, where y is the prefix of
w1 of length i and T1 ∈ T1 was true after reading x;

116 8 Schema Decomposition

– for every j, Yj = 1 if and only if the previous j symbols formed the prefix of
w2 of length j and before that T2 was the transformation mapping each state
q to the set {q}.

– f = 1 if and only if at some point in the computation a state with Zk = 1 and
T2 ∈ T2 occurred.

Note that B can determine all components of a state deterministically with the exception
of T2. An initial value for T2 is guessed after reading the w0 prefix of the input. Afterwards,
the new value for T2 has to be guessed consistently with respect to the previous value
of T2 and the current symbol a. I.e., T ′2(p) = ∪q∈δ(p,a)T2(q), for every state p, where T2

denotes the new and T ′2 the old value and a is the input symbol.
All states of B are accepting where either D ∩ F = ∅, Yl = 1 and f = 1 or D ∩ F 6= ∅,

Yl = 1 and f = 0. In the former case a string in L(A) \ w0L1w1L2w2 was found, in the
latter case a string in w0L1w1L2w2 \ L(A) was read.

This completes the proof of (a). Statement (b) again follows by an easy reduction
which computes an NFA for the given regular expression. Therefore it only remains to
show (c).

The proof of (c) is similar to the proof of (a), however it uses the strong normal
form instead. Let D = (A, w0 f1 w1 f2 w2) be a design, where A is a DFA. Thanks to
Theorem 8.22 it is sufficient to consider typings τ = (L1, L2) in strong normal form, i.e.,
where Li = L∩(A, Xi, Yi), for i ∈ {1, 2}. Thus, the algorithm guesses such a typing and
verifies that it is a local typing for D. As npspace = pspace, it only remains to show
that the latter can be done in polynomial space.

To this end, let B be the following alternating automaton

(1) It checks that its input is of the form w0u,

(2) it simulates A on u′ and, whenever it enters a state from Y1 it non-deterministically
decides to continue the simulation or to proceed with (3),

(3) it tests that the rest of the string is of the form w1u
′, and

(4) it verifies that u′ ∈ L∩(A, X2, Y2) · w2 by universally branching to all states p ∈ Xi

and testing that u′ = u′′w2 with δ∗(p, u′′) ⊆ Y2.

The equivalence of the AFA B withA can be tested in polynomial space (cf. [Var95]).

Lower Bounds for ∃−LOC(DFA)
We clarify the relation between Primality and ∃−2LOC(DFA). Intuitively, one might
assume that Primality can be logspace reduced to ∃−2LOC(DFA) by simply mapping the
DFA A (the input to Primality) to the design (A, f1 f2). However, a local typing for this
design could yield the trivial decompositions (L1, L2) where L1 = {ε} and L2 = L(A) or
vice versa. Therefore, we reduce from StrongPrimality, the variant of Primality which asks,
given a DFA A whether there exists a non-trivial strong decomposition (L1, L2) of L(A).
i.e., where ε /∈ L1 and ε /∈ L2.

8.8 Existence of Typings 117

0start

1

82

5 6 7

3

4

a

b

a
a

a
b

b c

a b

c

(a) Minimal DFA A for L(R).

0start 1

25

3

4

a
b a

a
a

b

b

(b) Minimal DFA A1 for L(R1).

Figure 8.4: Minimal DFAs for the regular expressions R and R1 in the proof of Theo-
rem 8.38.

Lemma 8.37 ∃−LOC(DFA) is pspace-hard, already for designs of the form (A, f1 a f2 a).

Proof. We reduce from the complement of StrongPrimality(DFA). Let A be a DFA for
a language L. By Lemma 8.29 we know that L can be decomposed to L1L2 such that
ε /∈ L1 ∪ L2 if and only if there exists a local typing (L#

1 , L
#
2) for the design D#

L =
(L#, f1 # f2 #). As we can compute a DFA for the language L# in logspace, we have a
logspace reduction from the complement of StrongPrimality(DFA) to ∃−2LOC(DFA).

At this point, there is no matching lower bound. With our techniques, it can be
shown that ∃−LOC(DFA) can be reduced to the problem whether there exists a nontrivial
factorization of L(A) into at least three languages, which is still open.

Deterministic Regular Expressions

Theorem 8.20 showed that there are designs with a perfect yet not DRE-expressible
typing. We show next that there are even designs that have local typings, but none of
the local typings is definable by deterministic regular expressions.

Theorem 8.38 There is a design D = (R,w), where R is a DRE, such that there exists
a local typing for D, but there is no DRE-definable local typing for D.

Proof. Let w = f1 ab f2 and R = a(aa)∗b(ab)∗c+ babc. Notice that R is a deterministic
regular expression. The minimal DFA A for L(R) is shown in Figure 8.4a.

We claim that D only has the local typing (L(R1), L(R2)) with R1 = (aa)∗(ab)∗ + b
and R2 = c. Indeed, since L(R) contains the string babc and w = f1 ab f2, we have,
for every local typing τ = (L1, L2), that c ∈ L2. Furthermore, L2 cannot contain any
other string than c: suppose, towards a contradiction, that L2 contains u 6= c. But then
babu ∈ w(τ ′) \ L(R) which contradicts that τ ′ is a local typing. Hence, L2 must be {c}.

As L2 = {c} and τ is local, we immediately get L1 = {v | v · abc ∈ L(R)} and thus
L1 = L((aa)∗(ab)∗ + b). The minimal DFA A1 for L1 is shown in Figure 8.4b.

It only remains to show that L(R1) = L(A1) cannot be expressed by a DRE. By
Theorem 7.2 it suffices to show that A1 does not fulfill the orbit property. The state set
of A1 is {0, 1, 2, 3, 4, 5}. The states 1 and 2 are both gates of the orbit O(1) = O(2), as 2

118 8 Schema Decomposition

is final and 1 has the transition δ(1, b) = 3, leaving the orbit. As 2 is final and 1 is not,
the orbit property is not fulfilled.

Therefore, the only local typing for D is not DRE-definable.

Since the typing τ in the proof of Theorem 8.38 is in strong A-normal form we
immediately get the following corollary.

Corollary 8.39 Not every A-NF typing, where A is the minimal DFA for the language
L(R) of a DRE, is DRE-definable.

Due to Corollary 8.39, the upper bound for ∃−LOC(DFA) cannot be transferred to
∃−LOC(DRE), as it depends on A-NF typings. It is possible, that there is a DRE-definable
local typing τ for a design D = (R,w), where R is a DRE, but the induced A-NF typing
is not DRE-definable, as can be seen from the following theorem. Note that maximal
local typings are always in A-NF.

We show that, unlike in the DFA case, ∃−LOC(DRE) is different from ∃−ML(DRE).
Especially Theorem 8.3 does not hold, if the term regular is replaced by DRE-definable
regular.

Theorem 8.40 There is a design D = (R,w) where R is a DRE such that D has a local
DRE-definable typing, but no maximal local DRE-definable typing.

Proof. In the proof of Theorem 8.20, we already showed, that the perfect typing τ =
(L(Ω1), L(Ω2)) for the design D2 from Example 8.16 is not expressible by DREs. As τ is
a perfect typing for D2, there can be no other (possibly DRE-definable) maximal local
typing for D2. However, the DRE-definable typing τ2 = (a(ba)∗, (bc)∗d) is a local typing
for D2.

On the other hand, a maximal DRE-definable typing τ = (L1, L2) cannot exist as
otherwise L(Ω1)\L1 or L(Ω2)\L2 would contain a string w and DRE-definable languages
are closed under adding a single string (Lemma 10 in [BGMN09]).

Lemma 8.41 ∃−LOC(DRE) and ∃−ML(DRE) are pspace-hard, already for designs of
the form (L, f1 a f2 a).

Proof sketch. The statement can be easily concluded from Corollary 8.13 (Primality is hard
for almost starless DREs), Lemma 8.29 (there is a one-to-one correspondence between

decompositions and typings for the design D#
L = (L#, f1 # f2 #)) and Lemma 8.32 (the

language L(R)# is DRE-definable for every starless DRE R).

Similarly as for DFAs, we can prove a better upper bound for ∃−ML(DRE) if the
distributed string has only two function calls.

Theorem 8.42 ∃−ML(DRE) is in expspace and ∃−2ML(DRE) is pspace-complete.

Proof. The lower bound is immediate from Lemma 8.41.
For the upper bounds we use the following algorithm, which can be implemented to

use only exponential space in the general case and polynomial space in the case with only
2 function calls.

8.9 Further Research on Distributed XML Design 119

(1) Compute a DFA A for the given DRE R.

(2) Compute the set T of all local typings in strong A-NF for (A, w).

(3) For each typing τ ∈ T :

(4) Test, whether τ is maximal.

(5) If τ is maximal, test whether τ is DRE-definable.

We argue why the algorithm is correct. Because of Theorem 8.22 we know that all
maximal typings for (A, w) can be represented in strong A-NF. Thus it is sufficient
to test strong A-NF typings. Furthermore, if there is a DRE-definable local typing τ ,
which is not maximal, there is also a local DRE definable typing τ ′ with τ (τ ′, as for
every DRE-definable language L, the language L ∪ {v} is also DRE definable for any v
(Lemma 10 in [BGMN09]).

The space complexities can be proved as follows. Step (1) is in quadratic time. Step
(2) is in expspace in general: each typing in strong A-NF can be represented by an
n-tuple of exponentially large DFAs. Testing if such an n-tuple is a local typing costs
expspace. Step (2) is in pspace if the distributed string has at most 2 function calls:
In the proof of Theorem 8.36 we have shown, that testing whether a typing in strong
A-NF is local can be done in polynomial space in the size of A, if the distributed string
has at most 2 function calls. Thus we can test all (exponentially many) possible typings
in strong A-NF in pspace in step (2).

According to Theorem 8.28, computing whether a typing τ is maximal local in step (4),
can be done in pspace (in the size of the typing).

According to Theorem 21 in [LBC14] it is possible to check whether a language of a DFA
with log-size alphabet is DRE-definable in nondeterministic logarithmic space. For each
DFA A occurring in some typing in Tmax, we can compute a DFA A of exponential size
with a linear size alphabet for using only polynomial space. Using the result of [LBC14],
it follows that we can check whether a typing in strong A-NF is DRE-definable in
nondeterministic polynomial space and therefore in pspace. Thus polynomial space
suffices for step (4).

8.9 Further Research on Distributed XML Design

In this chapter, we made an excursion into distributed XML repository management
systems. However, we investigated mainly a single question: Given a distributed document
and a schema, ho do good schemas for the referenced documents look like. There are
obvious other questions in this area, like

We analyzed how to design good schemas for distributed documents. However, we have
only looked at structural compatibility, i.e., we did not look at the data itself. While this
might be enough for simple applications, more advanced applications will also demand
semantic compatibility, i.e. consistency of integrity constraints over a distributed data
set. Further research might reconsider the problem with integrity constraints in mind.

121

Part II

Integrity Constraints

122

123

9 Integrity Constraints for Relations
and Trees

In Part II of this thesis we change our focus from syntactical descriptions to semantic
constraints. We already pointed out the difference when we introduced our running
example in the introduction. In contrast to syntactic definitions, which describe the
structure of the data, semantic constraints look at the data itself.

In the introduction, we gave two examples of semantic constraints based on the running
example of the content management system: The first one was that user IDs should be
unique and the second one was that every user ID which owns some document should
actually exist.

In this part of the thesis, we look at languages for specifying such constraints on XML
documents and study algorithmic problems related to such constraints. Therefore, we
first repeat the basics of integrity constraints on relational databases. This has two
reasons. First, we want to see the similarities between both worlds. Second and more
important, the framework for XML integrity constraints, which we will introduce in the
next chapter, builds heavily on definitions of relational integrity constraints.

This part of the thesis is organized as follows. This chapter briefly sketches relational
integrity constraints in Section 9.1 and identifies the challenges for XML integrity con-
straints in Section 9.2. Afterwards, we will introduce a general framework for XML
integrity constraints in Chapter 10 and explore its possibilities when it comes to represent-
ing constraints formulated using existing standards or different frameworks, as proposed
in the literature. In Chapter 11, we will analyze the complexity of the implication problem
for integrity constraints for some instantiations of the framework. We will close this
part in Chapter 12, where we will have a look at first order logic with two variables.
In particular, we show there that the problem, given an FO2(∼,+1)-formula and a key
constraint, does there exists a tree satisfying the formula and the key constraint, is
decidable on data words.

9.1 Relational Integrity Constraints

In this section, we give a very brief overview over relational integrity constraints. For
a deeper introduction to the topic, we refer to [AHV94]. We want to start this section
coming back to our running example. Figure 9.1 depicts a fragment of a relational version
of our CMS database. We only look at two relations: The USER relation associates
user IDs with persons (identified by their name) and the OWNER relation associates

124 9 Integrity Constraints for Relations and Trees

USER user-id name
user2 Gene Hall
user3 Eve Johnson
user23 Ann Brown
user42 Joe Smith

OWNER document-id user-id
document1 user23
document2 user42
document3 user23
document4 user2

Figure 9.1: Relational database with two relations.

documents (represented by document IDs) with user IDs. A third relation that connects
document IDs to the actual content of the document is of no importance, here.

As already mentioned, we want to express two semantic constraints. The first constraint
is that user IDs are unique, the second is that every user ID referenced from a document
exists.

One can verify that these two constraints can be expressed by the following first order
sentences.

Ψuid-unique = ∀xu, xn, yn. USER(xu, xn) ∧USER(xu, yn) → xn = yn

Ψuid-exists = ∀xd, xu. OWNER(xd, xu) → ∃yn. USER(xu, yn)

Given a set of constraints Σ, we will in particular look at two algorithmic problems:
satisfiability and implication.

Satisfiability
Given: a set of constraints Σ
Question: Does there exist a database instance I such that I satisfies

every constraint σ ∈ Σ?

Implication
Given: a set of constraints Σ, a constraint τ
Question: Does every database instace I that satisfies Σ also satisfy

τ?

There is a long tradition in studying relational integrity constraints based on first-order
sentences. They were first studied in [GM78]. As the general problem, given a first order
sentence ϕ, does there exists a database satisfying the formulas, is clearly undecidable,
there has been much research identifying fragments of first-order logic, such that the
algorithmic problems (satisfiability, implication) are decidable and ideally tractable for
these fragments.

The constraints Ψuid-unique and Ψuid-exists represent two very important classes of
constraints, namely functional dependencies and inclusion constraints.

9.1 Relational Integrity Constraints 125

A functional dependency ρ = Y→B over a relation R consists of a set Y of attributes
and a single attribute1 B. It is satisfied by a relation R, if all tuples in R, which agree
on the attributes in Y also agree on the attribute B. It is well known that functional
dependencies can be rewritten as universal first order sentences. By FD we refer to the
set of functional dependencies, as a relational constraint language. Usually, we denote
sets of attributes by uppercase letters Y, Z and single attributes by uppercase letters
B,C. Functional dependencies where first introduced by Codd [Cod72].

A functional dependency, ρ = Y→Z, where Y ∪ Z covers the full set of attributes of a
relation R is called a key constraint for R.

The example constraint of unique user IDs can be expressed by the key constraint
user-id→name. We note that this dependency is equivalent to the first order sentence
Ψuid-unique depicted above.

We continue with the definition of inclusion constraints. An inclusion constraint

R[B1, . . . , Bm] ⊆ S[C1, . . . , Cm]

between two relations R and S is given by two ordered lists of attributes. It holds on a
relational database, if the projection of R to the attributes B1, . . . , Bm is included in the
projection of S to the attributes C1, . . . , Cm, where the order of attributes is significant.

It is well known that deciding implication of functional dependencies and inclusion con-
straints is already undecidable [CV85]. In practical applications, one usually restricts to
key constraints and foreign key constraints, as the implication of these constraints is decid-
able. A foreign key constraint is an inclusion constraint R[B1, . . . , BM] ⊆ S[C1, . . . , Cm],
where the key constraint C1, . . . , Cm→S holds on S. Whether a given inclusion constraint
is a foreign key constraint can therefore only be answered in the context of other integrity
constraints that hold on a relational database and not on the structure of the database
alone.

The Chase

A valuable tool in deciding implication of integrity constraints is the chase algorithm.
The chase algorithm is a simple fixed-point algorithm that enforces constraints on a
database instance I, by repeatedly applying some non-satisfied constraint σ on I. We
first describe how the chase algorithm applies constraints. Afterwards, we will see, how
the chase can be used to test implication of integrity constraints.

While the chase algorithm can be used for a wide range of constraints, we will only
apply the chase algorithm in the context of functional dependencies and restrict this
description of the chase to functional dependencies and inclusion constraints.

A non satisfied function dependency σ = Y→B is applied to a database relation R as
follows: Let µ1 and µ2 be two tuples violating σ. Replace µ1(B) wherever it occurs in I
with µ2(B). It is obvious that after application of the chase rule, µ1 and µ2 do no longer
violate σ.

1As usual, we could allow a set of attributes instead of the single attribute B but such FDs can always
be rewritten as a set of FDs with singleton attributes.

126 9 Integrity Constraints for Relations and Trees

A non satisfied inclusion constraint σ = R[B1, . . . , Bm] ⊆ S[C1, . . . , Cm] is applied
to a database instance Ias follows: Let µ1 be a tuple in R such that there is no tuple
µ2 in S with µ2(Ci) = µ1(Bi) for i ∈ {1, . . . ,m}. Insert a tuple µ3 in S, such that
µ3(Ci) = µ1(Bi) for i ∈ {1, . . . ,m} and all other attributes of µ3 have fresh data values.
Again, it is obvious that after application of the chase rule, µ1 does no longer violate σ.

If the chase algorithm terminates, by the termination condition, there are no violated
constraints left. However, there is no guarantee, that the chase terminates. While the
chase algorithm always terminates, if there are only functional dependencies, this is not
the case when there are also inclusion constraints, as the newly inserted tuples can enforce
further tuples to be added. In general it is not even possible to decide whether the chase
algorithm terminates or not.

The chase has first been described by [MMS79] and has been generalized by [BV84].
There is still ongoing research on termination conditions for the chase algorithm [Mei10].

The chase algorithm can be used to test the implication problem of integrity constraints
by starting with a most general counter-example for the target dependency and applying
chase rules until all constraints from Σ are satisfied.

Whether a set Σ of functional dependencies implies a functional dependency τ = Y→B
can be decided with the chase algorithm by starting with a relation R that contains to
tuples µ1 and µ2 such that µ1(Y) = µ2(Y) and both tuples have different and unique
data values for all other attributes. As long as there is some violated σ ∈ Σ we apply the
chase rule.

We will see how this algorithm can be generalized to work on trees in Chapter 11.2.

Incomplete Data

Traditionally, database theory was studied with the assumption that all data is complete.
However in practice, data is often unknown or even non existent at all. Take for an
example an address database, where one can store contact information about persons like
postal addresses, phone numbers and e-mail addresses. Usually one should expect, that
it is possible to store phone numbers for people, where the postal address is unknown.
Still it is desirable to be able to specify constraints for the data.

In the relational world, incomplete data is usually represented by the means of null
values. A null value in some relation says the data is unknown or not existent. In contrast,
in the XML world, there is usually no need for null values, as incomplete data can be
represented by non-existent subtrees. Accordingly, we will translate non-existent subtrees
to null values, when we describe our framework in the next chapter.

When dealing with relations which may contain null values, it can be helpful to use
the more powerful fictitious functional dependencies instead of the usual functional

dependencies. A fictitious functional dependency ρ = Y
Z−→ B consists of two sets of

attributes Y , Z and a single attribute B. It is satisfied by a relation R, if all tuples,
which are non-null on all the attributes of Y and Z and agree on the attributes in Y also
agree on B. We note, that it is allowed that the attribute B is null in both tuples if B is
not contained in Z.

9.2 Integrity Constraints on Trees 127

Another useful kind of constraints in the presence of null values are non-null constraints.
A non-null constraint ρ = NN(Y,Z) consists of two sets of attributes Y and Z. It holds
in a relation R, if all tuples, which are non-null in all attributes of Y are non-null in all
attributes of Z.

We refer to the set of fictitious functional dependencies by FFD and to the set of
non-null constraints by NN. Implication of fictitious functional dependencies and non-null
constraints on relational databases has been investigated in [AM86].

9.2 Integrity Constraints on Trees

Now we focus on the challenges for specifying XML integrity constraints. On the
theoretical side, an XML integrity constraint language should be expressive and have low
algorithmic complexities for problems like the consistency and the implication problem.
Naturally, both goals are contradictory, therefore we need good compromises.

On the practical side, an XML integrity constraint language should have a user-friendly
syntax and intuitive semantics. We will restrict to studying the theoretical aspects of
XML integrity constraint languages, by providing a framework for reasoning about XML
integrity constraints in the next chapter and analyzing the complexity of the model
checking and implication problem for some instantiations of the framework in Chapter 11.

As in the relational world, we can specify constraints by means of first order sentences.
For example, we can express our two example dependencies for our CMS database using
the following formulas.

Ψunique = ∀vp, vu, wp, wu. PERSON(vp) ∧USER-ID(vu) ∧ PERSON(wp) ∧
USER-ID(wu) ∧ E(vp, vu) ∧ E(wp, wu) ∧ vu ∼ wu → vp = wp

Ψuid-exists = ∀vd, vu. DOCUMENT(vd) ∧USER-ID(vu) ∧ E(vd, vu) →
∃wp, wu. PERSON(wp) ∧USER-ID(wu) ∧ E(wp, wu) ∧ vu ∼ wu

Here E denotes the edge relation of the tree (the child axis of the XML document) and
PERSON, USER-ID and DOCUMENT denote unary relations containing all nodes with
the labels person, user-id and document respectively. To express more complicated
constraints, especially on trees whose depth is not bounded by a constant, it might be
necessary to additionally use the descendant relation E+.

There are obvious similarities to the relational constraints presented in the previous
section. The obvious difference is that the formulas are longer than the relational ones,
as we need to explicitly test for the labels of the nodes, where the attribute names in
relational databases are uniquely specified by their position in the relation. Note that the
presented constraints have been kept simple on purpose. For example one might want to
change the constraints in such a way that only person nodes in the user database part of
the tree are considered. This might be necessary if person nodes could occur in different
parts of the tree.

Specifying integrity constraints as first order sentences has the same downsides in the
XML world, as in the relational world. The consistency problem is undecidable and they

128 9 Integrity Constraints for Relations and Trees

are even more user-unfriendly due to the increased verbosity resulting from explicitly
specifying labels of nodes.

Different to the relational world, we do not need null values to reason over XML
databases with incomplete data, as incomplete data in XML trees can simply be repre-
sented by missing subtrees.

129

10 A Framework for XML Integrity
Constraints

In this chapter, we will have a look on a framework for specifying XML integrity
constraints. We start with introducing and defining our framework in a very general
way in Section 10.1. Afterwards, we introduce tree patterns in Section 10.2 and specify
some instantiations of the framework based on tree patterns in Section 10.3. Finally, in
Section 10.4, we will show how previous approaches for XML integrity constraints and
official standards integrate into our framework. The analysis of algorithmic problems,
especially the implication problem concerning these constraints, is postponed to the
following chapter.

10.1 XML-to-Relational Constraints

In general, an XML-to-relational constraint (X2R-constraint for short) (m, ρ) consists
of two parts: a mapping m that maps trees to relations and a relational constraint ρ
that refers to the relations yielded by m. To keep our framework flexible, we allow the
mapping m to return null values ⊥. To simplify notation, we denote the set S ∪ {⊥} by
S⊥ for every set S.

Informally, we require that the mapping is independent of actual data values in the
sense that any (not necessarily injective) renaming of data values commutes with the
mapping.

More formally, a XML2Relational-Mapping (X2R-mapping) is a function

m : T → 2V
`
⊥×D

n
⊥ ,

for some ` and n, such that

• m(t) ⊆ V `⊥ × dv(t)n⊥; and

• for every t and every mapping1 δ : D → D it holds m(δ(t)) = δ(m(t)), where δ(t)
results from t by renaming all data values according to δ.

A tree t is valid with respect to an X2R-constraint σ = (m, ρ) if m(t) |= ρ. In that
case, we write t |= σ and also say that t satisfies σ.

1This includes non-injective mappings.

130 10 A Framework for XML Integrity Constraints

A constraint instance Σ is a set of constraints. We write Σ |= τ , if for every tree t for
which t |= Σ holds, also t |= τ holds. We write Σ |=D τ , where D is some schema2, if it
holds that t |= τ whenever t |= Σ and t |= D.

10.2 Tree Patterns and Tree Pattern Mappings

While the framework in general can be instantiated with arbitrary mapping languages, we
will mainly concentrate on constraints, where the mappings are induced by tree patterns
and the relational constraints are functional dependencies. In the following, we give the
necessary definitions and fix notation.

A tree pattern p = (X,A, lab) consists of

• a set X of variables,

• an edge relation A = A/ ∪A// on variables, and

• a labeling function lab : X → L∪ {∗},

such that (X,A) is a directed tree with a unique root, denoted root(p), such that all
edges are directed away from root(p). In the remainder, we will often use the synonyms
tree for XML tree and pattern for tree pattern, respectively.

We call edges in A/ short edges and edges in A// long edges (depicted as double lines
in figures). Intuitively, they correspond to the child axis and the descendant axis in the
sense of XPath. The wildcard symbol ∗ is intended to match every label.

Tree pattern mappings are defined via embeddings. The intuitive idea is that every
possible embedding of a tree pattern in a tree gives a tuple in the relation. We will define
two different variants of embeddings/mappings. While full embeddings always embed
the whole pattern, partial embeddings can also embed only parts of the pattern. This is
useful for specifying constraints over incomplete data.

For a pattern p = (X,A, labp) and a tree t = (V,E, lab,dv) a (partial) function
π : X ⇀ V is a partial embedding of p in t if it fulfills the following conditions, for every
x, y ∈ X:

1. if (x, y) ∈ A and π(y) 6= ⊥ then π(x) 6= ⊥;

2. if labp(x) 6= ∗ and π(x) 6= ⊥ then labp(x) = lab(π(x))

3. if (x, y) ∈ A/ and π(y) 6= ⊥ then π(x) is the parent of π(y) in t;

4. if (x, y) ∈ A// and π(y) 6= ⊥ then π(y) is a descendant of π(x) in t;

5. π(root(p)) = root(t).

2The precise kinds of schemas that we consider will be defined later on.

10.2 Tree Patterns and Tree Pattern Mappings 131

x1:a

x2:b

x3:c

x4:d

x5:e

(a) Pattern p

v1:a

v2:b
”7”

v3:c
”23”

v4:c
”42”

v5:d
”13”

v6:e
”5”

v7:e
”15”

v8:d
”13”

(b) Tree t

x1 x1.@ x2 x2.@ x3 x3.@ x4 x4.@ x5 x5.@
v1 1 v2 7 v3 23 v5 13 v6 5
v1 1 v2 7 v4 42 v5 13 v6 5
v1 1 v2 7 v3 23 v8 13 ⊥ ⊥
v1 1 v2 7 v4 42 v8 13 ⊥ ⊥

(c) mapping mp(t)

Figure 10.1: Abstract example for a tree pattern mapping

Here, we write π(x) = ⊥ to denote that π(x) is undefined. A maximal partial embedding
is a partial embedding π, such that there does not exist a partial embedding π′ with
π′(x) = π(x) for all x with π(x) 6= ⊥ and π′(x) 6= ⊥ for some x with π(x) = ⊥. A full
embedding is an embedding π, such that π−1(⊥) = ∅.

In the presence of an sDTD D, we can represent an embedding π of a pattern p into
the expansion [t]D of a tree t, by specifying nodes in [t]D as pairs (u,w), where u is
a node of t and a label sequence w as defined in Section 12.1. We say that such an
embedding uses relative node addresses.

We will use compact XPath notation to denote tree patterns. For example the pattern
in Figure 10.1(a) can be abbreviated as /a[/b/c]//d.

Variables x in a tree pattern refer to nodes in trees, therefore we also call them node
terms. To refer to the data value of a node, we use data terms of the form x.@. A variable
term B is a node term or a data term, its underlying variable is denoted by var(B). That
is, var(x) = x and var(x.@) = x. We denote the set of all data terms for a variable set X
by X@ =def {x.@ | x ∈ X}.

If π is an embedding of a tree pattern p in a tree t, we use the abbreviation π(x.@) =def

dv(π(x)).
With a tree pattern p one can associate an X2R-mapping in a straightforward fashion:

every variable x of p can give rise to two attributes in the resulting relation, one for the
node v matching x and one for its data value dv(v). However, in the interest of more
flexibility and, often, smaller relations, we allow that the target relation consists of a
subset of all attributes.

A tree pattern mapping µ = (p,W) consists of a tree pattern p = (X,A, labp) and a set
W ⊆ X ∪X@. With an embedding π of p in a tree t = (V,E, lab,dv, <c) we associate
the tuple θπ,µ defined as θπ,µ(x) =def π(x), for every x ∈W .

For a tree pattern mapping µ and a tree t we let

• µ(t) =def {θπ,τ | π is a full embedding of p in t}, and

• µ⊥(t) =def {θπ,τ | π is a maximal partial embedding of p in t}

In other words, for every possible full embedding π of p in T , the relation µ(t) has one
tuple corresponding to π. The relation µ⊥(t) has additional tuples for maximal partial
embeddings that are no full embeddings. Figure 10.1 gives an example mapping for a

132 10 A Framework for XML Integrity Constraints

v1:root

v2:person v5:person v8:person v10:person

v3:name
”joe”

v4:user-id
”user1”

v6:name
”ann”

v7:user-id
”user2”

v9:name
”bob”

v11:name
”joe”

v12:user-id
”user2”

v13:user-id
”user3”

Figure 10.2: Fragment of the CMS Example

pattern p and a tree t. The last two tuples are only included in µ⊥(t). Intuitively µ⊥
maps non-existing sub-trees to null values, where µ just ignores such tuples altogether.

We denote the set of all mappings that can be specified in this way by TP (or by
TP[/, //, ∗], if we want to stress the availability of the axes and the wildcard symbol). We
denote fragments of TP by TP[/, ∗], TP[/, //] and TP[/], with the obvious meaning. Even
if mappings with full embeddings are incomparable to mappings with partial embeddings,
it is justified to refer to mappings with partial embeddings as the more general notion in
the sense, that the classes of dependencies specified using partial embeddings are more
general.

10.3 Tree Pattern Based X2R-Constraints

We will mainly study tree-pattern based X2R-constraints in this and the following chapter.
A tree-pattern based X2R-constraint σ = (m, ρ) consists of a mapping m = (p, Y) and a
(possibly fictitious) functional dependency ρ.

We make use of the following (hopefully) intuitive notation. We specify p by an XPath
expression in simplified syntax. The pattern positions that correspond to (node or data)
variables in Y are succeeded by a variable name in brackets. The set Y contains both
the node and the data variable for every variable name occurring in the expression. For
readability, we drop the set notation from functional dependencies in the (very common)
case of singleton sets.

Example 10.1 We use the tree of Figure 10.2 as a small example document, which
contains user names of persons. A possible constraint that one might want to require is,
that each user-id uniquely identifies a person, i.e. there are no two persons with the same
user-id. In our framework, we can express this constraint as

σuser = (//person〈xp〉/user-id〈xu〉, xu.@→xp).

The pattern selects all pairs (v1, v2), where v2 is a child with label user-id of a node v1

with label person. Figure 10.3 shows the relevant part of result of the mapping. The
constraint is not satisfied due to tuples 2 and 3.

10.3 Tree Pattern Based X2R-Constraints 133

xp xu xu.@
1: v2 v4 user1
2: v5 v7 user2
3: v10 v12 user2
4: v10 v13 user3

Figure 10.3: Mapping result of σuser

As we have seen, there are two different natural definitions for tree pattern based
mappings: mappings based on full embeddings and mappings based on maximal partial
embeddings.

At this point we want to make a design choice: Should we evaluate relational constraints
in tree pattern based mappings with respect to full embeddings or with respect to maximal
partial embeddings. For fictitious functional dependencies and non-null constraints the
obvious answer is, that we should evaluate with respect to maximal partial embeddings.
As these constraints explicitly deal with null values, there is no reason to use them on
relations, which cannot have null values. Non-null constraints would be trivially satisfied
and FFDs would be equal to FDs.

For the case of (non-fictitious) functional dependencies both possibilities would make
sense. We decide to define satisfaction with respect to full embeddings. Note that this is
a choice, which we take to provide a technically simpler framework in the case where one
has not to deal with incomplete data. We suggest to stick to the more powerful fictitious
dependencies when dealing with incomplete data. When researching the complexity
of the implication problem in Chapter 11, we show all lower bounds for non-fictitious
dependencies and all upper bounds for fictitious dependencies. Note that we did not find
any complexity theoretic difference between fictitious and non-fictitious dependencies.
However the algorithms for the model checking and implication problem and the upper
bound proofs become more technical, when null values need to be considered.

Formally: An FD ρ is satisfied by a tree t if µ(t) |= ρ and an FFD or NN ρ is satisfied
by a tree t if µ⊥(t) |= ρ.

We note that an FD σ = (p, Y→B) is equivalent to the FFD σ = (m,Y
Z−→ B), where

Z constraints all variable terms of p. Thus we can evaluate FDs, FFDs and NNs together
by converting all FDs to FFDs.

We call an FD σ = (m,Y→B), in which B is a node variable a XML-key functional
dependency3 (XKFD).

For an X2R-mapping language M and a relational constraint language C we denote
the resulting set of X2R-constraints by XC(M, C). For example, XC(TP,FD) stands for
the class of constraints, yielded by tree patterns and functional dependencies.

3The name stems from the fact that these FDs very closely correspond to XML key constraints.

134 10 A Framework for XML Integrity Constraints

Inclusion Constraints for XML

We want to shortly sketch, how inclusion constraints can be defined in our framework.
There are two natural ways of defining inclusion constraints. The first one is by defining
two mappings m1 and m2 and require inclusion of the resulting relations. That is a tree
t satisfies an inclusion constraint ⊆m1,m2

, if and only if m1(t) ⊆ m2(t). We note that
the resulting relations need to be compatible, that is they should have the same set of
attributes. This definition is not strictly an X2R-constraint following our definition, as it
uses two mappings.

Another possibility, which uses our general definition of an X2R-constraint, is to define
only one mapping m and request inclusion between different attributes (sets of attributes)
of the resulting relation using a relational inclusion constraint ρ. We note that both
definitions are equally expressive. For one direction, m can be defined as m1 ×m2 for
the other direction m1 and m2 can be defined as projections of m.

Tree pattern and relational inclusion constraints give a natural instantiation of our
framework. The example constraint, that all user ids referenced from documents should
exist can be enforced by the constraint

σuid-exists = (/root[//document/owner〈xo〉]//person/user-id〈xu〉, xo ⊆ xu).

10.4 Comparing the X2R-Framework with Existing Work

The framework of X2R-constraints can be instantiated with an arbitrary X2R-mapping
language M and an arbitrary relational constraint language C. In the remainder of this
section, we are going to sketch ways in which XML constraint languages that are used in
practice or were proposed in the literature can be viewed as particular instantiations of
the X2R-mapping based framework. We will mostly focus on constraints that have been
proposed as key constraints and functional dependencies for XML.

Hierarchical Constraints

Hierarchical key constraints have been proposed in early work of Buneman et al. [BDF+02,
BDF+03]. In the works, a framework is proposed that builds on top of path languages,
where a path language may be any language that selects paths out of an XML tree.
Especially the path languages may depend on nodes outside of the selected paths, as for
example XPath with node tests.

Before, we discuss, which type of path languages are relevant, we want to define
hierarchical key constraints.

Definition 10.2 [[BDF+02]] A key specification (Q, {P1, . . . , Pk} consists of a target
path expression Q and key path expressions {P1, . . . , Pk}.

A tree t satisfies a key specification (Q, {P1, . . . , Pk}), if for any v1, v2 in

{v | [root(t), v)] ∈ L(Q)}

10.4 Comparing the X2R-Framework with Existing Work 135

it holds that if there exist nodes w1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, such that

wji ∈ {v | [vj , v] ∈ Pi} for i ∈ {1, . . . , k} and j ∈ {1, 2}

and w1
i ∼ w2

i for i ∈ {1, . . . , k} then v1 = v2.

The whole concept of hierarchical constraints integrates nicely with the X2R-framework.
Let (Q, {P1, . . . , Pk}) be a key specification. We can formulate this specification equiva-
lently in our framework as (m, {P1.@, . . . , Pk.@}→Q), where m is defined as

m = {(v, v1, . . . , vk) | [root(t), v] ∈ L(Q) ∧ [v, vi] ∈ L(Pi)}

and the attribute names in m(t) from left to right are Q,P1, . . . , Pn.
In the hierarchical framework, the path expressions can be of arbitrary type. Note

that one might even choose language classes of different expressiveness for the target
path expression and for the key path expressions.

If all used path expressions can be written as tree patterns, then the complete key
specification can be rewritten as tree pattern based X2R-constraint.

Relative Key Constraints

Relative key constraints are key constraints that do not need to hold on complete trees,
but only on subtrees.

Consider for example a company with several establishments. In this case user-ids
might be local to establishments, i.e. persons from different establishments are allowed
to use the same user-id. This constraint can be written (using our syntax) as

σ = (/establishment〈xe〉/person〈xp〉/user-id〈xu〉, {xe, xu.@}→xp).

Using the node variable x on the left side changes the constraint to be local to estab-
lishments, as tuples referring to different establishments cannot conflict any more. In
general, relative key constraints can be expressed as XC(TP[/],XKFD) constraints in
our framework.

Relative key constraints have been considered by several people. Buneman et al. con-
sidered relative key constraints in their hierarchical key constraints framework [BDF+02].
In their framework, a relative key specification (R,Q, {P1, . . . , Pk}) consists of a key
specification (Q, {P1, . . . , Pk}) and a path expression R identifying the subtrees in which
the key specification should hold. A relative key specification (R,Q, {P1, . . . , Pk}) is
satisfied in a tree t, if for every node v with [root(t), v] ∈ L(R) it holds that the key
specification (Q, {P1, . . . , Pk}) is satisfied on the subtree tv.

This approach integrates again nicely with our framework, in much the same way,
as described wrt. hierarchical constraints above. A relative key specification can be
rewritten as (m, {R,P1.@, . . . , Pk.@}→Q), where m is defined appropriate.

Arenas, Fan and Libkin investigated a variant of relative key constraints with respect
to XFDs as they are described below in [AFL08].

136 10 A Framework for XML Integrity Constraints

1: <xs:element name="root">

2: [...]

3: <xs:key name="uid">

4: <xs:selector xpath="./person"/>

5: <xs:field xpath="user-id"/>

6: </xs:key>

7: <xs:keyref name="files" refer="uid">

8: <xs:selector xpath=".//file"/>

9: <xs:field xpath="user-id"/>

10: </xs:keyref>

11: </xs:element>

Figure 10.4: XML Schema Key and Foreign Key Constraint

XML Schema Integrity Constraints

To compare XML Schema integrity constraints with our framework, we need to introduce
some terminology.

For every tree t valid wrt. to an XSD X, X assigns a type to every node v of t. For
every possible type α of an XSD X, the set of nodes matched by α can be described by
a regular language Lα over ancestor strings [MNSB06]. A node v belongs to the type α,
if and only if the ancestor string of v is in Lα.

XML Schema [GSMT+12] describes three kinds of integrity constraints: unique con-
straints, key constraints and foreign key constraints. Every XML Schema integrity
constraint is specified relative to an element definition, that is XML Schema integrity
constraints are relative constraints, like the constraints investigated in [AFL08].

Figure 10.4 gives an example for an XML key constraint roughly equivalent to σuser

from Example 10.1 in XML Schema notation. We have skipped the declaration of the
content model of the element.

Line 1 starts an element declaration for elements named root. We leave out the
structural part of the type definition. Line 3 starts the definition of the key constraint
and specifies a name for it, which is relevant, e.g., for foreign key constraints. Line 4
specifies the selector path (./person), which is a restricted XPath-expression that is
evaluated relative to nodes matched by the element declaration: in this example it is
evaluated relative to nodes of label root. Note that the element declaration not necessarily
matches all elements of label root. Line 5 specifies the field of the constraint (user-id
in the example). This XPath-expression is evaluated relative to nodes matched by the
expression from Line 4. In general, there may be arbitrarily many field expressions
F1, . . . , Fn.

We only give a simplified description of integrity constraints in XML Schema, as they are
quite complex in general. For a tree t, to satisfy a key constraint, the following conditions
have to be met by every node v matched by the surrounding element declaration:

(1) for every node v′, that is matched by the selector path, it holds that every field
expression Fi matches exactly one node vi, and

10.4 Comparing the X2R-Framework with Existing Work 137

(2) for every two nodes vt1 and vt2 matched by the selector path, the vector of data
values of the nodes matched by the field specifications are not identical.

Let us assume for the moment, that the element declaration in Figure 10.4 only matches
the root node. From Conditions (1) and (2) we then get, that the key constraint from Fig-
ure 10.4 corresponds to two constraints in our framework. From (1) we get the constraints
(/root/person〈y〉/user-id〈z〉, y→z) and (/root/person〈y〉/user-id〈z〉,NN(y, z)), which say
that every person-node (directly below the root) should have at most one (respectively
at least one) user-id node as child.

From (2) we get our intended constraint

(/root〈x〉/person〈y〉/user-id〈z〉, {x, z.@}→y),

which is equivalent to σuser. We note that constraints relative to the root node are
equivalent to absolute constraints.

This looks like key constraints could be described by a subset of XC(TP[/,//],XKFD).
This is true, if the structural part of (the relevant part of) the XML Schema can be
described by a DTD. However in general, the element declaration could be enclosed inside
a complex type declaration. In this case we have to ensure, that an XML Schema integrity
constraint definition is only applied to nodes matched by the element declaration.

There are two straightforward ways to accomplish this. First, we could use tree patterns
which can talk about regular paths, second, we could allow tree patterns to match nodes
according to their type.

XML integrity constraints, which are defined over regular paths have been investi-
gated in [AFL08]. However, these constraints do not fully cover XML Schema integrity
constraints, as the field expressions are restricted to paths of length one.

Let Lroot be the regular language describing all possible ancestor strings for elements
matched by the element declaration and R be a regular expression with L(R) = Lroot.
Note that in our example L(R) = {root}. Then the constraints can be described using
the tree pattern p = /R/person/user-id.

The second approach has the advantage, that we get the types of nodes for free, when
a tree is validated against a schema, as in the validation process the types have to be
computed anyway. These types can then be used to match nodes of a tree pattern using
existing algorithms.

XML Schema unique constraints have the same syntax as XML Schema key constraints,
only the semantic differs. Unique constraints do not enforce that every field matches at
least one node, i.e. it could match zero nodes. Accordingly, (2) is modified, that it only
enforces the vector of data values to be different, when all fields match one node. In our
framework, the difference is, that unique constraints do not enforce non-null constraints.

Foreign key constraints again use a very similar syntax. An example is given in
Figure 10.4 Lines 7 to 11. The only difference in syntax is, that foreign keys reference a
key constraint, in the example the uid constraint from above. The example foreign key
specifies, that the user-id of files (described somewhere in the XML tree) should exist, i.e.
there should be a person with this user-id.

138 10 A Framework for XML Integrity Constraints

For space reasons, we do not describe the semantics here, but just note that foreign
key constraints can be expressed by inclusion constraints (over tree pattern mappings) in
our framework.

XML functional dependencies (XFDs)

The literature has several different definitions of functional dependencies for XML data,
e.g., [AL04, KW07, HL03, VLL04, LLL02].

We concentrate here on XFDs as introduced by Arenas and Libkin [AL04] and further
examined by Kot and White [KW07]. An XFD σ = Y→Z consists of two sets of paths
specifying the attributes of the functional dependency. As shown4 in [KW07], XFDs
can be canonically expressed using XC(TP⊥[/],FFD), where the tree pattern p is the
(unique) smallest tree pattern (with respect to the number of nodes) that contains all
paths from Y and Z. However, tree patterns for XFDs need to be duplicate free5, that is
they do not contain two edges (x, y) and (x, z) with lab(x) = lab(z) and y 6= z. Thus,
XFDs have the same expressiveness as functional dependencies over duplicate-free tree
patterns.

It is immediately clear, that the restriction to the child axis limits the expressivity,
as constraints over recursive parts of schemas cannot be expressed, the restriction to
duplicate free patterns is more subtle. Note that the dependency

(/r/a〈xa〉[/b/c〈xc〉]/b/d〈xd〉, {xc, xd}→xa)

cannot be expressed with duplicate free patterns. Especially it is different from

(/r/a〈xa〉/b[/c〈xc〉]/d〈xd〉, {xc, xd}→xa).

Kot and White give a complete axiomatization of XFDs [KW07]. The axiomatization
includes FFDs and NNs. They also present a chase-algorithm to decide the implication
problem in polynomial time.

Another (more general) definition of XFDs was proposed by Hartmann and Link [HL03],
allowing XFDs to compare complete subtrees. For example, they can specify the depen-
dency that there are no two a-labeled nodes that have equivalent (meaning isomorphic)
subtrees. Dependencies of this kind cannot be expressed in our framework as they are
second order constraints, i.e. they can compare sets of nodes.

Relational and XML Data Exchange

Arenas et al. have investigated the data exchange problem for relational and XML data-
bases [ABLM10]. To specify source-to-target dependencies for XML databases they use
a framework very similar to ours. Their source-to-target dependencies can be formulated

4We note that Kot and White define the mapping of a tree pattern using unfolding of nested relations.
The definition is equivalent to our definition using embeddings.

5Duplicate free tree patterns have been considered in [MS04]

10.4 Comparing the X2R-Framework with Existing Work 139

using inclusion dependencies between two tree pattern mappings, one for the source and
one for the target database.

Structural Constraints

Structural constraints — as we have investigated in Part I of this thesis — are usually given
by schemas. Popular schema languages for XML include XML Schema and Document
Type Definitions (DTDs). Now, we will have a brief look on the interaction of integrity
constraints with simple DTDs as defined in Chapter 3.3. Simple DTDs are an important
subclass of DTDs.

It has been observed before (e.g. [KW07]), that simple DTDs imply certain integrity
constraints as follows. Let D be a simple DTD. We define ΣD ⊆ TP⊥(/,//,FDs,NNs) as
ΣD =def {

(//a〈xa〉/b〈xb〉, xa→xb)
∣∣∣∣ a; γbγ′ ∈ D ∨
a; γb?γ′ ∈ D

} ⋃{
(//a〈xa〉/b〈xb〉,NN((, x)a, xb))

∣∣∣∣ a; γbγ′ ∈ D ∨
a; γb+γ′ ∈ D

}
The first row contains all functional dependencies enforced by D, as there is at most

one child with a particular label. The second row contains not null constraints enforced
by D, as there is at least one child with a particular label.

Lemma 10.3 ([KW07]) For every simple DTD D, every tree t with t |= D satisfies ΣD.

In [KW07] it is stated, that for implication of functional dependencies under a given
simple DTD D, the D can be replaced by the set ΣD of dependencies (Theorem 4
in [KW07]). However, this is not entirely correct, as for example functional dependencies
using labels not present in D are satisfied trivially under D.

141

11 Implication of XML-to-Relational
Constraints

In this chapter, we investigate the complexity of the implication problem for XML-to-
relational constraints.

For a set Σ of X2R-constraints and a single X2R-constraint τ we write Σ |= τ if for
every tree t, t |= Σ implies t |= τ . If D is a schema, we write Σ |=D τ if for every tree t
with t |= D, t |= Σ implies t |= τ .

Of course, the complexity may depend on the actual choice of the allowed kinds of
X2R-mappings, relational constraints and schema languages, therefore the implication
problem has three parameters, M, C, and S.

XCS-Imp(M, C,S)
Given: A set Σ of constraints and a single constraint σ from

XC(M, C), and a schema D from schema language S.
Question: Does Σ |=D τ?

We will also consider the implication problem (that is, whether Σ |= τ) in which no
schema is given. We denote it by XC-Imp(M, C).

We will restrict to implication problems, where the relational constraints are functional
dependencies and we also study the special case of XKFDs. We start with general upper
and lower bounds, using first-order logic (FO) and monadic second-order logic (MSO)
as the mapping language and the regular tree languages S as schemas. We consider
MSO logic over a signature with the edge relation E, the children order <c, and a unary
relation Pa, for every symbol a. For FO logic we assume also the binary descendant
relation.

An MSO formula Ψ over trees with free variables x1, . . . , xn defines a mapping

mΨ(t) = {(x1, x1.@, . . . , xn, xn.@) | t |= Ψ(x1, . . . , xn)}.

By our choice of signature for MSO-formulas, we ensure, that MSO-defined mappings
do not depend on the data values, i.e., MSO-defined mappings are X2R-mappings.

Theorem 11.1

(a) XCS-Imp(MSO,XKFD,Reg) is decidable.

(b) XC-Imp(FO,FD) is undecidable.

142 11 Implication of XML-to-Relational Constraints

TP[/] TP[/, ∗]
XKFD FD XKFD FD

without DTD in ptime in ptime in ptime in PTIME

simple DTD in ptime in PTIME CONP
conp-hard

in EXPTIME

TP[/, //] TP[/, //, ∗]
XKFD FD XKFD FD

without DTD CONP CONP CONP conp-hard
simple DTD CONP conp-hard PSPACE undecidable

Table 11.1: Complexity results for the implication problem. Highlighted complexities are
main results. The other results are by restriction/generalization.

A proof is given at the end of this chapter.
Theorem 11.1 shows that the restriction to XKFDs yields a decidable implication

problem, even for very powerful mapping languages like MSO. However, the complexity of
XCS-Imp(MSO,XKFD,Reg) is non-elementary, as this already holds for the satisfiability
problem for first-order logic on strings [Sto74].

In the remainder of this chapter, we restrict our attention to more tractable instances
of the implication problem, based on tree pattern mappings, that is, we investigate the
complexity of XC-Imp(TP,FD, sDTD) and XC-Imp(TP,XKFD, sDTD) as well as of
implication problems based on more restricted tree patterns and/or without schemas.

More precisely, we show the complexities in Table 11.1. All lower bounds (including
the undecidability result) in the presence of schemas already hold for esDTDs and FDs.

Theorem 11.2

(a) XCS-Imp(TP[/],FD, sDTD) and XC-Imp(TP[/, ∗],FD) are in ptime.

(b) The following implication problems are complete for conp:

• XC-Imp(TP[/, //],FD),

• XC-Imp(TP[/, //],XKFD),

• XCS-Imp(TP[/, //],XKFD, sDTD),

• XCS-Imp(TP[/, ∗],XKFD, sDTD), and

• XC-Imp(TP,XKFD).

(c) XCS-Imp(TP[/, ∗],FD, sDTD) is in exptime.

(d) XCS-Imp(TP,XKFD, sDTD) is pspace-complete.

(e) XCS-Imp(TP,FD, sDTD) is undecidable.

11.1 Witness Pairs and Model Checking 143

term symbol definition usage

implication instance I = (Σ, τ,D) tuple consisting of a set of constraints Σ, a target dependency τ
and optionally a DTD D

witness pair (π1, π2) pair of 2 embeddings proving that an X2R constraint σ is vio-
lated in a tree t

z-witness pair (π1, π2) partial witness pair for the subpattern rooted at z

initial tree tτ most general counterexample to a target dependency τ 11.2
tree homomorphism Θ, t1 �Θ t2 function mapping nodes and data values of a tree t1 to nodes

and data values of a tree t2 that is compatible with the edge
relation, labels and data values of t1

Table 11.2: Terms used in this chapter, together with the usually used symbols, a brief
definition and optionally the section, where they are used.

A counter-example for an instance (Σ, τ,D) of the implication problem is a finite
tree t with t |= Σ, t 6|= τ , and t |= D. All upper bounds depicted in Table 11.1 are
based on counter-examples — in some cases counter-examples are computed by chase
algorithms (ptime upper bounds and exptime upper bound), in others they are non-
deterministically guessed and the bound follows by a “small or simple” counter-example
property. We prove the upper bounds based on chase algorithms in Section 11.2 and
those based on small counter-examples in Section 11.3. The pspace upper bound is
based on more complex counter-example properties and shown in Section 11.4. The lower
bounds are shown in Section 11.5 and 11.6. As a tool for all kinds of upper bounds we
introduce the notion of witness pairs in Section 11.1 and show that they can be computed
in polynomial time.

In Table 11.2, we give brief definitions of terms used in this chapter. Detailed definitions
are given where needed.

11.1 Witness Pairs and Model Checking

Informally, a witness pair (π1, π2) for a tree t and a pattern-based X2R-constraint

σ = (p, Y
Z−→ B) is a pair of embeddings of p into t that shows that σ does not hold in t.

Additionally to witness pairs for complete dependencies, we define z-witness pairs for
sub-patterns Pz of p, where pz denotes the sub-pattern rooted at at some variable z of p.
These z-witness pairs will mainly be used in the dynamic programming algorithm for
model checking. Abusing notation slightly, we will write Y ∩ pz for a set of attributes Y ,
to denote the set of all attributes (node and data terms) that occur in Y and pz.

Let σ = (p, Y
Z−→ B) be an X2R-constraint, z a node of p, and t a tree. Let π1, π2 be

two partial embeddings of pz in t. We call (π1, π2) a z-witness pair for σ in t if

• for every C ∈ (Y ∪ Z) ∩ pz it holds π1(C) 6= ⊥ and π2(C) 6= ⊥;

• for every C ∈ Y ∩ pz it holds π1(C) = π2(C);

• for every x ∈ pz and every i ∈ {1, 2} it holds that if πi(x) = ⊥ and πi(parent(x)) 6=
⊥, then πi(parent(x)) has

144 11 Implication of XML-to-Relational Constraints

– no children if lab(x) = ∗
– no lab(x) labeled child if lab(x) 6= ∗ and (parent(x), x) is a child edge

– no lab(x) labeled descendant if lab(x) 6= ∗ and (parent(x), x) is a descendant
edge; 1 and

• if B ∈ pz, then π1(B) 6= π2(B) and π1(B) 6= ⊥.2

A witness pair for σ in t is a root(p)-witness pair for σ in t. We note that in a z-witness
pair for subpatterns not containing B, both embeddings of the subpattern may be
identical.

In the proof of the correctness of the chase algorithm, we will further assume that
π1 always is a full embedding and that the only nodes mapped to ⊥ in π2 are on the
root-path of B. This can be enforced by restricting the pattern p to nodes in Y ∪ Z ∪B
and their ancestors. Note that restricting p to these nodes does not change the semantics
of the dependency.

The significance of witness pairs is illustrated by the following lemma which is straight-
forward to show.

Lemma 11.3 For a tree t and an X2R-constraint σ it holds t |= σ if and only if there
does not exist any witness pair for σ in t.

In the presence of an sDTD D, witness pairs for a tree of the form [t]D, for some tree
t, are specified by embeddings with relative node addresses.

The following lemma will be useful both for chase-based as well as for counter-example
based algorithms. It shows that even for the most general kind of X2R-constraints
considered, (1) it can be checked in polynomial time whether a constraint holds in a
given tree, and (2) if the constraint does not hold, a witness pair can be computed in
polynomial time.

Lemma 11.4

(a) There is a polynomial time algorithm that tests whether t |= σ for trees t and

constraints σ = (p, Y
Z−→ B) ∈ XC(TP,FFD) and computes a witness pair (π1, π2) if

t 6|= σ.

(b) Given a sDTD D, the algorithm tests in polynomial time whether [t]D |= σ and
computes a witness pair if [t]D 6|= σ.

Proof. We start with (a). The algorithm is an adaptation of the algorithm in [MS04],
which computes whether a tree pattern can be embedded in a tree t and follows a simple
dynamic programming approach. It computes, in a bottom-up fashion, a ternary relation
W that contains all triples (u, v, z) of nodes u, v of t and a node z of p, for which there

1This constraint ensures that all embeddings are maximal, as required in the definition of tree pattern
based mappings.

2The restriction π1(B) 6= ⊥ is not strictly necessary, but it will simplify some proofs. Note that at
least one of π1(B) and π2(B) has to be different from ⊥ in any case and we can exchange π1 and π2.

11.1 Witness Pairs and Model Checking 145

exists a z-witness pair (π1, π2) such that π1(z) = u and π2(z) = v. Note that we allow u
and/or v to be ⊥, if σ is an FFDs.

We explain, how (u, v, z) ∈ W can be decided, once W is computed for all triples
(u′, v′, z′) with nodes u′ below u, v′ below v and pattern nodes z′ below z. We distinguish
3 cases, that depend on whether u and v are null values.

The first case is that u and v are both non-null. The tuple (u, v, z) is added to W , if
all the following conditions hold.

• lab(z) = ∗ or lab(u) = lab(v) = lab(z).

• If Y contains z then u = v.

• If Y contains z.@ then u ∼ v.

• If B is z then u and v are different nodes.

• If B is z.@ then u and v carry different data values, that is u 6∼ v.

• For every A/-child z′ of z, there is a child u′ of u and a child v′ of v such that
(u′, v′, z′) ∈ W . Instead of being children of u and v, one or both of u′ and v′

can be ⊥. We note that {z′, z′.@} ∩ (Y ∪ Z) = ∅ is checked when adding triples
containing z′.

• For every A//-child z′ of z, there is a node u′ strictly below u and a node v′ strictly
below v such that (u′, v′, z′) ∈W . Again u′ and/or v′ can be ⊥.

The second case is that exactly one of u or v is ⊥. We assume that v is ⊥. The other
case is completely symmetric. The tuple (u,⊥, z) is added to W , if all the following
conditions hold.

• z /∈ Y ∪ Z.

• lab(z) = ∗ or lab(u) = lab(z).

• For every A/-child z′ of z, there is a child u′ of u such that (u′,⊥, z′) ∈W . Instead
of being a child of u, u′ can be ⊥.

• For every A//-child z′ of z, there is a node u′ strictly below u such that (u′,⊥, z′) ∈
W . Again u′ can be ⊥.

The last case is u = v = ⊥. The tuple (⊥,⊥, z) is added to W , if all the following
conditions hold.

• z /∈ Y ∪ Z ∪B.

• For every A/-child or A//-child z′ of z, it holds that (⊥,⊥, z′) ∈W .

146 11 Implication of XML-to-Relational Constraints

It is easy to prove by induction on the depth of subpatterns that the final relation W
exactly contains those triples (u, v, z) of nodes u, v of t and a node z of p, for which there
exists a z-witness pair (π1, π2) such that π1(z) = u and π2(z) = v.

This algorithm can be performed in O(|t|4|p|) steps and thus in polynomial time.
Therefore, by Lemma 11.3, t 6|= σ holds, if and only if (root(t), root(t), root(p)) ∈W .

It is straightforward to construct a witness pair (π1, π2) in a top down fashion from W if
t 6|= σ.

We now sketch the proof of (b). We extend the relation W to include triples, where
the first two components can be labels from a given sDTD D instead of nodes from
t. The intended meaning of (a, b, z) is that there exists a z-witness pair (π1, π2), where
π1(z) = root(ta) and π2(z) = root(tb), where ta and tb are subtrees of [t]D that are
mandatory by D and not included in t. The meaning of mixed triples, where only one of
the first two components is a label, is analogous.

The algorithm first computes all triples, where both first components are labels, starting
with labels, where D does not specify any mandatory child nodes. In the case that both
labels are equal, the algorithm always needs to distinguish, whether they refer to the
same node or to different nodes with the same label.

The running time of the algorithm changes to O((|t|+ |D|)4|p|), due to the increased
size of W .

We note that the run time of the above algorithm can be improved to O(|t|2|p|) steps
by computing another relation W ′ containing all triples (u, v, z) for which there exists a
z-witness pair (π1, π2) such that π1(z) = u′ and π2(z) = v′, for some nodes u′ below u
and v′ below v.

The following lemma will be often used in proofs. We call a tree t π-diverse, for a
witness pair π = (π1, π2) for some σ in t if all nodes outside the range of π carry pairwise
distinct data values that are different from the data values of the nodes in the range of π.

Lemma 11.5 Let t be a counter example tree for some instance (Σ, τ,D) of XC-Imp(TP,
XKFD, sDTD) and π be a witness pair with respect to τ . Then, by changing data values
in t, a π-diverse counter-example t′ for (Σ, τ,D) can be obtained.

Proof sketch. Let t′ be an arbitrary π-diverse tree obtained from t by changing data
values outside the range of π. As π is not changed it remains a witness pair for τ in t′.
On the other hand, as no new equalities between data values are introduced, all XKFDs
from Σ still hold in t′.

It should be noted that the Lemma 11.5 does not hold for arbitrary (fictitious) functional
dependencies because references to data terms can occur on the right-hand side. However,
the lemma can easily be generalized with respect to other mapping languages.

11.2 Chasing on Trees

The outline of this section is as follows: We first describe a rather direct application of
the relational chase on X2R-mappings and discuss some difficulties with this approach.

11.2 Chasing on Trees 147

Afterwards, we describe a chase algorithm working directly on trees including an example
run. However, we will restrict to (non-fictitious) functional dependencies, as the chase
gets quite technical in the presence of null values. We continue by proving the correctness
of the chase algorithm and deriving some upper bounds using the chase. We close this
section with an extension of the chase algorithm to fictitious functional dependencies and
the corresponding correctness proof.

Applying the Relational Chase to X2R-mappings

As already said, we now sketch an (exponential time) chase, which works on the produced
relation(s) instead of the tree.

For simplicity, we assume, that we only have to deal with one relation R, because
all functional dependencies use the same tree pattern p. Without proof, we note that
this can be enforced by converting the FDs to FFDs and merging all patterns to one
“universal” pattern.

The chase based on R needs to incorporate the following constraints, which are implicit,
due to the tree structure of our data model:

• every tree has a unique root

• every node (except the root) has a unique parent

• every node has a unique data value

• join dependencies corresponding to branchings in the pattern3

• inclusion dependencies corresponding to inclusion of sub-patterns

The first 3 constraints can be described by relational functional dependencies. For
details see [KW07]. For the other constraints, we just give two examples. Let p be the tree
pattern /a〈x〉[/b〈y〉]/c〈z〉. Due to the branching structure of trees, the join dependency
σ./ = {x, y}./{x, z} holds for all trees. Let now p be the pattern /a[/b〈x〉]/b〈y〉/c. Due
to the inclusion of sub-patterns of p, the inclusion dependency σ⊆ = y ⊆ x holds for all
trees.

The standard chase algorithm has an exponential worst-case running time when these
constraints are added. The reason is, that join and inclusion dependencies can enforce
an exponential size relation. In [KW07] it is shown how the join dependencies can be
incorporated into the chase by additional chase rules that avoid an exponential blow-up.
This way, it is no longer necessary to compute all tuples resulting from join dependencies
explicitly. However, the incorporation of the implicit inclusion dependencies seems to be
harder. This is one reason, why we now show, how the chase can directly be applied to
trees. Another reason is, that we believe. that a tree based chase has application outside
of the implication problem. For example the chase can be applied to an existing database
to enforce constraints.

3We will not introduce join and inclusion dependencies formally.

148 11 Implication of XML-to-Relational Constraints

Algorithm 6 Tree Chase

1: function chase(t,Σ)
2: while ∃σ = (p, Y→B) ∈ Σ. t 6|= σ do
3: (π1, π2) := witness-pair(t, σ)
4: merge(t, π1(B), π2(B))

Algorithm 7 Merge two nodes

1: function merge(t, v1, v2)
2: if v1 = v2 then return
3: if v1 = root(t) ∨ v2 = root(t) then fail
4: replace all occurrences of v2.@ by v1.@
5: if lab(v1) 6= lab(v2) then
6: if lab(v1) = # then lab(v1) := lab(v2)
7: else if lab(v2) = # then lab(v2) := lab(v1)
8: else fail
9: replace all occurrences of v2 with v1

10: merge(t, parent(v1),parent(v2))

Description of the Tree Based Chase

The tree chase algorithm works similarly as the relational chase. Starting from a tree
that does not satisfy τ , it applies chase steps as long as there exists a dependency
σ = Y→B ∈ Σ, that is not satisfied by the current tree. Whether σ is satisfied in the
current tree is tested by the algorithm of Lemma 11.4. A single tree chase step either
merges two nodes or identifies two data values, depending on whether B is a node or a
data term, and based on the witness pair yielded by the test algorithm.

To be able to chase on trees, we need three ingredients:

(1) An algorithm which computes an initial tree, which is a minimal counter-example to
the target dependency.

(2) The actual tree chase.

(3) A subprocedure for the propagation of the merge of two nodes, which is used in (2).

As the definition of the initial tree can be easily described with the help of (3), we first
describe (2) and (3).

In the following, let I = (Σ, τ) be an instance of XC-Imp(TP[/, ∗],FD) with τ =
(p, Y→B). We already note that the initial tree, tτ for the basic tree chase might have
nodes labeled by # that indicate that the label of that node has not yet been fixed by
the algorithm and still may match any (but only one) label.

Algorithm 6 implements (2) and uses the merge algorithm given as Algorithm 7 for
(3). Algorithm 6 has as input the tree t and the set Σ of dependencies used for chasing.

11.2 Chasing on Trees 149

Algorithm 8 Algorithm for XC-Imp(TP[/, ∗],FFD)

1: Compute initial tree tτ
2: if chase(t,Σ) fails then Output “Yes”
3: t := chase(t,Σ)
4: if t |= τ then Output “Yes” else Output “No”

The identification of two data values di and dj is simply done by replacing all occurrences
of dj by di, and it does not matter which is replaced by which.4 The merge of two
different nodes v1 and v2 requires a bit more care: First of all, it is only possible if the
labels of v1 and v2 are compatible, which is the case if they are equal or one of them
is the wildcard label #. If the labels are compatible, the nodes can be combined into
one node which gets all children of v1 and v2. However, unless v1 and v2 have the same
parent, their parents have to be merged recursively. Otherwise the structure would no
longer be a tree. This is exactly the point, where the tree chase differs from the relational
chase. It should be noted that, as we apply the tree chase only in the context of tree
patterns without descendant axis, only nodes of the same depth need to be merged.

Next, we define the initial tree tτ for the basic tree chase for a given instance I = (Σ, τ)
with τ = (p, Y→B). Intuitively, it is minimal with the property tτ 6|= τ . To this end, let
t1 and t2 be two copies of p (which use node ids from V instead of variables from X) in
which all data values are distinct (every data value occurs at most once in t1 ∪ t2) and π1

and π2 be the canonical embeddings of p in t1 and t2, respectively. All nodes in t1 and
t2 whose corresponding node in p has a wildcard label ∗ are labeled by #.5 The tree tτ
results by merging the roots of t1 and t2 and all pairs (π1(z), π2(z)), for which z occurs
as a node term in Y and it identifies all pairs of data values (π1(z).@, π2(z).@), for which
z.@ is a data term in Y . By applying the node merges the embeddings π1 and π2 yield
two embeddings π′1 and π′2 such that (π′1, π

′
2) is a witness pair for tτ and τ .

The decision algorithm for XC-Imp(TP[/, ∗],FD) is given as Algorithm 8.

Example 11.6 An example run of the chase algorithm is depicted in Figure 11.3. Starting
from the initial tree, the run corresponds to testing the implication of {σ1, σ2} |= τ , where
all dependencies use the tree pattern

p = /root/person〈xp〉[/name〈xn〉]/user-id〈xu〉,

σ1 = (p, xu.@→xu), σ2 = (p, xp→xn) and τ = (p, xu.@→xn.@). Intuitively, σ1 expresses
that user IDs are unique, σ2 that every person only has one name, and τ whether every

4We note without proof, that one can achieve that the resulting tree is independent of the order in
which violated dependencies are corrected, by introducing a total order on the data values and always
replace the larger data value with the smaller one. Analogously a total order on the nodes of the tree
needs to be introduced.

5We choose a different label because the meanings of ∗ and # are slightly different. The label ∗ is a
true wildcard that can match any symbol. The label # is chosen for a node, which has some unique
label, but we do not know yet which label this should be. The label ∗ only occurs in patterns while the
label # only occurs in trees.

150 11 Implication of XML-to-Relational Constraints

v1:root

v2:person

v3:name
”1”

v4:user-id
”2”

v6:person

v7:name
”3”

v8:user-id
”2”

v1:root

v2:person

v3:name
”1”

v4:user-id
”2”

v6:person

v7:name
”3”

v1:root

v2:person

v3:name
”1”

v4:user-id
”2”

v7:name
”3”

v1:root

v2:person

v3:name
”1”

v4:user-id
”2”

merge(v4, v8)

σ1 is violated

merge(v2, v6)
recursive invocation

merge(v3, v7)

σ2 is violated

Figure 11.3: Example run of the chase algorithm.

user ID has exactly one associated name. Note that the constraints only apply to person,
name and user-id nodes, where the person has at least one name and at least one user
ID, as other nodes are not contained in the mapping.

The chase merges v4 and v8, as σ1 enforces them to be equal. The recursive call in
Line 11 of the merge function unifies v2 and v6 to restore the tree structure. Finally v3

and v7 and their data values are identified, as σ2 is now violated. We note while in this
case there exists only one possible run of the chase algorithm, in general there can be
many runs, which differ in the order in which the rules are applied. In the resulting tree,
{σ1, σ2} is satisfied, as well as τ . We will see in the proof of Proposition 11.7 that this
implies {σ1, σ2} |= τ .

This concludes our description of the chase algorithm and we can continue with the
correctness proof.

Correctness of the Tree Based Chase

Before we state the complexity result for XC-Imp(TP[/, ∗],FD), we first show the
correctness of Algorithm 8.

Proposition 11.7 For every instance I = (Σ, τ) of XC-Imp(TP[/, ∗],FD), Algorithm 8
terminates and answers “Yes” if and only if Σ |= τ .

Proof. Let I = (Σ, τ) be an instance of XC-Imp(TP[/, ∗],FD) with τ = (pτ , Yτ→Bτ).6

Clearly, if Algorithm 8 terminates and yields a tree t, no constraint from Σ is violated in
t. Thus, if the output of Algorithm 8 is “No” (and thus t 6|= τ), t is a counter-example

6We use the index τ to distinguish references to components of the target dependency from references
to dependencies from Σ.

11.2 Chasing on Trees 151

for Σ |= τ and thus, the answer “No” is always correct. The proof that “Yes”-answers
are also correct uses the following notion of tree homomorphisms. Tree homomorphisms
map nodes to nodes and data values to data values.

More formally, a tree homomorphism θ from a tree t1 = (V1, E1 lab1,dv1) ∈ T to a
tree t2 = (V2, E2 lab2,dv2) ∈ T is a function θ : V ∪ D → V ∪ D, such that

• θ(t1) is a valid tree,

• θ(V1) ⊆ V2, θ(E1) ⊆ E2, and

• for all v ∈ V1, it holds that dv2(θ(v)) = θ(dv1(v)) and lab1(v) 6= # implies
lab2(θ(v)) = lab1(v).

In this case, we write t1 �θ t2.
Let ti be the tree after i chase steps where a chase step is a call of merge in Algorithm 6.

We note that recursive invocations of merge (in Algorithm 7) are no separate chase steps.
For convenience t0 is the initial tree.

Claim 11.8 If there is a counter-example tree t′ for Σ |= τ with witness pair (ρ1
t′ , ρ

2
t′)

for τ and t′, then the tree chase on input (Σ, τ) does not fail and for every chase step i
it holds that

(i) there exist a tree homomorphism ti �θi t′;

(ii) there exist a witness pair (ρ1
i , ρ

2
i) for ti 6|= τ ; and

(iii) θi(ρ
j
i (x)) = ρjt′(x) for j ∈ {1, 2} and all terms x of pτ .

Applying this claim to the final tree t immediately yields the correctness of the
algorithm: if there is a counter example tree for Σ |= τ , the tree chase does not fail, and
thus t |= Σ, Furthermore, by (ii) t 6|= τ . Thus the algorithm answers “No”, as desired.
We note that t might well contain nodes labeled by #. In the end, they do not have any
special meaning. However, it remains true that they might only match wildcard nodes of
a pattern, not any other nodes.

The proof of Claim 11.8 is by induction on the number of chase steps. For the induction
base we show that the initial tree t0 = tτ fulfills the condition of the claim. Let t′ be
a counter-example to Σ |= τ and let (ρ1

t′ , ρ
2
t′) be a witness pair for t′ 6|= τ . As ρ1

t′ and
ρ2
t′ need to coincide on nodes from Yτ and as nodes u, v in tτ have different data values

unless value equality is enforced by Yτ , there are partial homomorphisms from π′1(p)
to t′ and from π′2(p) to t′ which can be combined to a homomorphism θ from tτ to t′

fulfilling (i) and (iii).
For the induction step, we always assume that σ = (p, Y→B) ∈ Σ does not hold in ti

and that (χ1, χ2) is a witness pair for ti and σ. If there would be no such dependency σ,
the chase would terminate and there would be nothing to show.

As χ1 and χ2 are embeddings of p in ti, θi ◦ χ1 and θi ◦ χ2 are embeddings of p in t′.
As (χ1, χ2) is a witness pair for ti and σ, χ1(C) = χ2(C), for every C ∈ Y , and thus

152 11 Implication of XML-to-Relational Constraints

θi(χ1(C)) = θi(χ2(C)), for every C ∈ Y . As t′ |= σ, we can conclude that

θi(χ1(B)) = θi(χ2(B)). (11.1)

We distinguish two cases, depending on whether B is a data term or a node term.
If B is a data term, the tree structure is not changed by the call to merge, as ti+1

results from ti by replacing the data value χ1(B) with the data value χ2(B). We define
θi+1 = θi, ρ

1
i+1 = ρ1

i and ρ2
i+1 = ρ2

i . From Equation 11.1 and ti �θi t′ we get, that
θi+1 is a valid tree homomorphism from ti+1 to t′ and thus (i) is satisfied. Furthermore
(ρ1
i+1, ρ

2
i+1) is a witness pair for ti+1 6|= τ and θi+1(ρji (x)) = ρjt′(x) still holds for j ∈ {1, 2}

and all x, as the structure of ti has not changed and θi(ρ
1
i (Bτ)) 6= θi(ρ

2
i (Bτ)). Thus θi+1

also satisfies (ii) and (iii).
If B is a node term, the labels of χ1(B) and χ2(B) are compatible, thanks to Equa-

tion 11.1. The same holds for the ancestors of χ1(B) and χ2(B). Thus, the next tree ti+1

is merge(ti, χ1(B), χ2(B)) and the chase does not fail. We define θi+1 as the function
resulting from θi by restricting the domain to (the nodes of) ti+1. It is easy to verify,
that ti+1 �θi+1

t′ and thus (i) holds. Towards (ii) and (iii), we define ρji+1 = ν ◦ ρji for
j ∈ {1, 2}, where ν is the tree homomorphism from ti to ti+1 induced by the merge
operation.7 As ν is a tree homomorphism from ti to ti+1 and ρ1

i and ρ2
i are embeddings

of p in ti, ρ
1
i+1 and ρ2

i+1 are embeddings of p in ti+1.
From Equation 11.1 and the definition of ν it follows that (θi ◦ ν−1 ◦ ν)(y) = θi(y), for

every term y of ti. Therefore, we get

(θi+1 ◦ ρji+1)(y) = (θi ◦ ν−1 ◦ ν ◦ ρji)(y)

= (θi ◦ ρji)(y) (11.2)

for every term y of ti and j ∈ {1, 2}. We can conclude that (ii) and (iii) still hold by
applying (11.2) to the induction hypothesis.

This concludes the proof of the claim and thus the proof of the proposition.

Complexity Results Based on the Chase

We get the following easy corollary.

Corollary 11.9 XC-Imp(TP[/, ∗],FD) can be solved in polynomial time.

Proof. As the algorithm is correct and witness pairs can be computed in polynomial time
(Lemma 11.4) and there are at most linearly many merge steps the algorithm always
terminates and only needs polynomial time.

The tree chase can be extended in the presence of sDTDs, however the definition of
the initial tree has to be adapted8, as the initial tree should be consistent with D. This

7That is ν maps χ2(B) and its root path to χ1(B) and its root path and is the identity on all other
nodes.

8And we will see soon that there is more than one initial tree.

11.2 Chasing on Trees 153

modification might involve replacing leave nodes with a label ` by trees t` but also the
insertion of additional trees of the form t` below inner nodes of tτ and the merge of two
sibling nodes if the sDTD only allows one child with their label. Another difference
to the schema-free case is that we apply the chase to a set T of trees that results from
the initial tree by replacing #-labels in all possible ways. If the modified initialization
is successful then during the tree chase only D-valid trees will be constructed and the
correctness proof is similar to the one of Proposition 11.7.

Proposition 11.10 For every instance I = (Σ, τ,D) of XC-Imp(TP[/, ∗],FD, sDTD),
Algorithm 8 with modified initialization terminates for some tree in T and answers “Yes”,
if and only if Σ |=D τ .

Proof. Let I = (Σ, τ,D) be an instance of XCS-Imp(TP[/, ∗],FD, sDTD) with τ =

(p, Y
Z−→ B) and sDTD D. Let tτ be defined as in the proof of Proposition 11.7. Let tτ,D

be the tree resulting from tτ by adding a new node with label ` and a new data value as a
child of each inner vertex v which (according to D) requires an `-labeled child. Let Tτ,D
denote the set of all trees that can be obtained from tτ,D by replacing each #-label in
tτ,D with some other label allowed and consistent with D. If necessary, further children
trees for nodes whose label changes might be added to accommodate D, analogous as
before.

Claim 11.11 If there is a counter-example tree t′ for Σ |= τ , then there is a tree t0 ∈ Tτ,D
such that the tree chase on input (Σ, τ) starting from t0 does not fail and for every tree t
that occurs in the tree chase before or after a call of merge the following conditions hold.

(i) There exists a witness pair (ρ1, ρ2) for τ in t, and

(ii) t �θ t′, for some tree homomorphism with θ(ρ1(B)) 6= θ(ρ2(B)).

The claim can be shown by induction on the number of chase steps similar to the proof
of Claim 11.8 and it yields the proposition.

However, as T might consist of an exponential number of trees of exponential size (in
the size of D and τ), Proposition 11.10 does not immediately yield a polynomial time
algorithm. However, we get the following result.

Proposition 11.12 XC-Imp(TP[/, ∗],FD, sDTD) can be solved in exponential time.

Proof. For the exponential time bound we observe that

(1) the algorithm only uses trees whose depth is bounded by the number of symbols in
D plus the depth of p;

(2) the algorithm only uses trees in which the number of children per node is at most
twice the number of symbols in D; and

(3) the number of # symbols in [t′]D is at most 2|τ | and thus |Tτ,D| is at most |D|2|τ |.

154 11 Implication of XML-to-Relational Constraints

By (1) and (2), all trees in Tτ,D are of at most exponential size in |p| and |D|. Therefore, it
is possible in exponential time, to apply the chase algorithm to all (at most) exponentially
many trees in Tτ,D, thus yielding the desired result.

For XC-Imp(TP[/],FD, sDTD) we can do better by using a condensed representation
of trees that avoids the exponential blowup that might be caused by the sDTD.

Proposition 11.13 XC-Imp(TP[/],FD, sDTD) can be solved in polynomial time.

Proof. Let I = (Σ, τ,D) be an instance of XC-Imp(TP[/],FD) with τ = (p, Y→B) and
simple sDTD D. We basically use the algorithm from the proof of Proposition 11.12.
However, thanks to the fact that tree patterns do not contain wildcard symbols here,
there are no #-symbols in tτ,D and therefore, Tτ,D = {tτ,D}.

We modify the algorithm of Proposition 11.12 in that it never explicitly applies the
extension [t]D to any tree but rather works with t. The modification of the algorithm of
Proposition 11.12 is as follows. Whenever a witness pair (π1, π2) occurs, for which π1(y)
or π2(y) is in [t]D− t then t is extended by this node (or both) and its ancestors which are
not yet in t. This guarantees the invariant that nodes in [t]D − t have pairwise distinct
data values, different from those in t. Otherwise, the algorithm remains unchanged.

The polynomial upper bound follows from the observation that for each node v in t
and each path in some pattern (without wildcard and descendant axis) there can be at
most one node in [t]D below v. Therefore, the total number of tree extending steps is
bounded by 2|τ ||D||Σ|. Here, 2|τ ||D| bounds the size of tτ,D and |Σ| bounds the number
of extension steps that are possible below one node of tτ,D.

As the number of chase steps is polynomially bounded in the size of the occurring trees
and this size is bounded in |τ ||D| we obtain a polynomial time bound.

Chasing with Fictitious Functional Dependencies

Now, we extend the chase algorithm, such that it works in the presence of fictitious
functional dependencies. To extend the chase algorithm, we have to deal with two
separate issues. First, the dependencies in Σ can be fictitious. In this case, we have the
problem that π2(B) might be null in Line 4 of Algorithm 6.9 We note that Algorithm 7
cannot handle null values. On the other hand, the target dependency τ can be fictitious.

To address both issues, we change the definition of the initial tree and extend Algo-
rithm 6, as can be seen in Algorithm 9. The red parts (Lines 6–11 and additional function
parameters) are added to deal with a fictitious target dependency and the blue part
(Lines 4–5) is added to deal with fictitious dependencies in Σ. We note that removing the
red and blue parts in Algorithm 9 gives exactly Algorithm 6. Algorithm 10 is identical
to Algorithm 8, except that it computes a witness pair for tτ 6|= τ and provides the
additional parameters to the chase function.

We first describe how we deal with fictitious dependencies in Σ, especially with the
case that π2(B) is null in Line 4. We address this problem, by adding a function that

9Remember, that we assume w.l.o.g. that π1(B) 6= ⊥.

11.2 Chasing on Trees 155

Algorithm 9 Tree Chase with FFDs

1: function chase(t,Σ, τ = (pτ , Yτ
Zτ−−→ Bτ), (ρ1, ρ2))

2: while ∃σ = (p, Y
Z−→ B) ∈ Σ. t 6|= σ do

3: (π1, π2) := witness-pair(t, σ)
4: if π2(B) = ⊥ then
5: (t, π2) := remove-null(t, p, π2, B)

6: if ρ2(Bτ) = ⊥ and B is a node term then
7: y := highest ancestor of Bτ with ρ2(y) = ⊥
8: x := parent(parent(x))
9: if π1(B) and π2(B) are descendants of ρ1(x) and ρ2(x) then

10: (t, ρ2) := remove-null(t, p, ρ2, y)
11: goto 6:

12: merge(t, π1(B), π2(B))

Lines 4–5 deal with fictitious dependencies in Σ
Lines 6–11 deal with fictitious target dependencies.

Algorithm 10 Algorithm for XC-Imp(TP[/, ∗],FFD)

1: Compute initial tree tτ and a witness pair (ρ1, ρ2) for tτ 6|= τ
2: if chase(t,Σ, τ, (ρ1, ρ2)) fails then Output “Yes”
3: t := chase(t,Σ, τ, (ρ1, ρ2))
4: if t |= τ then Output “Yes” else Output “No”

removes null values from embeddings by adding nodes to the tree, such that the null
value is replaced by a node or data value. We therefore define the function remove-null
that takes as input a tree t, a pattern p, a partial embedding π of p in t and a node x of
p such that π(x) = ⊥.

The function remove-null computes and returns a tree t′ and a (partial) embedding π′

of p in t′ as follows. Let y be the lowest ancestor of x with π(y) 6= ⊥, z be the child of y
on the path [y, z] and v be π(y). The tree t′ is derived from t by adding a copy of the
path [z, x] to t below π(y), where each added node gets a fresh node identifier from V
and a fresh data value from D and wildcard symbols are replaced by #. The embedding
π′ is derived from π by embedding the path [z, x] to the newly inserted path in t′.

The intuitive idea behind this function is that π1(B) must be identified with π2(B)
to satisfy σ. Therefore either π1(B) must become ⊥ (meaning π2(y) has to be removed
from the tree) or π2(B) most become equal to π1(B), which especially means that it
must become different to ⊥. We just note that removing nodes from the tree (contrary
to merging them) is a bad idea, because the initial tree is an — in some sense — minimal
counterexample. Therefore we add nodes to remove the nulls. For correctness we refer to
the formal proof given below.

156 11 Implication of XML-to-Relational Constraints

v1:a

v2:b v4:b

v3:c

t1

v1:a

v2:b v4:b

v3:c v5:c

t2

v1:a

v2:b

v3:c v5:c

t3

v1:a

v2:b

v3:c

t4

Figure 11.4: Example run of the chase algorithm for fictitious dependencies.

Note that in the case that B = y, where y is a node, the chase will merge the newly
added node with π1(B) afterwards, i.e., the effect of remove-null followed by the merge
is equivalent of merging π1(y) with π2(y), where y is defined as the lowest ancestor of B,
which is not mapped to ⊥.

We now describe how to deal with the case, where the target dependency τ is fictitious.
To understand the underlying problem, we give an abstract example.

Example 11.14 We consider the mapping induced by the pattern p = /a〈xa〉/b〈xb〉/c〈xc〉
and the dependencies τ = (p, xa

∅−→ xc), σ1 = (p, xa
xc−→ xc), and σ2 = (p, xa

∅−→ xb). We
note that σ1 is not strictly fictitious, as it only applies to embeddings where no node is
mapped to ⊥. It can be easily seen that σ1 6|= τ and σ2 6|= τ , as the tree t1 in Figure 11.4
is a counter-example to σ1 |= τ and t3 is a counter-example to σ2 |= τ . Later, we will see
that {σ1, σ2} |= τ .

Starting with Σ = {σ1} and τ , Algorithm 8 will incorrectly report that σ1 |= τ , as
it starts with the initial tree t2, merges nodes v3 and v5 to satisfy σ1 and recursively
merges nodes v2 and v4 to restore the tree structure. The resulting tree t4 satisfies σ1

and τ and therefore Algorithm 8 erroneously reports that σ1 |= τ .
The intuitive reason for the incorrect behavior is that Algorithm 8 does not consider

trees, where the witness-pair for τ involves null values, i.e., τ is treated as a non-fictitious
dependency.

It is easy to see that starting with t1 as initial tree would allow Algorithm 6 to correctly
decide that σ1 6|= τ . However, simply adapting the initial tree will not work, as can be
seen by the dependency σ2. Starting with initial tree t1 and Σ = {σ2}, Algorithm 6 will
merge nodes v2 and v4 to satisfy σ2. The resulting tree t4 again satisfies τ , which leads
to the (again incorrect) result σ2 |= τ . The intuitive reason now is, that with t1 as initial
tree, Algorithm 6 no longer considers trees where the witness-pair for τ does not use null
values.

A possible solution would be to run Algorithm 6 starting from both initial trees and
output “yes”, if and only if both runs output “yes”. We note without proof that this
solution could be generalized to arbitrary FFDs resulting in at most linearly many initial
trees in the depth of p, each with a different number of nodes from p mapped to null
in the witness-pair. Instead of this approach, we take a more elegant solution in using
an initial tree, where the witness-pair has as many as possible null values and extend
Algorithm 6 such that it adds more nodes to the tree when it becomes apparent that the
chosen initial tree will result in a final tree satisfying τ .

11.2 Chasing on Trees 157

Therefore, we define the initial tree of a fictitious functional dependency τ = (p, Y
Z−→ B)

as follows: Let t1 and t2 be copies of p, where t1 only contains the nodes referenced in Y ,
Z and B together with their ancestors and t2 contains only the nodes referenced by Y and
Z together with their ancestors. Let again π1 and π2 be the canonical embeddings of p in
t1 and t2, respectively. As before, t1 and t2 contain node ids from V instead of variables
from X, all data values in t1 and t2 are distinct and wildcards ∗ are replaced by #. The
tree tτ again results by merging the roots of t1 and t2 and all pairs (π1(z), π2(z)), for which
z occurs as a node term in Y and it identifies all pairs of data values (π1(z).@, π2(z).@),
for which z.@ is a data term in Y . By applying the node merges the embeddings π1 and
π2 yield two embeddings π′1 and π′2 such that (π′1, π

′
2) is a witness pair for tτ and τ .

Furthermore, we add the red parts to Algorithm 9, which take care of adding additional
nodes to the tree when necessary, i.e., when a merge occurs that would result in ρ2 not
being a maximal embedding. In this case x (as computed in Line 8) cannot be mapped
to ⊥ any more and the function remove-null is invoked to add a new node for mapping x.
We loop using the goto statement in Line 11 as it might be necessary to remove further
nulls.10

Coming back to Example 11.14, we want to give the chase sequence for Σ = {σ1, σ2}
and τ . Algorithm 10 starts with computing the initial tree t1 (in Figure 11.4). As σ2 is
not satisfied, the nodes v2 and v4 need to be merged. Prior to this merge, remove-null
is called in Line 10, resulting in tree t2. The chase continues with merging v2 and v4

resulting in tree t3.11 Now σ1 is violated resulting in a merge of v3 and v5 and the
final tree t4. As t4 |= τ , Algorithm 10 reports that {σ1, σ2} |= τ . As we will see in
Proposition 11.15, this result is correct.

Proposition 11.15 For every instance I = (Σ, τ) of XC-Imp(TP[/, ∗],FFD), Algo-
rithm 10 terminates and answers “Yes” if and only if Σ |= τ .

Proof. The proof follows a very similar outline to the proof of Proposition 11.7. The
basic difference is, that we will consider calls to remove-null in lines 5 and 10 as separate
merge steps in our induction.

Let I = (Σ, τ) be an instance of XC-Imp(TP[/, ∗],FFD) with τ = (pτ , Yτ
Zτ−−→ Bτ).

Clearly, if Algorithm 10 terminates and yields a tree t, no constraint from Σ is violated in
t. Thus, if the output of Algorithm 10 is “No” (and thus t 6|= τ), t is a counter-example
for Σ |= τ and thus, the answer “No” is always correct. The proof that “Yes”-answers are
also correct again uses tree homomorphisms as defined in the proof of Proposition 11.7.

Let ti be the tree after i chase steps where a chase step is either a call to remove-null
or a call to merge in Algorithm 9. This differs to the proof of Proposition 11.7, where
only calls to merge were considered chase steps, as there where no calls to remove-null.

Claim 11.16 is identical to Claim 11.8, except that it holds for fictitious dependencies
and uses the updated definition of a chase step.

10We use this algorithm to simplify the correctness-proof. It is possible to directly compute the correct
node of p such that one invocation of remove-null suffices.

11If remove-null would not have been called, the resulting tree would have been t4 implying that τ
already follows from σ2.

158 11 Implication of XML-to-Relational Constraints

Claim 11.16 If there is a counter-example tree t′ for Σ |= τ with witness pair (ρ1
t′ , ρ

2
t′)

for τ and t′, then the tree chase on input (Σ, τ) does not fail and for every chase step i
it holds that

(i) there exist a tree homomorphism ti �θi t′;

(ii) there exist a witness pair (ρ1
i , ρ

2
i) for ti 6|= τ ; and

(iii) θi(ρ
j
i (x)) = ρjt′(x) for j ∈ {1, 2} and all terms x of pτ with ρji (x) 6= ⊥.

Again, the claim immediately yields the correctness of the algorithm.
The proof of Claim 11.16 is by induction on the number of chase steps. We distinguish 3

cases for the induction step depending on the type of the chase step: Calls to remove-null
in Line 5, calls to remove-null in Line 10 and calls to merge (in Line 12). We note that
we can show these cases in any order.

We want to remember that we can safely assume that for each witness pair (π1, π2)
considered in this proof it holds that π1 is a full embedding and the only nodes mapped
to ⊥ in π2 are on the path from the root to B, where B is the node or data term on the
right-hand side of the corresponding dependency.

The induction base for t0 = τ can be shown exactly as in the proof of Proposition 11.7.
The same holds true for the induction step in the case of calls to merge. It should be
noted that in calls to merge, ρ2 always is a full embedding. This is ensured by the call to
remove-null in Line 5 that precedes the call to merge in Algorithm 9. It remains to show
the induction step in the case of calls to remove-null.

We first show the case, where remove-null is called in Line 10 of Algorithm 9. Let v be
the node added in remove-null and xτ be the corresponding term in the pattern pτ . We
define θi+1 to map v to ρ2

t′(xτ) and to be equal to θi on all other nodes. By definition of em-
beddings, ρt′(xτ) has to be ⊥ or a child of ρt′(parent(xτ)) = Θi(ρ

2
i (parent(xτ))). However,

ρt′(xτ) cannot be ⊥, as we can conclude from Equation 11.1 that Θi(ρ
1
i (parent(xτ))) =

Θi(ρ
2
i (parent(xτ))). Observe that B is a node term and ρ1

i (parent(xτ)) and ρ2
i (parent(xτ))

are ancestors (in the same level of the tree) of χ1
i (B) and χ2

i (B). This shows that Θi+1

is a valid tree homomorphism (and therefore (i) is satisfied). We define ρ1
i+1 = ρ1

i and
ρ2
i+1 to map xτ to v and to be equal to ρ2

i on all other variables. It is straightforward to
show that (ρ1

i+1, ρ
2
i+1) is a witness pair for ti+1 6|= τ , satisfying (ii). Especially ρ2

i+1 is
a maximal partial embedding as ρ2

i is a maximal partial embedding and all nodes that
are mapped to ⊥ in ρ2

i+1 are below xτ , which is mapped to a leaf of the tree. From the
definition of Θi+1 and (ρ1

i+1, ρ
2
i+1), it follows that (iii) still holds, as the only node added

to the image of (ρ1
i+1, ρ

2
i+1) is mapped accordingly in Θi+1.

At last we discuss the case where remove-null is called in Line 5 of Algorithm 9. Let
[v, w] be the path added to t in remove-null and [x, y] be the corresponding path in the
pattern p. Let yτ be a variable in pτ with the same ancestor string as y. Such a variable
exists, as χ1(y) is in the image of ρ1

i . We define xτ , such that [xτ , yτ] has the same length
and labels as [x, y]. Again, we can conclude from Equation 11.1 that ρt′(yτ) cannot be
⊥, as ρ2

t′(parent(xτ)) = Θi(χ
2
i (parent(x))). We define θi+1 such that it is equal to θi for

all nodes of ti and that it maps the nodes [v, w] to [ρ2
t′(xτ), ρ2

t′(yτ)]. Similarly to the last

11.3 Upper Bounds Based on Small Counter Examples 159

case, it is easy to verify that θi+1 is a valid tree homomorphism and therefore we can
conclude (i). We define ρ1

i+1 = ρ1
i and ρ2

i+1 to map the path [x, y] to the path [v, w] and
to be equal to ρ2

i on all other nodes. Again, it is straightforward to show that (ρ1
i+1, ρ

2
i+1)

is a witness pair (showing (ii)) and that Θi+1 is defined in a way, such that (iii) holds.

Using Proposition 11.15, the following results can be shown in the same way, as we
have shown the results from Corollary 11.9, Proposition 11.12, and Proposition 11.13. In
particular, the extension of the chase in the presence of sDTDs, which we have shown to
work in Proposition 11.10 does not interfere with the addition of null values.

Corollary 11.17

(a) XC-Imp(TP[/, ∗],FFD) can be solved in polynomial time.

(b) XC-Imp(TP[/, ∗],FFD, sDTD) can be solved in exponential time.

(c) XC-Imp(TP[/],FFD, sDTD) can be solved in polynomial time.

11.3 Upper Bounds Based on Small Counter Examples

For counterexample based proofs the following two lemmas are useful. The first lemma
establishes small counterexample properties for various kinds of constraints when no
sDTD is present. The second lemma does the same in the presence of sDTDs. By
leaves(t), we denote the set of leaves of a tree t.

Lemma 11.18 Let Σ ⊆ XC(TP,FFD) be a set of constraints and τ = (p, Y
Z−→ B) be a

constraint. If there is a tree t with t |= Σ and t 6|= τ then there is a tree t′ with

(1) t′ |= Σ and t′ 6|= τ ;

(2) | leaves(t′)| ≤ 2| leaves(p)|;

(3a) if all tree patterns are from TP[/, ∗] then depth(t′) ≤ depth(p);

(3b) if all tree patterns are from TP[/, //] then depth(t′) ≤ 8 depth(p);

(3c) if all FFDs are XKFDs then depth(t′) ≤ 8m depth(p), where m is the maximal
depth of all patterns in Σ.

Proof. Let t be a tree with t |= Σ and t 6|= τ . Then there is some witness pair (π1, π2) for
t 6|= τ . Let P be the set of nodes of t to which some pattern node is mapped via π1 or π2.

We first describe the construction of a tree t′1 fulfilling (1) and (2) and, if all patterns
are from TP[/, ∗], also (3a).

Let t′1 be the tree obtained from t by removing all nodes that are not in P and not
ancestors of nodes in P . It is straightforward that t′1 |= Σ, t′1 6|= τ and | leaves(t′1)| ≤
2| leaves(p)|. Furthermore, if all tree patterns are from TP[/, ∗], then depth(t′) ≤ depth(p).
Thus, t′1 fulfills (1), (2) and (3a). The construction of t′1 is not affected if an esDTD has

160 11 Implication of XML-to-Relational Constraints

to be respected, as it does not change the set of labels of the tree (unlike the following
two constructions).

If all patterns are from TP[/, //] we can construct another tree t′2 from t′1 as follows.
Let P ′ contain all nodes from P and all nodes of t that are lowest common ancestors
of at least two nodes of P . Clearly |P ′| ≤ 2|P | ≤ 4|p|. To obtain t′2, we replace in t′1 all
maximal paths of nodes that are not in P ′ by a path of length 2 whose single intermediate
node carries a new label # that does not occur in any pattern of Σ. By construction,
| leaves(t′2)| ≤ | leaves(t′1)| ≤ 2| leaves(p)| and t′2 6|= τ . On the other hand, if all patterns
in Σ are from TP[/, //], every embedding of a pattern in t′2 is also an embedding in t and
therefore t′2 |= Σ. This is, because an embedding of a pattern without wildcards can only
“bridge” the gaps introduced by the new symbols # with the help of descendant edges.
Finally, the depth of t′2 is at most twice the depth of P ′ and thus depth(t′2) ≤ 8 depth(p).
Thus, t′2 fulfills (1), (2) and (3b).

Let t′3 be the tree obtained from t′1 by replacing every maximal path of length > m of
nodes that are not in P ′ by a path of length m in which every node gets a separate new
data value and is labeled with a new label # that does not occur in any pattern of Σ. It is
easy to see that this transformation does not introduce any violations of any XKFDs from
Σ (as the new paths do not match any subpatterns that were not matched before by the
replaced path), and thus, t′3 is a counter-example tree of depth ≤ 8m depth(p).

Lemma 11.19 Let I = (Σ, τ, S) be a constrain instance with a set Σ ⊆ XC(TP, FFD)

of constraints, a constraint τ = (p, Y
Z−→ B) and an sDTD S. If there is a tree t with

t |= Σ and t 6|= τ then there is a tree t′ with

(1) [t′]D |= S, [t′]D |= Σ and t′ 6|= τ ;

(2) | leaves(t′)| ≤ 2| leaves(p)|;

(3a) if p is from TP[/, ∗] then depth(t′) ≤ depth(p);

(3b) if all tree patterns are from TP[/, //] and all FFDs are XKFDs, then depth(t′) is
bounded polynomially in |I|;

Proof. Let t be a tree with t |= S, t |= Σ and t 6|= τ witnessed by some pair (π1, π2) for
t 6|= τ . Let P be the set of nodes of t to which some pattern node is mapped via π1 or π2.

We construct a tree t′ fulfilling (1), (2) and (3a), exactly as in the proof of Lemma 11.18.
We note, that if t |= S, then for any tree t′ derived from t by removing nodes it holds
that [t′]D |= S.

Towards (3b), let L be the set of strings v such that there exists a path r in some
pattern p, such that r only consists of /-edges and the sequence of labels of r equals
v. Clearly |L| is bounded quadratically in |I|. We construct the DFA A that matches
patterns in L, i.e., the current state q of the automaton always corresponds to the longest
string in L that can be matched on the last read symbols. The size of A is bounded by
the size of L, as L is closed under prefixes.

Let now r be a path in t′ such that

11.3 Upper Bounds Based on Small Counter Examples 161

• |r| > 2m+ |A|, where m is the maximum of the depths of all patterns; and

• r does not contain any node v such that v ∈ P or v is the lowest common ancestor
of two nodes of P .

If no such path exists, the depth of t′ is clearly bounded by |P |(2m + |A|) and thus
polynomially bounded.

Let r′ be the infix of r without the m topmost and bottom-most nodes. Let u and v
be nodes of r′ such that A is in the same state after reading u and v. As |r′| > |A| such
nodes exist.

We now do some pumping by removing all nodes between u and v and the node v,
making the (by construction unique) child v′ of v a child of u.

The resulting tree t′′ still satisfies t′′ 6|= τ , as we did not remove any node from P .
Furthermore, [t′′]D still satisfies S, as u and v have the same label. At last, we show that
t′′ still satisfies [t′′]D |= Σ by showing that any witness pair (ρ1, ρ2) for σ ∈ Σ and [t′′]D
can be transformed to a witness pair (ρ′1, ρ

′
2) for σ and [t′]D, contradicting [t′]D |= σ.

Let x1, x2 be variables from p and i ∈ {1, 2} be such that x1 and x2 are connected
by a child edge, ρi(x1) = u, and ρi(x2) = v′. Let y be the highest ancestor of x2 that
is reachable only using child-edges in p. We change ρi such that it embeds py \ px2 in
the neighborhood of v (in [t′]D) just as it is embedded in the neighborhood of u. By
construction of [t′]D and A, we know that this is possible, as the affected parts of [t′]D are
isomorphic, either because of our pumping or (for nodes not on the main path) because
of S.

We iteratively apply the pumping procedure to all long edges to obtain a tree, whose
depth is bounded by |P |(2m+ |A|).

By combining Lemmas 11.4, 11.18 and 11.19 we get the following upper bounds.

Theorem 11.20 The following implication problems are in conp.

(a) XC-Imp(TP[/, //],FFD)

(b) XC-Imp(TP,XKFD)

(c) XCS-Imp(TP[/, ∗],FFD, sDTD)

(d) XCS-Imp(TP[/, //],XKFD, sDTD)

Proof. Let in the following always I = (Σ, τ) or I = (Σ, τ, S) be an instance of the

implication problem at hand with τ = (p, Y
Z−→ B) and S an sDTD, in case of (c)

and (d). Lemma 11.18 guarantees for the cases (a) and (b), and Lemma 11.19 guarantees
for the cases (c) and (d)12 that, if there is a counter-example tree t to I at all, there is
one of depth polynomial in Σ, |τ | and (if given) |S| and with a number of leaves in O(|τ |).
This yields immediate np-algorithms for the complement of each of the three implication
problems: guess a tree t that obeys the depth and width bounds of Lemma 11.18 and
verify whether it is a counter-example to I using the algorithm of Lemma 11.4. Thus,
the conp upper bound follows in all four cases.

12In cases (c) and (d), actually [t]D is the actual counter-example.

162 11 Implication of XML-to-Relational Constraints

11.4 Polynomial Space Upper Bound Based on Skeletons

In the previous section, we considered counter-example trees of the form [t]D that could be
of exponential size in the implication instance I but whose “backbone” t had only polyno-
mial size. For the remaining pspace upper bound for XCS-Imp(TP[/, //, ∗],XKFD, sDTD),
we need to use an even more compact representation of counter-examples. We do not
only leave out nodes that are enforced by S as in the step from [t]D, but we further leave
out nodes in t that are not needed to verify that Σ is satisfied but τ not.

To this end, we use trees in which some paths of the tree are represented by path edges
that do not contain any information about node labels along that path. More precisely,
a skeleton tree s is just an XML tree with two kinds of edges, child edges and path edges,
where path edges represent vertical paths of length at least two, similarly as wildcard
symbols represent labels in a pattern. Path edges are additionally marked by the label
of the highest node of the path. The semantics of pattern-based X2R-constraints with
respect to skeleton trees is just defined as for normal trees, with the understanding that
path edges match descendant edges of patterns, but do not match child edges.

A set U of nodes of a tree t is suitable if the following two conditions hold.

(1) U contains the root of t, all leaves of t and all inner nodes with more than one child,
and

(2) if U contains nodes u and v of t of distance 2 then it also contains their intermediate
node.13

By sU (t) we denote the skeleton tree that results from t by replacing all (maximal) paths
of nodes that are not in U by path edges (and marking all path edges by the label of
the highest node of the path). We call a set U Σ-preserving if for every σ ∈ Σ it holds
that [t]D |= σ if and only if [sU (t)]D |= σ. Here, we denote by [s]D a skeleton tree that
is induced by S from a skeleton tree s in a canonical way, similarly14 as [t]D is induced
from t. In particular, [s]D has the same path edges as s.

We show that for each instance I = (Σ, τ, S) of XCS-Imp(TP,XKFD, sDTD) and
each π-diverse tree t of I with a witness pair π for t 6|= τ , there is a suitable set U of t of
polynomial size in |I| that is Σ-preserving and such that [sU (t)]D 6|= τ . Furthermore, it
can be tested in polynomial space whether a given skeleton tree s is of the form sU (t) for
some tree t [t]D |= S and a suitable, Σ-preserving set U . 15

Let, in the following, I = (Σ, τ, S) denote a fixed instance of XCS-Imp(TP,XKFD, sDTD)
with τ = (pτ , Yτ→Bτ), let t be a π-diverse tree and π = (π1, π2) a witness-pair show-
ing that [t]D 6|= τ . Let m be the maximal depth of all patterns in Σ and τ . With
σ = (p, Y→B) we always denote some constraint from Σ.

In order to show that sets U of polynomial size suffice for our purposes, we prove
that if there are witness pairs for constraints in Σ then there are such witness pairs of a
particularly simple form. To this end, we need to introduce some additional notation.

13In other words: all paths missing in U consist of at least two nodes.
14Since the label of a path edge below a node u indicates the label of the child of u on that path, the

extension does not need to add another child of u with that label.
15In the final algorithm, U has to satisfy some additional conditions.

11.4 Polynomial Space Upper Bound Based on Skeletons 163

term symbol definition

cluster c connected component of a tree pattern when removing //-edges

connector node node in a cluster with outgoing descendant edges

special nodes the set of nodes used in a (fixed) witness pair for a target dependency
τ closed under least common ancestors

skeleton (tree) sU (t) condensed representation of a tree t containing only the nodes from U ,
uses path edges to represent the skipped nodes

Table 11.5: Notation used in Section 11.4.

For two nodes v and w of a tree t we write

• v → w, if v is an ancestor of w;

• v n−→ w, v
≤n−−→ w, v

≥n−−→ w if v → w and the distance between v and w is n, ≤ n,
≥ n for n ∈ N;

• v ↔ w, if v = w or v → w or w → v;

• v = w, if v ↔ w does not hold.

A cluster of a pattern p ∈ TP is a maximal sub-pattern in which all edges are child
edges.16 The cluster tree CT(p) of a pattern p has as nodes the clusters of p and as edges
the descendant edges of p. We use the usual tree notation, both for the cluster tree and
for individual clusters, e.g., root(CT(p)) denotes the cluster containing root(p) and for
any cluster c, root(c) denotes the topmost node of the cluster. We note, that the depth
of each cluster is bounded by m.

The connector nodes of a cluster c are the nodes of c with outgoing descendant edges
(in p). We say x is a connector node towards c′, if x is a connector node and root(c′) is a
descendant of x.

Let c be a cluster from p. With pc we denote the sub-pattern proot(c), i.e., the sub-
pattern consisting of the cluster c and all its descendant clusters. We say that a node
of y of p is data-sensitive if y.@ ∈ Y , and a cluster c is data-sensitive, if pc contains a
data-sensitive node y.

We write ρ(c)→ ρ′(c′) if ρ(root(c))→ ρ′(root(c′)) and likewise ρ(c)↔ ρ′(c′), ρ(c) =
ρ′(c′) and ρ

n,≤n,≥n−−−−−−→ ρ′.
A witness pair (ρ1, ρ2) for t and σ is normal, if there exists at most one cluster c such

that

(n1) ρ1(c)↔ ρ2(c) and ρ1(c) 6= ρ2(c),

and if ρ1(c)→ ρ2(c) for that cluster.
A cluster c is called ρ-critical, if it satisfies (n1) or simply critical, when ρ is clear from

the context. By definition, in a normal witness pair, there can be at most one critical
cluster.

We will use the following lemma to bound the search space for witness pairs.

16Stated otherwise, a cluster is a connected component of p after removing all descendant edges.

164 11 Implication of XML-to-Relational Constraints

Lemma 11.21 Let t be a tree such that t 6|= σ. Then there exists a normal witness pair
for σ.

Proof. To establish the lemma we first show that for every witness pair with the minimal
number of critical clusters, each cluster additionally satisfies:

(n2) B ∈ pc; and

(n3) if B /∈ c, then ρ1(xcB) = ρ2(xcB).

Let thus ρ = (ρ1, ρ2) be a witness pair for an XML tree t and some constraint σ with
the minimal number of critical clusters. Towards a contradiction, we assume that some
critical cluster c does not satisfy both (n2) and (n3). Without loss of generality, we
assume that ρ1(c)→ ρ2(c).
t 6|= σ and every witness pair ρ = (ρ1, ρ2) for t and σ is not normal. Let (ρ1, ρ2) be

any witness pair with the minimal number of ρ-critical clusters and let c be a ρ-critical
cluster.

If c does not satisfy (n2), we define ρ′1 to be equal to ρ2 for all variables in pc and
equal to ρ1 on all other variables of p. It is easy to see that (ρ′1, ρ2) is a witness pair for t
and σ, as ρ′1(root(c)) is a descendant of ρ1(root(c)) and B /∈ pc. Furthermore, c is not
critical with respect to (ρ′1, ρ2) and thus (ρ′1, ρ2) contains fewer ρ-critical clusters than
(ρ1, ρ2) which is a contradiction to our assumption.

The other case is that c satisfies (n2) but not (n3). That is, B 6∈ c but ρ1(xcB)↔ ρ2(xcB).
Since ρ1(c) → ρ2(c) we have ρ1(xcB) → ρ2(xcB). Let c′ be the child cluster of c with
B ∈ pc′ . Let ρ′2 be defined as ρ2 for pc′ and as ρ1 for all other clusters. Again, it is easy
to verify that (ρ1, ρ

′
2) is a witness pair for t and σ with fewer ρ-critical clusters than

(ρ1, ρ2).
We can thus assume in the rest of the proof that all critical clusters satisfy (n2) and

(n3) and therefore all ρ-critical clusters are on the path from the root to B in the cluster
tree. Let c1 and c2 be the topmost two ρ-critical clusters with c1 being an ancestor of
c2. We assume without loss of generality that ρ1(c2)→ ρ2(c2). We define ρ′2 such that it
embeds all clusters from pc2 as in ρ2 and all other clusters as in ρ1. Again it is easy to
verify that (ρ1, ρ

′
2) is a witness pair for σ and that t has fewer ρ-critical clusters than

(ρ1, ρ2). Observe that B is embedded differently in both embeddings, as it is contained
in pc2 .

In the remainder of this section, we will only consider normal witness pairs and therefore
usually omit the attribute “normal”.

In the following we will reason about partial witness pairs for a constraint σ, that are
induced by one cluster c of the pattern p underlying σ. Obviously, for a witness pair
ρ = (ρ1, ρ2) and each cluster c of p, one of the following statements holds.

(1) ρ1(root(c)) = ρ2(root(c));

(2) ρ1(c) = ρ2(c);

(3) ρ1(root(c)) 6= ρ2(root(c)) and ρ1(c)↔ ρ2(c);

11.4 Polynomial Space Upper Bound Based on Skeletons 165

It follows immediately, from Lemma 11.21 that, if ρ is normal, statement (3) can hold for
at most one cluster c, the ρ-critical cluster.

For an embedding ρ of a pattern p into a tree t and a cluster c of p, the c-embedding
ρc is just the restriction of ρ to pc. We refer to c as the top cluster of ρc.

For each witness pair ρ = (ρ1, ρ2) and each cluster c of the underlying pattern p, we
define the c-witness pair17 ρc = (ρc1, ρ

c
2). We note that a c-witness pair is just a z-witness

pair for z = root(c). Therefore, if z = root(c), we refer by c-witness pair also to z-witness
pairs, even if they can not be extended to full witness pairs.

We say that a c-witness pair is of type (k) if statement (k) holds for c. By definition,
each (full) witness pair is of type (1).

To achieve our goal to guarantee the existence of a suitable set U of polynomial size,
we basically consider only witness pairs which embed p in a lowest possible way into
t. However, the details require some care and the following definitions of top-minimal
c-embeddings, top-minimal c-witness pairs and minimal witness pairs are a bit more
complicated than one might expect.

We say a c-embedding is safe, if each data-sensitive node is embedded on a special
node. For two safe embeddings ρ1 and ρ2, we write ρ1 ∼ ρ2 if ρ1(y) ∼ ρ2(y) for each
data-sensitive node. Clearly, the two c-embeddings of every type (2) c-witness pair are
safe.

We call a c-embedding ρ top-minimal if

• there is no c-embedding ρ′ with ρ(c)→ ρ′(c); or

• c is safe and there is no c-embedding ρ′ with ρ(c)→ ρ′(c) and ρ ∼ ρ′.

If the first condition holds, we say that ρ is perfectly top-minimal.
We call a c-witness pair ρ = (ρ1, ρ2) top-minimal if one of the following conditions

holds.

• ρ is of type (1) and ρ1 and ρ2 are perfectly top-minimal.

• ρ is of type (2) and ρ1 and ρ2 are top-minimal.

• ρ is of type (3) and there is no type (3) c-witness pair (ρ′1, ρ
′
2) with

– ρ1(c)→ ρ′1(c) or

– ρ1(root(c)) = ρ′1(root(c)) and ρ2(c)→ ρ′2(c).

We call a c-embedding ρ minimal if for each cluster c′ of pc, ρ
c′ is top-minimal. Likewise,

we call a c-witness pair ρ minimal if for each cluster c′ of pc,ρ
c′ is top-minimal. A witness

pair is called minimal if ρc is top-minimal for each cluster c that is not the root cluster.
We can now improve Lemma 11.21.

We write ρ′ ≤ ρ for two c-embeddings ρ, ρ′ if ρ′(root(c)) = ρ(root(c)) or ρ′(c)→ ρ(c),
and ρ < ρ′ if ρ(c) → ρ(c). We write ρ′ ≤ ρ, for two c-witness pairs ρ = (ρ1, ρ2) and
ρ′ = (ρ′1, ρ

′
2) if ρ′1 ≤ ρ1 and ρ′2 ≤ ρ2, and ρ′ < ρ if one of these inequalities is strict.

17We note that an induced witness pair is not necessarily a witness pair but rather a sub-witness pair.

166 11 Implication of XML-to-Relational Constraints

Lemma 11.22 (a) For each c-embedding ρ there is a minimal c-embedding ρ′ such that
ρ′ ≤ ρ and ρ′ ∼ ρ.

(b) For each c-witness pair ρ = there is a minimal c-witness pair ρ′ such that ρ′ ≤ ρ.

(c) If [t]D 6|= σ, then [t]D has a minimal normal witness pair.

Proof. We prove all three statement simultaneously by induction on the depth of the
cluster tree of pattern p or pc, respectively.

We first observe that from the definition it follows immediately, that for each c-
embedding ρ there exists a top-minimal c-embedding ρ′ with ρ′ ≤ ρ and ρ′ ∼ ρ. Likewise,
for every normal c-witness pair ρ, there is a top-minimal c-witness pair ρ′ with ρ′ ≤ ρ.
This yields the base case of the induction.

For the inductive step for (a), let ρ be an arbitrary normal c-embedding. Again, there
must be a top-minimal c-embedding ρ′ ≤ ρ and ρ′ ∼ ρ. By induction, for every child
cluster c′ of c, the c′-embedding ρc

′
can be replaced by a minimal c′-embedding ρ′′c′ with

ρ′′c′ ≤ ρc
′

and these can be combined with ρ′(c) to a minimal c-embedding. For (b) and
(c) the argumentation is almost identical.

We call a node u ∈ t Σ-useful if there is a cluster c and a minimal c-witness pair ρ =
(ρ1, ρ2) or a minimal c-embedding ρ1 in [t]D such that u = ρ1(root(c)) or u = ρ2(root(c)).

We need to establish two results about useful nodes: first, that there is always a
counter-example for which the set U of useful nodes is of polynomial size (which allows
us to guess a polynomial-size skeleton tree sU (t)) and, second, that it is possible to test
in polynomial space whether for a skeleton tree s, there is a tree t and a set U containing
all useful nodes of t such that s = sU (t). For the latter, we will actually restrict the set
of useful nodes a bit further, below.

Lemma 11.23 If Σ 6|=S τ for a pattern-based instance I = (Σ, τ, S) then there is a tree t
with polynomially many useful nodes in |I| such that [t]D is a counter example for I.

Proof. By Lemma 11.18, we can restrict to trees with only linearly many leaves, in the
size of I.

By definition of minimal c-witness pairs, for each path from the root of t to a leave,
there is at most one useful node from c-witness pairs of type 1 and type 3. Thus, the
number of useful nodes for top-minimal c-witness pairs of type 1 and type 3 is linear in
the number of leaves of t and therefore polynomial in |I|. As useful nodes for minimal
c-witness pair of type 2 are subsumed by useful nodes for minimal c-embeddings, it only
remains to establish a bound on the number of nodes induced by minimal c-embeddings.
Therefore, for each cluster c, we let Uc denote the set of nodes v, such that ρ(root(c)) = v
for some minimal c-embedding ρ.

Let now c be a fixed cluster. For each child cluster c′ of c, we denote the distance
between root(c) and the connector node towards c′ in c by dc′ .

We show that for each node u ∈ Uc one of the following is true:

(a) u
≤m−−→ v for some special node v;

11.4 Polynomial Space Upper Bound Based on Skeletons 167

(b) u is a lowest node with u
>m−−→ v for some special node v; or

(c) there exists a data-sensitive cluster c′ ∈ childs(c) and a node w ∈ Uc′ such that

u
>dc′−−−→ w, but for every node v ∈ Uc with u→ v it does not hold v

>dc′−−−→ w.

Towards a contradiction, we assume that u ∈ Uc and (a-c) are not satisfied. Let ρ be a
minimal c-embedding with ρ(root(c)) = u and let v ∈ Uc be the next lower node (below
u). Since (a-b) do not hold for u, this node is unique, as t can not branch between u and
a next lower node in Uc.

Since ρ is minimal and therefore root(c′) is useful, and since (c) does not hold for u, we
can conclude that for every data-sensitive cluster c′ ∈ childs(c), there is a node vc′ ∈ Uc
with v = vc′ or v → vc′ and vc′

>dc′−−−→ ρ(root(c′)).

Since (b) does not hold for u, we know that v
>m−−→ w for each special node w. Therefore,

and by v ∈ Uc, there exists a c-embedding ρ′′ with ρ′′(root(c)) = v such that all connector
nodes towards data-sensitive clusters are embedded on the same path of t. Therefore,
and because c cannot contain any data-sensitive nodes, by

ρ′(c′) =

{
ρ′′(c′) if c′ = c or c′ is data-insensitive

ρ(c′) if c′ is data-sensitive

a c-embedding is defined with ρ′ < ρ, contradicting the minimality of ρ. Thus, every
node in Uc must fulfil one of (a-c).

It now only remains to show that, for each c, Uc only contains polynomially many
nodes. Indeed, we show that that

|Uc| ≤ (m+ 1)A+
∑

c′∈childs(c)

|Uc′ | ,

where A is the number of special nodes, mA accounts for all ancestors of distance up to
m from special nodes, and the remainder of the sum accounts for nodes due to condition
(c).

By an easy induction over p, we can conclude that |Uc| ≤ (m+1)A · |pc| for each cluster
c.

The following lemma enables us to decide XCS-Imp(TP,XKFD, sDTD) by guessing
a skeleton tree and verifying that it conforms to Σ by guessing paths for each path edge,
separately.

Lemma 11.24 Let σ be a constraint with pattern p. Let t be an XML-tree and U be a
suitable set of nodes of t that contains all nodes of t with distance up to m to special
nodes.

• If there is a minimal c-witness pair ρ = (ρ1, ρ2) for some cluster c of p, such that
ρi(c) is not in [U]D for some i ∈ {1, 2}, then

168 11 Implication of XML-to-Relational Constraints

– there exists a minimal c′-witness pair ρ′ = (ρ′1, ρ
′
2) and i ∈ {1, 2} such that

ρ′i(c
′) is not in [U]D, but otherwise the range of ρ′ is in [U]D;

– there exists a minimal c′-witness pair ρ′ = (ρ′1, ρ
′
2) such that ρ1(c)

≤m−−→ ρ2(c)
and ρj(pc \ c) ⊆ [U]D for j ∈ {1, 2}; or

– there exists a minimal c′-embedding ρ′ such that ρ′(c′) is not in [U]D, but
otherwise the range of ρ′ is in [U]D.

• If there is a minimal c-embedding ρ for some cluster c of p, such that ρ(c) is not in
[U]D, then there exists a minimal c′-embedding ρ′ such that ρ′(c′) is not in [U]D,
but otherwise the range of ρ′ is in [U]D.

Proof. We first show the statement for embeddings. Let ρ be a minimal c-embedding
such that ρ(c) is not in [U]D. We let c′ be a lowest cluster, such that the range of ρc

′
is

not in [U]D. Is is easy to verify that ρc
′

satisfies the condition.
Let now ρ = (ρ1, ρ2) be a minimal witness pair. Let c′ be a lowest cluster such that

ρi(c
′) is not in U . Restriction to ρc

′
again gives us, that all clusters below c′ are embedded

in [U]D.
Towards the lemma statement, we distinguish four cases:

• ρ1(c′)
≤m−−→ v for some special node v: By assumption on U , ρ1(c) is embedded on

[U]D.

• ρ1(c′)
≤m−−→ ρ2(c′): nothing to show

• ρ1(c′)
>m−−→ v for every special node v and ρ1(c′)

>m−−→ ρ2(c′): In this case, all
connector nodes in c′ towards data-sensitive clusters are embedded on t and above
ρ2(c′) by ρ1. Therefore, ρc

′

2 is a minimal c′-embedding. We note that all nodes
y ∈ pc′ with y.@ ∈ Y are embedded identically in ρ1 and ρ2.

• ρ1(c′) = ρ2(c′): the embedding ρci satisfies the lemma

We now define the extended skeleton tree by defining a suitable set of nodes, that not
only includes the special nodes (and their neighbourhood), but also the useful nodes.

The set U(I, π, t) contains

• the root;

• all π-special nodes of t;

• all useful nodes;

• all nodes of distance m of the nodes specified above;

• for each label a, all lowest nodes with label a.

The extended skeleton tree is the tree sU(I,π,t)(t).
We can conclude from Lemma 11.23, that the size of U(I, π, t) and thus the size of

sU(I,π,t)(t) is polynomial in |I| and | leaves(t)|.

11.4 Polynomial Space Upper Bound Based on Skeletons 169

Theorem 11.25 XCS-Imp(TP,XKFD, sDTD) is in pspace.

Proof. We provide a nondeterministic polynomial space algorithm for the complement of
XCS-Imp(TP,XKFD, sDTD). The algorithm works as follows:

1. Guess a skeleton s such that s = sU (t) for some tree t and a suitable set U of nodes
of t.

2. If s |= τ reject.

3. If [s]D 6|= Σ reject.

4. For each path edge e of s, guess a path re bottom-up, remembering always the m
most recent labels.

• If the labels do not conform to S then reject.

• If for some label a, some lowest node with label a is not in U then reject.

• If there is some node v on re such that there exists a minimal c-witness pair
(ρ1, ρ2) or a minimal c-embedding ρ1 such that ρ1(c) = v or ρ2(c) = v, but
otherwise the range of ρ1, ρ2 is included in [U]D then reject.

5. accept

We first prove the correctness of the algorithm. Afterwards, we show that the algorithm
runs in polynomial space and especially, that the condition in the last if-statement of
step 4 can be checked in polynomial space.

If Σ 6|=S τ , then there exists a tree t such that there is a π-diverse counter-example
to Σ |=S τ for some witness-pair π = (π1, π2). The algorithm can guess s = sU(I,π,t)(t)
in step 1. Furthermore it can guess for each path edge e of s the label sequence of the
corresponding path in t. It is not possible that [s′]D 6|= Σ, as [t]D |= Σ, and s contains a
subset of the nodes from t. As t is a counter example, the label sequences have to be
consistent with S and π witnesses that t 6|= τ . Furthermore, sI,π contains all necessary
nodes. Therefore, the algorithm accepts.

On the other hand, if Σ |=S τ , there can be no tree t such that [t]D |= Σ, t 6|= τ and
[t]D is valid wrt. S. Assume in contradiction that the algorithm accepts. Then let t be
the tree guessed by the algorithm, i.e., t contains all nodes from s and for each path
edge e of s it contains a sequence of nodes labeled as guessed by the algorithm. As the
algorithm accepts, we know that s 6|= τ and t is consistent with S. Furthermore, there
can be no c-witness pair (ρ1, ρ2), such that ρi(c)) is not in [U]D, but otherwise the range
of ρi is included in [U]D. We note, that if there is a node v on some path edge with
some minimal c-embedding ρ, such that ρ ⊆ [v]D, but ρ(root(c)) 6= v, then there is an
isomorphic minimal c-embedding in [w]D, where w is some lowest node with label lab(v).

Using the Lemmas 11.22 and 11.24 we can conclude that Σ 6|=S τ , which is a contradic-
tion to our assumption.

As s is of polynomial size, Step 1 is doable in nondeterministic polynomial time. By
Lemma 11.4, Steps 2 and 3 can be done in polynomial time. For Step 4, we only need
to remember the last m nodes Vlast of the path and then check whether there is some
c-witness pair or c-embedding in Ulast using the algorithm of Lemma 11.4.

170 11 Implication of XML-to-Relational Constraints

11.5 Lower Bounds by Reductions from 3SAT

The conp lower bounds in the following proposition are all by reduction from SAT to the
complement of the respective implication problem.

Proposition 11.26 The following implication problems are conp-hard.

(a) XCS-Imp(TP[/, ∗],XKFD,esDTD)

(b) XC-Imp(TP[/, //],XKFD)

Proof. Both proofs are by reductions from 3-SAT to the complement of the implication
problem. The algorithmic problem 3-SAT asks whether a given propositional formula in
3-CNF is satisfiable. A propositional formula in 3-CNF is a conjunction ϕ = C1∧· · ·∧Cm
of clauses, over some variables y1, . . . , yn, where each clause Ci = `i1 ∨ `i2 ∨ `i3 is a
disjunction of three literals.

Let a 3-CNF formula ϕ = C1 ∧ · · · ∧ Cm with variables y1, . . . , yn and clauses of the
form Ci = `i1 ∨ `i2 ∨ `i3 be given. An implication instance (D,Σ, τ) for the reduction
for (a) is constructed from ϕ as follows. The idea for the reduction is to associate truth
assignments θ with 0-1-labeled paths such that θ(yi) = 1 if and only if the i-th symbol is
1. Thus, first of all, the esDTD D enforces the alphabet {0, 1}.

For every clause Ci, we add a XKFD σi with pattern pi to Σ that states that the last
node of a path of length n is non-branching if the truth assignment of that path fails to
satisfy Ci. That is, if there is a path of length n that does not match any pattern pi (and
thus its corresponding truth assignment satisfies all constraints) then a counterexample
to Σ |= τ can be constructed by branching at its n-th node. The overall effect is that τ is
implied by Σ if and only if there is no satisfying truth assignment for ϕ.

We now describe the construction in more detail.
The target dependency τ is defined as the XKFD

τ =def (/∗/∗/ . . . /∗〈x〉/∗〈y〉, x→y)

with n + 1 consecutive ∗ positions, stating that a node at depth n can have only one
child node. For every i, let σi be the XKFD

σi = (/αij/ . . . /αin〈x〉/∗〈y〉, x→y),

where αij is 0 if yj occurs in Ci, 1 if ¬yj occurs in Ci and ∗, otherwise.
The reduction can be carried out in polynomial time. It remains to prove that ϕ is

satisfiable, if and only if Σ 6|=D τ .
(if): Let us assume Σ 6|=D τ . By the proof of Lemma 11.18 and as D allows that

0-labeled and 1-labeled nodes can be leaves, there is a tree t = (V,E, lab,dv, <C)
with V = {r, v1, . . . , vn, w1, w2} and E = {(r, v1), (vn, w1), (vn, w2)} ∪ {(vi, vi+1) | i ∈
{1, . . . , n− 1}} such that t |= D and t |= Σ. By definition of t it holds that t 6|= τ .

Thanks to t |= D, all nodes in t are labeled 0 or 1. Let θ be the truth assignment
induced from t, that is, θ(yj) is the label of vj , for every j.

11.5 Lower Bounds by Reductions from 3SAT 171

Towards a contradiction, let us assume that, for some i ≤ m, θ 6|= Ci. Then the pattern
pi of σi matches the two paths of t of length n+ 1 and thus σi does not hold. This is
a contradiction from which we can conclude that θ |= ϕ and that, in particular, ϕ is
satisfiable.

(only if): Let us assume that ϕ is satisfiable via some truth assignment θ. Let t be the
tree with the same set V of vertices and set E of edges as the tree in the (if)-part and
let node vj carry label θ(yj), for every j. Let w1, w2 be labeled with 1, for concreteness.
As vn has two children, t 6|= τ . On the other hand, as θ |= Ci, for every i, none of the
patterns pi of the constraints in Σ matches t and thus t |= Σ, as desired. Therefore, t is
a counter-example for Σ |=D τ .

The proof of (b) is also by a reduction from 3-SAT to the complement of the implication
problem and follows a similar approach, but the encoding of truth assignments is different:
For every i ≤ n, there are two symbols, ai and bi, both of which have to occur in any
path matching τ . The corresponding truth assignment θ is defined by θ(yi) = 1 if ai is a
descendant of bi and θ(yi) = 0 otherwise.

We now describe the construction in more detail. Let again ϕ = C1 ∧ · · · ∧ Cm be a
3-SAT formula with variables y1, . . . , yn and clauses of the form Ci = `i1 ∨ `i2 ∨ `i3. An
implication instance (D,Σ, τ) is constructed from ϕ as follows.

We let
τ =def ([//a1// . . . //an/a]//b1// . . . //bn//a〈x〉/b〈y〉, x→y)

and, for every i,

σi =def [//α1//β1//a][//α2//β2//a]//α3//β3//a〈x〉/b〈y〉, x→y),

where αk = aj and βk = bj if `ik = yj , and αk = bj and βk = aj if `ik = ¬yj .
The constraint set Σ contains all constraints σi and the additional constraint σa =
(//a〈x〉, ∅→x). We note that σa expresses that at most one a-labeled node can occur in
the tree.

Again, the reduction can be easily carried out in polynomial time and it thus only
remains to prove that ϕ is satisfiable, if and only if Σ 6|= τ .

(if): Let us assume Σ 6|= τ and let t be a tree with t |= Σ and t 6|= τ . As t |= σa, there
can be at most one a-labeled node in t. On the other hand, as t 6|= τ , the pattern of τ
needs to match t and therefore, there must be a path % from root(t) to a unique a-labeled
node va, which contains nodes with the labels a1, . . . , an and b1, . . . , bn. As t 6|= τ , va has
two b-labeled children.

We define a truth assignment θ as follows: θ(yi) =def 1 if there is a bi-labeled node
with an ai-labeled descendant node in %, and θ(yi) =def 0, otherwise.

Towards a contradiction, let us assume that, for some i ≤ m, θ 6|= Ci. Then the pattern
pi of σi matches the two paths of t through va to a b-labeled child of va and thus σi does
not hold. Again, this is a contradiction from which we can conclude that θ |= ϕ and that
ϕ is satisfiable.

172 11 Implication of XML-to-Relational Constraints

(only if): Let us assume that ϕ is satisfiable via some truth assignment θ. We construct
a tree t as follows: it consists of a path r, v0, . . . , v2n−1, v and two further b-labeled nodes
w1 and w2 that are children of the a-labeled node v. For every i ≤ n, if θ(yi) = 1 then
v2i is ai-labeled and v2i+1 is bi-labeled, otherwise v2i is bi-labeled and v2i+1 is ai-labeled.

Clearly, t 6|= τ but t |= σa. As θ |= Ci, for every i, none of the patterns pi of the
constraints in Σ finds a match in t and thus t |= Σ, as desired. Therefore, t is a
counter-example for Σ |= τ .

11.6 Lower Bounds by Reductions from Tiling Problems

The two remaining lower bounds are both by reduction from tiling problems. In both
proofs, tilings are encoded by unary trees, that is, trees without branching. That only
unary trees have to be considered can be enforced by putting the constraint σunary =
(//∗〈x〉/∗〈y〉, x→y) into Σ.

We also use constraints that (essentially) forbid certain patterns in trees. To this end,
we define, for each pattern p, the constraint σ¬(p) =def ([p]//∗〈x〉, ∅→x), that is violated
in all trees that match p and contain at least two nodes.

Theorem 11.27

(a) XCS-Imp(TP,XKFD,esDTD) is pspace-hard.

(b) XC-Imp(TP,FD,esDTD) is undecidable.

Proof. We note that the proof of (a) does not refer to data values at all, instead it only
uses structural constraints. In the proof of (b), data values are used to uniquely identify
positions in a tiling of arbitrary size.

We start with (a). As already announced, the reduction is from the pspace-complete
corridor tiling problem to the complement of XCS-Imp(TP,XKFD,esDTD) (which is
sufficient as pspace is closed under complementation).

Let thus U = (U,H, V, u0, uF , 1
n) be a corridor tiling instance.

For simplicity, we will represent unary trees that encode tilings by strings (without
data values). A string encoding of a valid tiling (with at least two rows) will thus match
the pattern u0U

n−1$(Un$)∗Un−1uF . For a more concise notation, we write the child axis
in patterns just as concatenation, e.g., we write //a∗c//d∗ for the pattern //a/∗/c//d/∗.

Each row λi of a corridor tiling is represented by the string si =def λ(i, 1) · · ·λ(i, n)
and the whole tiling is represented by the string s1$s2$ · · · $sm, where $ 6∈ U and m is
the height of the tiling.

The idea behind our construction is that D enforces that only valid tiles (and a row
separator) are used as tree labels, τ enforces that the tiling starts with the initial tile
and ends with the final tile and Σ enforces that the tiling encoded by the tree obeys the
constraints.

The esDTD D allows only labels from U ∪ {$}. The target constraint is

τ = σ¬(/u0/ ∗n−1 $//uF $),

11.6 Lower Bounds by Reductions from Tiling Problems 173

stating that a tree does not have a path starting with u0, ending with uF $ and having $
at position n+ 1.

The constraint set Σ contains the following constraints whose intention is to ensure
that a string is an encoding of a (not necessarily valid) tiling.

• σunary (the tree is unary);

• σ¬(//$ ∗n u), for every u ∈ U (the (n+ 1)st position after a $ can only be a $);

• σ¬(//$ ∗i $), for every i < n (no two $-labeled positions within distance i).

It is not hard to see that every string conforming to these constraints and matching the
pattern of τ has a prefix that encodes a (not necessarily valid) tiling of width n whose
first row begins with u0 and whose last row ends with uF .

The remaining constraints of Σ deal with the validity of the tiling. For each pair (u, v)
of tiles such that (u, v) 6∈ H, Σ contains a constraint σH,u,v =def σ¬(uv) that is violated
by every tree with a u-labeled node that has a v-labeled child. Thus, every encoding of a
tiling that does not respect H violates some σH,u,v. For each pair (u, v) of tiles such that
(u, v) 6∈ V , Σ contains a constraint σV,u,v =def σ¬(u ∗n v) that is violated by every tree
with a u-labeled node that has a v-labeled node as a descendant (n + 1) levels below.
Thus, every encoding of a tiling that does not respect V violates some σV,u,v.

It is not hard to figure out that the reduction can be computed in polynomial time
and that Σ |= τ holds if and only if U does not have a valid tiling of width n.

This concludes the proof of (a). We continue with the proof of (b). In this case, the
proof is by a reduction from the undecidable unbounded tiling problem to the complement
of XCS-Imp(TP,FD,esDTD).

Let thus U = (U,H, V, u0, uF) with U = {u1, . . . , un} be a tiling instance. Without
loss of generality we assume that U has no valid tiling of width less than 4. As always in
our lower bound proofs, the esDTD D only fixes the alphabet Γ = U ∪ {$,&, c, r, x, a, b}
but does not restrain content models any further.

The encoding of tilings for this reduction is more complex than the encoding used in
the proof of (a). First we describe how tilings are represented as trees. Afterwards, we
describe the construction of Σ and τ . The row number i and the column number j of
each position (i, j) of a tiling are represented by two data values.

Furthermore each tile λ(i, j) is preceded by a sequence that encodes the set of tiles
that are not vertically compatible with the tile λ(i, j), that is, which should not occur at
position (i− 1, j). Each such “forbidden” tile comes with the two data values encoding
(i− 1, j) and therefore a simple key constraint can rule out that λ(i− 1, j) is a forbidden
tile.

Now we describe the representation in more detail. We use natural numbers as
(intended) data values but the actual choice of data values does not affect the proof.

A position (i, j) of the tiling carrying u =def λ(i, j) is encoded by the string

(crαu,1) · · · (crαu,n)︸ ︷︷ ︸
disallowed tiles︸ ︷︷ ︸

first part

& (cru)︸ ︷︷ ︸
tile

(crx)n−1︸ ︷︷ ︸
padding︸ ︷︷ ︸

second part

,

174 11 Implication of XML-to-Relational Constraints

where c, r, x,& are symbols from Γ \ U , αu,j = uj if (uj , u) /∈ V and αu,j = x otherwise.
That is, the representation of a tile consists of two parts separated by &, where each

part consists of n repetitions of crα, α ∈ Ux, where Ux =def U ∪ {x}. The intention is
that all c-nodes carry the column number j as data value.

The first part encodes which tiles are not allowed in the row below. The intention is
that all r-nodes in the first part carry the row number i− 1 of the previous row as data
value (which is 0 for the first row).

The second part encodes the actual tile u. The n−1 repetitions of crx are for technical
reasons related to the concatenation of rows that will be explained below. All r-nodes of
the last n positions shall carry the row number i as data value.

We note that we do not use any separator symbols between (encodings of) tiling
positions. However, rows are separated by 3n+ 1 $-signs, again for technical reasons.

The complete tiling is prefixed with the string spre =def (xbx)n(axx)n&(abx)n$3n+1,
for technical reasons. We denote the length of spre by k = 12n+ 2.

Altogether, we represent tilings by unary trees, whose path from top to bottom has a
prefix conforming to the pattern language of

R = spre︸︷︷︸
prefix

[(
(crUx)n&(crU)(crx)n−1︸ ︷︷ ︸

one tile

)∗
$3n+1

︸ ︷︷ ︸
one row

]∗
.

We call a tree t well formed, if it fulfills the following conditions:

(i) t is unary (hence we assume that t is a path in the following conditions);

(ii) the node labels of the maximal path t′ of t that ends with the pattern $3n+1 (to
which we refer as the main path of t) conform to R;

(iii) for each encoding of a tile, the set of disallowed tiles is correctly encoded, i.e.,
matches the vertical constraints;

(iv) for every encoding of a tile position, all c-nodes carry the same data value (we refer
to this value as the column number of the respective tile);

(v) in every row, exactly the same column numbers occur, in the same order;

(vi) for tiles in the same row, all r-nodes in the second part of tiles have the same data
value (we refer to this value as the row number of that row); and

(vii) for tiles in the same row, all r-nodes in the first part of tiles have the same data
value which happens to be (in non-first rows) the row number of the previous row.

Let tree be the function, which maps tilings to their tree encodings and let tiling be
the inverse function, which maps trees to the tiling corresponding to their main path.
The function tree is defined for all tilings, while the function tiling is only defined for
well formed trees.

The following claim will be shown below.

11.6 Lower Bounds by Reductions from Tiling Problems 175

Claim 11.28 For every tiling instance U , a constraint set Σwf can be computed in
polynomial time, such that

• every tree t that contains the pattern $3n+1 at least once and fulfills t |= Σwf is well
formed; and

• for every valid tiling λ, it holds that tree(λ) fulfills Σwf.

We next define sets ΣH and ΣV that are supposed to enforce that the tiling encoded by
a well formed tree respects the horizontal and vertical constraints of U , respectively. The
horizontal constraints can be easily enforced by disallowing the forbidden patterns. To this
end, ΣH contains, for every pair (ui, uj) /∈ H, the constraint σ¬(//&crui(∗∗∗)2n−1&cruj).
In the framework established by Σwf, the vertical constraints can be enforced as follows.
The set ΣV contains, for every i, the constraint18

(//c〈xc〉/r〈xr〉/ui〈xu〉, {xc.@, xr.@}→xu).

Finally, we let

• Σ =def Σwf ∪ ΣH ∪ ΣV and

• τ =def σ¬(/∗k+3n+3u0//uF ∗∗∗n−1$3n+1).

We note that τ can only be violated by trees t containing the pattern $3n+1 at least once.
We show now that Σ |=D τ holds if and only if there is no valid tiling for U . We sketch

the proof argument for this.
(if): Let us assume that there is no valid tiling for U . Thus, every tree t is either

not well formed or its tiling is not valid. In the first case, t 6|= Σwf, in the second case
t 6|= ΣH ∪ ΣV or t does not match the pattern forbidden by τ . In both cases, t is not a
counter-example for Σ |=D τ , thus there is no such counter-example and Σ |=D τ holds.

(only if): Let us assume Σ |=D τ holds. Towards a contradiction let us assume further
that U has a valid tiling λ. Let t be tree(λ). Thus, t |= Σ and t matches the pattern of τ ,
therefore t 6|=D τ , the desired contradiction.

It thus only remains to prove Claim 11.28. The conditions in the definition of well-
formedness can be enforced as follows by constraints.

(i) σunary.

(ii) That t′ begins with the string spre can be enforced by constraints that disallow,
for every position, all other labels. As an example, σ¬(/∗a) forbids the second
symbol to be an a (instead of the required b). The number of such constraints
is bounded by the length of spre times the size of the alphabet and is therefore
polynomial. Similarly, it can be enforced that the first 6n+ 1 positions after each
$-block conform to the tile encoding pattern and that, after each tile encoding,
there is another tile encoding or a $-block.

18We note that this is a key constraint, but also the only kind of FD with a binary set of attributes in
Σ.

176 11 Implication of XML-to-Relational Constraints

(iii) That the list of forbidden tiles is correct, for each tile, can similarly be expressed
by suitable σ¬-constraints.

(iv) First, the constraint (//a〈x〉, ∅→x.@) ensures that all a-nodes in the prefix have the
same data value. Next, the constraint (//a〈xa〉(∗∗∗)3n∗c〈xc〉, xa.@→xc.@) enforces
that all c-positions of the first tile have the same data value. The constraint

σc+ =def (//c〈x1〉(∗∗∗)2nc〈x2〉, x1.@→x2.@)

ensures that, in the first row, in every tile, all c-positions have the same data value
(because it is already guaranteed that all c-nodes of the first tile of the first row
have the same data value). The constraint

σc1 =def (//c〈x1〉(∗∗∗)2n+1c〈x2〉, x1.@→x2.@)

then enforces that in the first tile of the second row all c-positions have the same
data value. Together, σc+ and σc1 guarantee that within the encoding of every tile,
the c-positions carry the same data value.

(v) By (//$/c〈x〉, ∅→x.@) it can be ensured that the data value of the c-nodes of the
first tile is the same in all rows. Likewise, (//c〈x〉/∗∗$, ∅→〈x〉) ensures that the data
value of the c-nodes of the last tile is the same in all rows. That the column number
of one tile determines the column number of the next tile is already enforced by
σc+. Altogether these condition enforce (v).

(vi) The constraint (//b〈x〉, ∅→x.@) ensures that all b-nodes have the same data value
(which might or might not be different from the value of the a-nodes19). The
constraint (//b〈x1〉(∗∗∗)5n∗∗r〈x2〉, x1.@→x2.@) enforces that all r-positions in the
second parts of the first two tiles of the first row have the same data value. The
constraint

σr+ =def (//r〈x1〉(∗∗∗)2nr〈x2〉, x1.@→x2.@)

then ensures that, in the first row, all r-positions of second parts have the same
data value. This is because, the r-values of (the right part of) the second tile are
determined by those of the first tile, but all these values are already guaranteed to
be equal. Therefore, all further implied values of this kind, within the row, must
also take this value. However, this constraint (intentionally20) has no impact across
rows as there is no pair of r-nodes from different rows with distance 6n+ 1. The
constraint

σr2 =def (//r〈x1〉(∗∗∗)6n∗∗r〈x2〉, x1.@→x2.@)

19We note that it does not matter, whether the set of row numbers is disjoint from the set of column
numbers as they never interact with each other.

20This condition partially explains the complication of the encoding.

11.6 Lower Bounds by Reductions from Tiling Problems 177

then guarantees that, in the second row, all r-positions in the second part of the
first two tiles of the first row have the same data value21. Together, σr+ and σr2
enforce that, in every row, all r-positions of second parts of tiles have the same data
value.

(vii) The pattern of the constraint

σ2,1 =def (//r〈x1〉(∗∗∗)4n∗∗r〈x2〉, x1.@→x2.@)

matches corresponding r-nodes in second (and also in first) parts of tiles of (tile)
distance two in the same row. As the other constraints already enforce that all
second-part r-nodes in the same row have the same data value it always matches
inside a row with the same value for x1.@ and x2.@. Due to the length of the $-block
at the end of a row, it also matches between the r-nodes in the second part of the
last tile of a row and the r-nodes in the first part of the second tile of the next
row, as well as between the r-nodes in the second part of the last but one tile of
a row and the r-nodes in the first part of the first tile of the next row. Therefore
σ2,1 guarantees that, for every row, the r-nodes in the first parts of the first two
tiles have the same value as the r-nodes in the second parts of the last two tiles in
the previous row.22 Hence, σ2,1 and σr+ together ensure that the data value of all
r-nodes in first parts of tiles are just the row numbers of the previous row (if there
is a previous row).

It still remains to prove Theorem 11.1.

Statement of Theorem 11.1

(a) XCS-Imp(MSO,XKFD,Reg) is decidable.

(b) XC-Imp(FO,FD) is undecidable.

Proof. Statement (b) can be shown by a reduction from XCS-Imp(TP,FD,esDTD),
which is undecidable by Theorem 11.27. From a given tree-pattern based instance
(Σ, τ,D) it constructs an instance (Σ′, τ ′) as follows: the patterns from Σ and τ are
simply translated into FO formulas. We enforce that all considered trees are valid for D,
by some additional constraint σD = (mϕ, ∅→x), where mϕ is the mapping induced by
the FO formula ϕ(x) that selects all nodes if t contains a label not allowed by D and no
node otherwise. The constraint σD enforces that either D is satisfied or t has at most
one node.

Towards (a), let (Σ, τ, S) be an instance of XCS-Imp(MSO,XKFD,Reg), where S ∈ Reg
is a regular tree language.

Let n be the number of free variables of the MSO-formula defining the mapping of
τ . Let us assume that t is a counter-example for Σ and τ and that π = (π1, π2) is a

21We note that this constraint connects the last tile of a row with the second of the next row and the
last tile but one of one row with the first tile of the next row.

22Here we use the assumption that valid tilings have width ≥ 4.

178 11 Implication of XML-to-Relational Constraints

witness pair23 for t 6|= τ and, by Lemma 11.5, that t is π-diverse. We can conclude that
if Σ 6|=S τ , then there is a counter-example in which at most n data values (in the range
of π1 and π2) may occur twice, all other data values occur exactly once.

Let Γ be the set of labels used by S and Γ′ = Γ × {d1, . . . , dn,⊥}. We now look at
trees over the label set Γ′, with the intended meaning that a node labeled by (a, di) has
label a ∈ Γ and data value di and a node labeled by (a,⊥) has a unique data value. It is
now straightforward to construct an MSO formula that, given a tree t over the label set
Γ′, tests that de(t) |= D, where de(t) projects all labels to Γ and tests whether Σ and τ
holds in the resulting tree.

The decidability of XCS-Imp(MSO,XKFD,Reg) thus follows from the decidability of
the finite satisfiability problem for MSO logic on trees [TW68].

11.7 Conclusions and Further Research on
X2R-constraints

A big part of this thesis is dedicated to analyze XML-to-relational constraints. After giving
some basics in Chapter 9, we defined our framework of X2R-constraints in Chapter 10.
We especially focused on X2R-constraints based on tree patterns as mapping language
and functional dependencies as relational constraint language. We showed that existing
research towards XML integrity constraints is compatible with our framework, i.e., earlier
work can be defined by the means of our framework. Furthermore, in the current chapter,
we showed that we can use this framework to reason about integrity constraints. In
particular we looked at the complexity of the implication problem for XML integrity
constraints. There are two central insights that should be pointed out:

• Restricting equality generating dependencies (like functional dependencies) to
enforce equality only on nodes can lead to a much lower complexity of the implication
problem. Restriction to those constraints is also motivated by existing work on
XML normal forms [AL04].

• Navigational properties of the used constraint mechanism should be separated from
semantic features that can compare data values. In Chapter 12, we will present an
approach that uses FO logic for navigation and for specifying constraints. We will
see that allowing the logic to do both navigation and data comparisons leads to
high complexity.

Separating the navigational aspects (mappings) and the semantic aspects (relational
integrity constraints) allowed us a much easier access to the problem and has led
to some classes of integrity constraints with a tractable implication problem.

In the area of integrity constraints, there are many possible directions for further
research. In our studies we focused on functional dependencies and an XML variant

23We assume a more general notion of a witness pair here. It is clear that Lemma 11.5 can be
generalized for witness pairs, where the mapping is specified by an FO formula.

11.7 Conclusions and Further Research on X2R-constraints 179

of key constraints (XKFDs). Looking at relational databases, a canonical next step
would be to add foreign key constraints to the picture. This obviously has to include to
find a good specification for foreign key constraints in the XML context. Directly using
relational foreign key constraints will not work, as these constraints assume the existence
of relational key constraints, which are different from XKFDs.

A different direction of research would be to combine the research towards XML
functional dependencies with ongoing research in XML data exchange. Arenas et al. have
studied relational and XML data exchange [ABLM10]. Their framework for studying
source-to-target constraints in XML databases is very similar to our framework we used
to study functional dependencies and key constraints. An obvious direction of further
research is the combination of both frameworks to study source-to-target dependencies
in combination with target functional dependencies or key constraints (XKFDs).

It should be noted that contrary to Part I, here we have concentrated on the underlying
mechanisms for representing and inferring constraints, i.e., we did nod develop or describe
languages that can be used by database administrators to directly describe constraints.
One way to put this research into productive use is to use existing mechanisms for
specifying constraints (like the mechanisms defined in XML Schema), convert them
into our framework (as we have done in Chapter 10.4) and then use our knowledge
to, e.g., compute the inference relation. However, we have seen, that XML Schema
constraints cannot be represented in a one-to-one fashion in our framework, as they
involve a functional dependency (XKFD) and a non-null constraint. Towards XRMS’s,
which are aimed at large amounts of data instead of single documents, it might be worth
the effort to design a new constraint specification language. Such a language could be
more transparent to the user in which exact constraints are enforced on the data, allowing
a database programmer to more precisely specify the needed constraints. Towards such
a language there should be some more research to identify tractable instantiations of
our framework. To give a more concrete example, we have discovered, that allowing
descendant edges in tree patterns rises the complexity. However, without descendant
edges, it is not possible to describe constraints for documents of arbitrary depth. It
would be nice to identify tractable fragments that allow limited use of descendant edges
to combine low complexity with high expressivity.

181

12 Two Variable First Order Logic and
Key Constraints

As already pointed out in Chapter 9, integrity constraints (on relations) are heavily based
on first order logic. Furthermore, it is well known that two-variable first order logic
has interesting connections to the foundations of XML. For instance, Core XPath 1.0
corresponds exactly to two-variable logic on unranked, ordered trees [Mar05] and the
regular tree languages, which capture the structural part of existing schema languages,
exactly correspond to existential monadic second order logic with two first-order variables
(see, e.g., [BMSS09]).

The main results of [BMSS09, BMS+06] are that

• satisfiability of two-variable logic over data words is decidable even if formulas can
use the linear order and the successor relations on positions [BMS+06], and that

• satisfiability of two-variable logic over data trees is decidable if only the parent-child
relationship and the direct sibling relationship between the children nodes of a
parent are available [BMSS09].

The former problem has unknown (but probably huge) complexity, the latter can be
solved in 3-nexptime.

Even though two-variable logic can express a lot of interesting properties of XML
documents, their ability to express integrity constraints is limited. More precisely, they
can express in general key, foreign key and inclusion constraints only if they are unary.

As an example that integrity constraints can indeed be expressed by two variable logic,
we once more come back to our running example and give two variable formulas for our
example constraints, i.e., user ids are unique and for each document, the document owner
exists. For readability, we use the same variable names, as in Section 10.1. However, we
add upper indices x and y to denote whether the variable should be the first or the second
variable in a two variable formula, i.e., to obtain an equivalent two variable formula, all
variable with upper index x should be replaced by x and all variables with upper index y
should be replaced by y.

Ψuid-unique = ∀vxu, wyu.
[
USER-ID(vxu) ∧USER-ID(wyu) ∧ vxu ∼ wyu ∧(

∃vyp . PERSON(vyp) ∧ E(vxu, v
y
p)
)
∧(

∃wxp . PERSON(wxp) ∧ E(wyu, w
x
p)
)]
→ vxu = wyu

182 12 Two Variable First Order Logic and Key Constraints

Ψuid-exists = ∀vxd , vyu. DOCUMENT(vxd) ∧USER-ID(vyu) ∧ E(vxd , v
y
u) →(

∃wxu. USER-ID(wxu) ∧ vyu ∼ wxu ∧
(
∃wyp . PERSON(wyp) ∧ E(wyp , w

x
u)
))

In this chapter, we aim to shed some light on the problem to decide whether, for a
given formula of two-variable logic and a set of (not necessarily unary) key constraints,
there is an XML document that fulfills the formula and the constraints. However, as the
problem has turned out to be quite complex, we restrict to study it only for data words.

After some definitions, we will show in Section 12.2 that the complexity of satisfiability
of two-variable logic with equality on data value and successor relation drops to nexptime
when considering strings instead of trees. On top of this result we show our main result
in Section 12.3, where we show that the problem remains decidable when adding k-ary
key constraints. Note that we are not able to give an elementary upper bound for the
problem. Whether the corresponding problem for trees is decidable is still open.

12.1 Definitions

A data word with symbols over an alphabet Σ and a data domain1 dom is a finite,
non-empty sequence of pairs w = (σ1, d1) · · · (σn, dn) where each σi ∈ Σ and di ∈ dom.
A data word with propositions over a finite set P of propositions and a data domain dom
is a finite sequence w = (P1, d1) · · · (Pn, dn) where each Pi ⊆ P and di ∈ dom. For data
words, we denote the length n of w by |w|. We call the string str(w) =def σ1 · · ·σn the
string projection of w, likewise for data words with propositions. The set of data values
occurring in w is denoted by dom(w). For each d ∈ dom(w), the class of d in w is the
set Classd(w) of positions with value d. A zone of a data word is a maximal substring in
which all positions carry the same data value.

The Parikh image parikh(w) of a Σ-word (or data word over Σ) is the function that
maps every symbol in Σ to the number of its occurrences in w. The Parikh image
parikh(L) of a language is just the set {parikh(w) | w ∈ L}.

An atomic P-type is a set of propositions and negated propositions from P. The
full atomic P-type of a position i in a data word is the formula αP (x) =

∧
p∈Pi p(x) ∧∧

p∈P−Pi ¬p(x). The set of full atomic types over P is denoted by T (P). Clearly, there
is a simple relationship between subsets P ⊆ P and full atomic P-types α. Therefore we
sometimes represent a full atomic type α by the set P of its positive propositions and
can identify T (P) with 2P .

In this chapter, we deal mainly with data words over propositions, however we will
frequently make use of the fact, that data words over a set P of propositions can be
considered as data words with symbols over the alphabet T (P). Likewise, we will define
automata for words with propositions as (usual) automata over T (P).

Note that upper bounds for data words over propositions (as Theorem 12.2) translate
to data words with symbols but not necessarily vice versa.

1In this chapter we use dom instead of D, as D can too easily be confused with dog sets, which we
will introduce later.

12.2 FO2(∼,+1) without Key Constraints 183

Definition 12.1 A key constraint κ for words with symbols is a sequence of entries from
(2Σ × {•, ◦}). For a key constraint κ = (K1,⊗1) · · · (Kk,⊗k) we call k the length of κ.

We say that a key constraint κ = (K1,⊗1) · · · (Kl,⊗l) matches a position i in a data
word w = (a1, d1) · · · (an, dn) over an alphabet Σ if for every j ∈ [1, k], ai+j−1 ∈ Kj .

A key constraint is violated in w if it matches two different positions i1 6= i2 and, for
every j ∈ {1, . . . , l}, if ⊗j = • then di1+j−1 = di2+j−1. Otherwise it is fulfilled. We write
w |= κ if κ is fulfilled in w and, for a set K of key constraints, w |= K if w fulfills every
key constraint in K. For data words with propositions the definition is analogous with
T (P) in place of Σ and full types αi in place of symbols ai.

For a set K we denote the maximum length of a key in K by k(K).

In this chapter, a data word w = (P1, d1) · · · (Pn, dn) with propositions from P is
represented by a logical structure with universe {1, . . . , n}, a successor relation +1, an
equivalence relation ∼ that holds for two positions if they carry the same data value, and
one unary relation p for every p ∈ P .

The logic FO2(∼,+1) is just first-order logic over such structures, restricted to the use
of variables x and y. Thus, quantifiers range over positions of a data word, the formula
x+ 1 = y expresses that y is the right neighbor of x and p(x) indicates that at position
x proposition p holds. A formula x ∼ y expresses that at x and y the same data value
occurs.

FO2(∼,+1) over words with symbols is defined analogously with atomic formulas σ(x)
for symbols σ ∈ Σ.

In the following we consider functions from I to N, for various sets I. Each such
function can be considered as a vector with |I| entries from N. A linear set Lin over I is
a set of functions I → N that can be represented as {f +

∑
i ji fi | ji ∈ N}, where f and

all fi are functions I → N. A semi-linear set SLin over I is the union of finitely many
linear sets.

A counting language L(A,SLin) is defined by a finite automaton A over Σ and a semi-
linear set SLin over Σ. A string v is in L(A, I), if and only if v ∈ L(A) and parikh(v) ∈ I.
The term counting language has already been used in [CDFI12].

12.2 FO2(∼,+1) without Key Constraints

The main theorem of this section is

Theorem 12.2 The satisfiability problem for FO2(∼,+1) formulas over data words with
propositions is decidable in nexptime.

Note that the theorem is formulated for data words with propositions but it also holds
for data words with symbols.

Our approach is an adaptation of the techniques of [BMSS09] from trees to strings. The
same approach has already been used in [NS11]. We improve upon the results in [NS11]
by providing a better upper bound (nexptime instead of 2-nexptime).

We will see, that we can divide the constraints enforced on a string by an FO2(∼,+1)
formula ϕ in two classes: local constraints (e.g. every position labeled a has a neighbor

184 12 Two Variable First Order Logic and Key Constraints

Algorithm 11 Test satisfiability of FO2(∼,+1)-formulas

1: function sat(ϕ)
2: Compute ϕ′ in Scott normal form s.t. ϕ′ is satisfiable iff ϕ is satisfiable
3: Compute ϕ′′ in data normal form s.t. ϕ′′ is satisfiable iff ϕ′ is satisfiable
4: Guess string profile T
5: if T is not compatible with ϕ′′ then reject
6: Guess border profile Tb
7: if Tb is not compatible with T then reject
8: Compute counting language L(A,SLin) s.t. L(A,SLin) 6= ∅ iff Tb is satisfiable
9: if L(A,SLin) is satisfiable then accept

10: reject

labeled b with a different data value) and global constraints (e.g. there are no two a
positions with the same data value). Intuitively, local constraints stem from the use of
the successor relation and global constraints stem from subformulas not speaking about
successors.

The basic approach of [BMSS09] and [NS11] is to construct a string automaton A that
checks the local constraints and a (semi-)linear set Lin containing Parikh images of string
projections that encode the global constraints. A formula ϕ is satisfiable, if and only if
the counting language L(A,Lin) is nonempty. As an intermediate representation (string)
profiles are defined, which allow an easier separation of the global and local constraints
imposed by a formula.

We will define profiles in much the same way as [BMSS09, NS11], but our approach
will involve an additional intermediate representation, which we denote by border profiles
to achieve a better upper bound.

We depict the high-level algorithm for deciding satisfiability of FO2(∼,+1)-formulas as
Algorithm 11. We introduce the necessary formalisms (Scott normal form, data normal
form, string profile, border profile), where they are needed.

The intuitive idea behind string profiles and border profiles is to capture the constraints
of the formula with syntactically very restricted formalisms. The global constraints can
then be catched by a semi-linear set and the local constraints by a string automaton.
Compatibility will be defined in such a way, that a string profile T is compatible with a
formula ϕ, if and only if any solution of T yields a solution for ϕ. The same holds for
compatibility of string profiles and border profiles.

As the proof uses many definitions, we list the important terms in Table 12.1 together
with brief definitions. Formal definitions are given in the proof at the position they are
needed.

12.2 FO2(∼,+1) without Key Constraints 185

term symbol definition

class c maximal subsequence with the same data value

zone z maximal substring with the same data value

P2 type α full atomic formula over P2

set of all P2 types T (P2) powerset of P2

dog D (set of) P2 type(s) occurring exactly once in a class or zone

sheep S (set of) P2 type(s) occurring arbitrarily often in a class or zone

dog zone zone containing at least one dog type

sheep zone zone consisting only of sheep types

class type τ set of all P2 types of a class, which may occur exactly once (dogs D)
or arbitrarily often (sheep S)

zone type τ the same as class type, but refers to a single zone

border type β specifies the leftmost and rightmost border P2 type of a zone and
whether the zone is a sheep or dog zone

set of all border types B B = T (P2)× T (P2)× {ηD, ηS}
border string string over the alphabet B × (dom∪{⊥}) containing all border types

of a string together with their (possibly unknown) data value

explicit data value data value assigned in the border string

class border type τb set of border types occurring in a class

profile T set of class types occurring once/twice/more than twice in a string

border profile Tb set of class border types occurring in a string

T (w) unique profile of the string w

Tb(w) unique border profile of the string w

Table 12.1: Terms used in the proof of Theorem 12.2, together with the usually used
symbols and a brief definition.

12.2.1 Normal Form

In this section, we will bring formulas in data normal form, which allows us to separate
global and local constraints enforced by a formula. In a first step, we will bring a formula
into Scott normal form.

An FO2-formula is in Scott normal form (SNF) if it is of the form

ψ =
(
∀x∀y χ ∧

∧
i

∀x∃y χi
)
,

where χ and each χi are quantifier-free FO2(∼,+1) formulas (see [GO99] for a reference).

In a standard fashion, any FO2(∼,+1) formula can be translated into a formula in Scott
normal form that is equivalent with respect to satisfiability, as stated in the following
lemma2.

Lemma 12.3 For each FO2(∼,+1) formula ϕ a FO2(∼,+1) formula ϕ′ in Scott normal
form can be computed in polynomial time such that ϕ is satisfiable over data words if
and only if ϕ′ is satisfiable over data words.

2If stated for data words with symbols this lemma would come with an exponential blow-up of the
number of symbols due to the need to encode all possible combinations of the Ri relations.

186 12 Two Variable First Order Logic and Key Constraints

Proof. From ϕ one can compute an existential second-order formula

ψ = ∃R1 · · ·Rm
(
∀x∀y χ ∧

∧
i

∀x∃y χi
)
,

that is equivalent to ϕ and where the relation symbols Ri are unary. Let P ′ = P ∪
{p1, . . . , pm}, where the propositions pi are new. Let ϕ′ be the formula obtained from
ψ by removing the quantification of the relations Rj and replacing each atom Rj(x) by
pj(x) (and likewise each Rj(y) by pj(y)). Clearly, ϕ′ is satisfied by some data word over
P ′ if and only if ϕ is satisfied by some data word over P.

Thus, we can assume henceforth that the FO2(∼,+1)-formula ϕ that shall be tested
for satisfiability is in Scott normal form.

In the following, we will annotate word positions by propositions that reflect the
propositions of the adjacent positions and whether the own data value equals the data
values of the adjacent positions. To this end we use additional propositions of the form
p−1 and p+1, for every p ∈ P. We define P−1 = {p−1 | p ∈ P} and P+1 = {p+1 |
p ∈ P}. Furthermore, we use the additional propositions p−1

= and p+1
= to indicate data

equalities and p� and p� to mark border positions. Finally, the propositions p1 and
p2 are used to mark up to two occurrences of a type in a class. By P1 we denote
P ∪ P−1 ∪ P+1 ∪ {p−1

= p+1
= , p�, p�} and by P2 = P1 ∪ {p1, p2}. Clearly, |P2| = O(|P|).

Before we continue, let us clarify the relationship between full P-types and full P2-types.
Each P1-type basically consists of the P-type of a position, the P-types of its left and
right neighbor and the information whether the left and right neighbor have the same
data value as the position. Thus, we can view a P1-type as a tuple (α, α−1, α+1, p−1

= , p+1
=)

of three full P-types and two atomic propositions. In P2-types, the propositions p1 and
p2 additionally mark up to two occurrences of every P1-type α in a class.

We will use the additional propositions to rewrite a given formula in a way, that it does
not need the successor relation. This way, we separate the global constraints, encoded
in the rewritten formula, from the local constraints, encoded by validity of data words,
where a data word is valid if the additional propositions are consistent, as described
below.

A data word w = (P1, d1) · · · (Pn, dn) over P2 is valid if it fulfills the following conditions.

(i) P1 contains p� but not p−1
= and no proposition of the form p−1.

(ii) Pn contains p� but not p+1
= and no proposition of the form p+1.

(iii) If i < n then Pi contains a proposition p+1 if and only if Pi+1 contains p. Further-
more, it contains p+1

= if and only if di = di+1.

(iv) If i > 1 then Pi contains a proposition p−1 if and only if Pi−1 contains p. Further-
more, it contains p−1

= if and only if di = di−1.

(v) If a class contains at least one position with a P1-type α then it contains exactly
one such position with proposition p1 (and at this position p2 does not hold).

12.2 FO2(∼,+1) without Key Constraints 187

(vi) If a class contains at least two positions with a P1-type α then it contains exactly
one such position with proposition p2 (and at this position p1 does not hold).

We call a data word over P1 valid if it fulfills all but the last two conditions. A data word
over P1 cannot fulfill the last two conditions, as P1 does not contain the propositions p1

and p2. By de(w) we denote the data word over P that is obtained from a data word w
over P2 by dropping all other propositions. Clearly, for every data word w over P there
is a unique valid data word w′ over P1 with de(w′) = w. But there can be more than
one such w′ over P2.

We refer to P2-types which have p1 or p2 as dog types and to other P2-types as sheep
types.

Definition 12.4 We say an FO2(∼) formula over the proposition set P2 is in data normal
form, if it is a conjunction of formulas of the following forms, where α and β always
denote dog types and δ(x, y) is always one of x ∼ y and x 6∼ y:

(i) ¬
(
∃x α(x)

)
(ii) ¬

(
∃x∃y α(x) ∧ β(y) ∧ δ(x, y)

)
(iii) ∀x∃y α(x)→

∨
i

βi(y) ∧ δi(x, y)

It is important to note that formulas in data normal form do not use the successor
relation explicitly. However, the definition of valid data words uses the successor relation.

The following proposition says, that we can rewrite every FO2(∼,+1) formula to data
normal form. The proposition only talks about equivalence up to satisfiability, however
in fact, the satisfying models are equal on the common set of propositions and only differ
in the additional propositions introduced in P2.

Proposition 12.5 Let ϕ be an FO2(∼,+1) formula over proposition set P. Then there
exists an FO2(∼) formula ϕ′ over proposition set P2 in data normal form, such that

• for every valid data word v it holds de(v) |= ϕ if and only if v |= ϕ′

• ϕ′ is of at most exponential size; and

• ϕ′ can be computed from ϕ in exponential time.

Proof. Let ϕ be a formula of the form(
∀x∀y χ ∧

∧
i

∀x∃y χi
)
.

It is straightforward to bring χ into CNF, and to rewrite ∀x∀y χ as a conjunction of
(exponentially many) formulas of the form:

ψ = ∀x∀y¬
(
(α(x) ∧ β(y) ∧ δ(x, y) ∧ γ(x, y)

)
,

188 12 Two Variable First Order Logic and Key Constraints

where α and β are full atomic P-types, δ(x, y) is either x∼y or x 6∼y, and γ(x, y) is one of
x = y, x = y+ 1, x = y− 1 and x /∈ [y−1, y+1]. The latter expression is an abbreviation
for the formula x 6= y−1 ∧ x 6= y ∧ x 6= y+1.

Note that ψ can be rewritten to

ψ = ¬
(
∃x∃y α(x) ∧ β(y) ∧ δ(x, y) ∧ γ(x, y)

)
.

While this form is obviously equivalent to the one above, it gives a better intuition about
the meaning of ψ, namely that every of the formulas ψ just disallows certain patterns to
appear in the string.

We show now, how a formula ψ can be rewritten to use the additional propositions of
P2 in place of the successor relation. We distinguish cases based on γ(x, y).

In the first case, γ(x, y) is x = y. Note that in this case ψ is trivially true, if δ(x) is
x 6∼ y or if α(x) and β(y) are contradictory. Therefore, we assume that α(x) and β(y) are
the same full atomic P-type and δ(x, y) is x ∼ y. Then ψ can be rewritten as ¬∃x α(x).

The next two cases where γ(x, y) is one of x = y + 1 and x = y − 1 are completely
symmetric. In these cases, we can rewrite ψ as a conjunction of formulas of the form
¬∃x α′(x), where α′ is a full atomic P2-type that is compatible with the P-type α.
Remember that any P2-type encodes the P-types of its left and right neighbor and
whether the neighbors have the same data value.

The last case is γ(x, y) is x /∈ [y− 1, y+ 1], that is x and y are not neighbored.
It can be shown, that ψ can be rewritten as a conjunction of formulas of the form
¬∃x∃y α′(x) ∧ β′(y) ∧ δ(x, y), where α′ and β′ are full atomic P2-types and δ is as
before. The proof is a straightforward but tedious case analysis, as special attention
needs to be taken, when a P2-type α′ indicates, that α and β occur next to each other.
In this case the additional propositions p1 and p2 can be used to detect two occurrences
of α-β-neighbors and forbid these. If α and β do not occur as neighbours, it is easier, as
we can forbid types α′ and β′ to occur at the same time.

We now turn to formulas of the form ∀x∃y χi. The formula χi can be transformed
into a conjunction of (possibly exponentially many) formulas of the form

α(x)→
∨
i

βi(y) ∧ δi(x, y) ∧ γi(x, y)

where α is a full atomic P2-type, each of the βi is a full atomic P-type and δi and γi are
as before. Note that we require α to be a P2-type instead of a P-type. This can easily
be accomplished by adding one subformula for each P2-type compatible with a given
P-type.

We will concentrate on the subformulas of the form βi ∧ δi ∧ γi. Note that such a
subformula can be rewritten to either true or false in the case that γi is one of x = y,
x = y + 1 and x = y − 1, as both, the P-type of y and the logical value of δi(x, y) can be
inferred from the P2-type of x. We therefore assume that all γi are x /∈ [y−1, y+1].

It can again be shown by a case analysis, that every subformula βi(y) ∧ δi(x, y) ∧ x /∈
[y−1, y+1] can be rewritten as a disjunction of formulas of the form β′(y) ∧ δi(x, y),

12.2 FO2(∼,+1) without Key Constraints 189

where β′ is a full atomic P2-type. Again the propositions p1 and p2 can be used to
identify a second occurrence of a P2-type, in case there are occurrences of α and β as
neighbors.

12.2.2 String Profiles

In the following, we define class type functions for P2-words. The intention is that the
class type function of a valid P2-word w contains all relevant information to decide
whether w |= ϕ, where ϕ is a formula in data normal form.

If w is a valid data word over P2 and c a class of w, the class type τ of c is the pair
(D,S), where

• D is the set of all full types α in c that contain p1 or p2; and

• S is the set of all full types α such that

– α does not contain p1 or p2; and

– (α \ {¬p2}) ∪ {p2} occurs in c.

We call the types in D dog types of τ and the types in S sheep types. Note that dog types
occur exactly once in a class, whereas sheep types can occur arbitrarily often (including
not occurring at all). Note further that if w is valid then each class type of every class in
w fulfills that

• if it contains a P1-type α at all then D contains α ∪ {p1,¬p2}, and

• if it contains a P2-type α with {¬p1,¬p2} ⊆ α, then α ∈ S.

Furthermore, no full types containing p1 and p2 occur in a class type. We call a class
type valid if it fulfills these conditions.

Note that the set of sheep types of a class can easily be computed from the set of
dog types. However, we explicitly denote the sheep types, because the sheep types will
become important when talking about individual zones, where it will not be possible to
compute the sheep types from the dog types, as the corresponding dog types can occur
in different zones.

By CT(P2) we denote the set of all valid class types. The class type function ctfw :
CT(P2)→ N0 of a data word w over P2 maps every class type to the number of classes
of w with this class type.

Intuitively, a profile is an abstraction of a class type function, where we are only
interested, if a class type occurs exactly once, more than once or not at all. Formally,
a profile is a function T : CT(P2) → {0, 1, ∗}. A class type τ = (S,D) occurs in T if
T (τ) 6= 0. We say that a class type function ctf is compatible with a profile T (short:
ctf |= T) if, for every class type τ either T (τ) = ctf(τ) or T (τ) = ∗ and ctf(τ) > 1.

A valid data word w is a solution for a profile T (short: w |= T) if its class type
function ctfw is compatible with T . A profile that has a solution is called satisfiable.

The size of a profile T , denoted by |T |, is the number of occurring class types, that is
|T | = |{τ | T (τ) 6= 0}.

190 12 Two Variable First Order Logic and Key Constraints

We show in the following proposition that profiles contain all necessary information to
decide whether a valid data word satisfies an FO2(∼) formula in data normal form. In
particular, we show that either for all solutions w of a profile T it holds de(w) |= ϕ or for
none. In the former case we call T ϕ-compatible. Statement (c) will be one ingredient
for our small model property. It says that removing all but exponentially many (in the
size of ϕ) class types from a ϕ-compatible profile T , still yields a ϕ-compatible profile.
However, (c) is only the first step towards a small model property. In particular it does
not guarantee, that the smaller profiles are still satisfiable.

Proposition 12.6

(a) Let ϕ be a FO2(∼)-formula in data normal form. For each profile T either for all
solutions w to T it holds w |= ϕ or for all solutions w to T it holds w 6|= ϕ.

(b) There is an algorithm that on input ϕ and a satisfiable profile T , decides whether T
is ϕ-compatible in time that is polynomial in |ϕ| and |T |.

(c) Let T be a ϕ-compatible profile. Then there exists a set of class types T̃ , such
that |T̃ | ≤ 2|T (P2)| and every profile T ′, which fulfills the following conditions is
ϕ-compatible.

• For all τ ∈ T̃ it holds that T ′(τ) = T (τ).

• For all τ with T (τ) = 0 it holds T ′(τ) = 0.

Proof. Let T be a profile and w |= T be a data string compatible with T . It is straight-
forward to verify, that w |= ϕ, if and only if all of the following are true:3

(1) For every subformula χ = ¬
(
∃x α(x)

)
of type (i) in ϕ it holds that there does not

exist a class type τ = (D,S), such that α ∈ D and T (τ) 6= 0.

(2) For every subformula χ = ¬
(
∃x∃y α(x) ∧ β(y) ∧ x ∼ y

)
of type (ii) in ϕ it holds

that there does not exist a class type τ = (D,S), such that {α, β} ⊆ D and T (τ) 6= 0.

(3) For every subformula χ = ¬
(
∃x∃y α(x) ∧ β(y) ∧ x 6∼ y

)
of type (ii) in ϕ it holds

that there does not exist class types τ = (D,S) and τ ′ = (D′, S′), such that α ∈ D,
β ∈ D′, T (τ) 6= 0, T (τ ′) 6= 0 and if τ = τ ′ then T (τ) = ∗.

(4) For every subformula χ = ∀x∃y α(x) →
∨
i

βi(y) ∧ δi(x, y) of type (iii) in ϕ and

every class type τ = (D,S) with α ∈ D and T (τ) 6= 0, one of the following is true:

(4a) There exists an i, such that δi(x, y) is x ∼ y and βi ∈ D.

(4b) There exists a class type τ ′ = (D′, S′) and an i, such that δi(x, y) is x 6∼ y,
βi ∈ D′, T (τ ′) 6= 0, and if τ = τ ′ then T (τ) = ∗.

3The formula types are from Definition 12.4.

12.2 FO2(∼,+1) without Key Constraints 191

Statement (a) follows, as all these conditions only depend on T and not on the concrete
string w, which is compatible to T . Statement (b) follows from the fact that all these
conditions can be checked in polynomial time.

Towards (c), we choose T̃ in such a way that for every P2-type α that occurs in T

• there are two class types τ1 and τ2 in T̃ such that T (τ1) 6= 0, T (τ2) 6= 0, α ∈ τ1,
and α ∈ τ2; or

• there exists only one class type τ such that T (τ) 6= 0 and α ∈ τ . This τ is in T̃ .

It is easy to see, that the size of T̃ is at most 2|T (P2)|.
To analyze the impact of changes of a profile T with respect to the conditions (1) to (4),

we distinguish three different (atomic) changes. A class type τ /∈ T̃ can be removed from
T , that is T (τ) can be changed to 0, it can be decreased, that is T (τ) is changed from ∗
to 1, and it can be increased, that is T (τ) is changed from 1 to ∗. Note that we do not
allow to add new class types to a profile.

We now show, that conditions (1) to (4) cannot become false by changing a class type
that is not in T̃ . It is easy to observe, that the conditions (1) to (3) cannot become
false by removing or decreasing a class type. Furthermore the conditions (1), (2) and (4)
cannot become false by increasing a class type.

We still have to show, that

(A) Condition (4) cannot become false by removing or decreasing a class type τ /∈ T̃ ;
and

(B) Condition (3) cannot become false by increasing a class type τ /∈ T̃ .

We start with (A). Let χ be a subformula and τ be a class type as in (4). Then
either (4a) has to be true or (4b) has to be true. If (4a) is true, it cannot become false
by removing or decreasing some class type. Therefore, we assume that (4b) is true.
However, (4b) cannot become false by removing/decreasing a class type not in T̃ , as for
each βi (from (4b)) there are at least two class types τ with βi ∈ τ in T̃ (or there is only
one, but this is the only such class type in T). We note, that we might need two such
class types in T̃ , if the first class type τ is exactly the type from (4) and T (τ) = 1.

We continue with (B). We first observe, that Condition (3) can only become false, if
we increase a class type τ that has a P2-type β not occurring in any other class type of
T . However, all class types τ with a P2-type β that does not occur in any other P2-type
of T are contained in T̃ . This concludes the proof.

Proposition 12.6 (a) and (b) almost yield a decision algorithm for FO2(∼,+1). This
algorithm could guess a profile T and test whether it is ϕ-compatible. However, it could
happen that T does not have a solution. In that case, Proposition 12.6 does not guarantee
a correct answer. Thus, we need an additional algorithm that tests satisfiability of profiles.
Then, we can decide satisfiability of ϕ by guessing T and testing that it is satisfiable and
ϕ-compatible.

192 12 Two Variable First Order Logic and Key Constraints

12.2.3 Border Strings and Border Profiles

Up to now, we have profiles, which represent the constraints of the formula ϕ. To decide,
whether a profile T is satisfiable, we need to find a data word w that not only fulfills the
constraints of T , but also is valid. In particular, data words have two different definitions
of zones. First, zones are defined by data values and second, P2-types encode, where one
zone ends and another zone begins. To find a solution for a profile T , we need to find a
valuation of some string over T (P2) with data values, such that the zone information
inside the P2-types is consistent.

Towards this goal, we will introduce border strings, where one position in the border
string represents a complete zone. A position in the border string has a data value and a
label describing the borders of the represented zones. This label will be called the border
type.

Just as we have introduce class types, that encode which cP2-types occur in a class, we
will introduce class border types, that encode which border types occur in a class. And
just as we have introduced profiles, that encode which class types occur in a data string,
we will introduce border profiles that encode which class border types occur in a class.

Let w be a valid data word over P2. Recall that a zone of w is a maximal substring in
which all positions carry the same data value. Let c be a class in w and let τ = (S,D)
be its class type. Towards the definition of border types and border strings, we first look
at validity of individual zones.

For each zone z of c, the zone type τ = (Dz, S) of z is the set S of sheep types of c
and the set of dog types Dz that occur in z. A zone z is called a dog zone if Dz 6= ∅
otherwise a sheep zone. It should be emphasized that the set Dz only includes the dog
types of the zone itself, while the set S of sheep types includes all sheep types of the
entire class. We write z |= τ if a zone z satisfies a zone type τ , that is all sheep types
occurring in z are from S and z contains exactly the dog types of Dz.

Clearly, all sets Dz of a class are pairwise disjoint and together they contain all types
from D, that is, they induce a partition of D. We note also that each class c can have at
most |T (P)| dog zones.

In the following, we describe how to test whether a profile is satisfiable. We therefore
define validity of zones to enforce local consistency inside zones and border strings, which
will be used to enforce local consistency at zone borders.

When talking about (strings of) a single zone, we usually omit the data values of the
positions, as they have to be equal anyway. Note that the following conditions for valid
zones are directly derived from the definition of a valid data string.

A zone z = α1 . . . αn is valid, if the following conditions are met.

• α1 does not contain p−1
= and αn does not contain p+1

= ;

• for i < n

– αi contains p+1
= and does not contain p�; and

– αi contains a proposition p+1, if and only if αi+1 contains p;

• for i > 1

12.2 FO2(∼,+1) without Key Constraints 193

– αi contains p−1
= and does not contain p�; and

– αi contains a proposition p−1, if and only if αi−1 contains p;

The border type β = (α1, αn, η) ∈ B = T (P2)×T (P2)×{ηD, ηS} of a zone z = α1 . . . αn
consists of its leftmost and rightmost P2 type and the information whether the class
contains any dog type (denoted by ηD) or only sheep types (denoted by ηS). We denote
the set of all border types by B and the subsets of all dog and sheep border types by BD
and BS respectively. We write z |= β, if a zone satisfies a border type.

A border type β is compatible with a zone type τ , if there exists a valid zone, such
that z |= β and z |= τ .

Proposition 12.7 Let τ be a zone type and β be a border type. It can be checked
nondeterministically in time exponential in |P|, whether τ is compatible with β.

Proof. Let Aβ be the minimal DFA that accepts all valid zone strings z, which conform
to the border type β. It is easy to see, that Aβ has at most exponential size in |P|, as it
only needs to remember the last read symbol.

With eα we denote the indicator function for α ∈ T (P). We define the linear set Linτ
according to the zone type τ = (D,S).

Linτ =

{∑
α∈D

eα +
∑
α∈S

iαeα

∣∣∣∣∣ iα ∈ N0

}
.

The first sum encodes, that every dog type of τ should occur exactly once and the
second sum encodes that every sheep type of τ may occur arbitrarily often.

It is easy to see, that τ is compatible with β, if and only if L(Aβ ,Linτ) 6= ∅.
As the automaton Aβ is of at most exponential size in |P2|, the Parikh image of L(Aβ)

has coefficients of at most exponential size (see, e.g., [To10, Proposition 4.3]). Thus, it
can be tested non-deterministically in exponential time (in |P2|) whether there is a zone
string v ∈ L(Aβ ,Linτ).

A border string is a string over the alphabet Γ = B× (dom∪{⊥}), where each position
has a border type and might have a data value (from dom). However, we allow positions
to be labeled with ⊥ to indicate that they have an unknown data value.

A border string v = (α1�, α�1, η1, d1) · · · (αn�, α�n, ηn, dn) is valid, if the following
conditions hold.

• α1� contains p� and α�n contains p�; and

• For every pair of adjacent symbols (αi�, α�i, ηi, di) and (αi+1�, α�i+1, ηi+1, di+1)

– α�i contains a proposition p+1 if and only if αi+1� contains p; and

– α�i contains a proposition p if and only if αi+1� contains p−1

– either di 6= di+1 or di = di+1 = ⊥.

194 12 Two Variable First Order Logic and Key Constraints

Again, the constraints are directly derived from validity of data strings, i.e., if a data
string is valid, then the corresponding border string (as defined below) is also valid.

With a data word w = (z1, d1) . . . (zm, dn) over P2, where z1, . . . , zn are the zones of
w and d1, . . . , dn are their data values, we associate the border string

Γ(w) =
(

first(z1), last(z1), η1, d1

)
· · ·
(

first(zn), last(zn), ηn, dn

)
,

where first(zi) and last(zi) are the first and last P2 type of a zone and ηi = ηD, if and
only if the zone zi contains any dog type.

Using these definitions, we now define class border types. As class types describe how
often some P2-type α occurs in a class c, class border types describe how often some
border type β occurs in c.

A class border type τb : B → {0, 1, . . . , |T (P2)|, ∗} maps each border type to a number
of occurrences, where ∗ means arbitrarily often. A class border type is valid, if all sheep
border types are either mapped to 0 or ∗ and no dog border type is mapped to ∗. We
denote the set of all valid class border types with BCT(P2).

Note that class types cannot be mapped to class border types in a one to one fashion.
This is due to the fact, that there may be different border types for the same zone type
(and vice versa).

A valid class border type τb is compatible with a class type τ = (D,S), if there exist
zone types τ1 = (D1, S), . . . , τn = (Dn, S) and border types β1, . . . , βn, such that

• D = D1 ∪ · · · ∪Dn;

• Di ∩Dj = ∅ for i 6= j;

• βi is compatible with τi for i ∈ [1, n]; and

• the frequencies of border types in the sequence β1, . . . , βn match the frequencies
required by τb

We also define border profiles analogously to profiles. Intuitively, the differences
between profiles and border profiles are:

• a border profile talks about class border types instead of class types; and

• a border profile has more detailed information about the frequency of class border
types.

The latter is necessary, as there might be different class types, which all have to occur
exactly once and are compatible with the same class border type.

Formally, a border profile is a function Tb : BCT(P2)→ {0, 1, . . . , 3|T (P2)|, ∗}. A class
border type τb occurs in Tb if Tb(τb) 6= 0. A valid border string v, such that v has only
explicit data values (i.e. no ⊥ markings), is a solution to Tb, if for every class border type
τb such that Tb(τb) 6= ∗, it holds that there are exactly Tb(τb) classes with class border
type τb in v and for every class border type τb such that Tb(τb) = ∗, there are more than
3|T (P2)| many classes with class border type τb in v. A data string w is a solution to

12.2 FO2(∼,+1) without Key Constraints 195

Tb, if Γ(w) is a solution to Tb. A border profile Tb is compatible with a profile T , if for
each valid border string v, such that v has only explicit data values and v is a solution to
Tb, there exists a valid data string w, such that Γ(w) = v and w is a solution to T . We
denote the unique border profile of a data string w with Tb(w).

The following proposition looks at the relationship between border profiles (of border
strings) and profiles (of data strings). To convert (valid) border strings without unknown
data values to (valid) data strings, we replace border types with zone strings. A border
type β with data value d in a border string v is replaced by a zone string α1 . . . αn ∈ T (P2)∗

by replacing (β, d) in v with (α1, d) . . . (αn, d). Replacing all border types in v with
compatible zone strings yields a data string w. The data string w is valid, if v is valid
and all zone strings are valid.

Proposition 12.8

(a) For each profile T and each solution w to T , the border profile Tb(w) is compatible
with T .

(b) There exists a non-deterministic algorithm that given a profile T and a satisfiable
border profile Tb decides in time polynomial in the size of T , Tb, and T (P2) whether
T and Tb are compatible.

Proof. Towards (a), let v be the border string of w and u be a valid border string (without
⊥ markings) that is a solution for the border profile Tb = Tb(w).

We will use the following fact throughout the proof:

(F) Let c be a class of u, τb be the border type of c and τ be a class type compatible
with τb, then the border types of c can be replaced by zone strings, such that the
class type of c is τ .

We note that (F) follows from the definition of compatibility of class border types with
class types. Let β1, . . . , βn be the border types in c and τ be a class type compatible
with τb. Then, by definition of compatibility, there exist zone types τ1, . . . , τn such that
βi is compatible with τi and the class type of a class consisting exactly of n zones with
zone types τ1, . . . , τn is τ .

We let Cu be all classes of u and Cv be all classes of v. For each border type τb that
occurs in Tb (and therefore in v and u), Cτbu are the classes in u with border type τb and
Cτbv are the classes in v with border type τb. We note, that the sets Cτbu are a partition
of Cu and the sets Cτbv are a partition of Cv.

For each class border type τb that occurs in Tb, we let fτb : Cτbv → Cτbu be a partial
injective function, such that

• for each class type τ occurring exactly once in Cτbv (for some τb), the class c ∈ Cτbv
with class type τ is mapped to some class c′ in Cτbu ; and

• for each class type τ occurring at least twice in Cτbv (for some τb), at least two
classes with class type τ are mapped to classes in Cτbu .

196 12 Two Variable First Order Logic and Key Constraints

We note that such such functions always exist. In the case that |Cτbu | = |Cτbv |, we
can use any bijection between Cτbu and Cτbv . In the other case |Cτbu | > 2|T (P2)| and
|Cτbv | > 2|T (P2)| hold by the definition of border profiles. We note that Tb(τb) = ∗ in
this case, as there are two solutions to Tb, where the count of classes with class border
type τb differs.

Furthermore, we can conclude that there is a class type τ compatible with τb such that
T (τ) = ∗ in the case that |Cτbu | 6= |Cτbv |. As there are only |T (P2)| many different class
types, there has to be a class type τ occurring more than once in |Cτbv |, as |Cτbv | > 2|T (P2)|.

We let f : Cv → Cu be the partial injective function that results from combining all
functions fτb . For any class c in the image of f, we replace border types with zone strings,
such that the class type of c equals the class type of f−1(c). For all classes c of border
type τb not in the image of f (in the case |Cτbu | 6= |Cτbv |) we replace border types with
zone strings, such that the class type of c is τ , where τ is a class type compatible with τb,
such that T (τ) = ∗. According to (F) such a replacement is possible, as by definition of
f the border types of a class c with border type τb shall always be replaced with zone
strings such that the resulting class type τ is compatible with τb.

The resulting data string w′ is valid, as u is valid. Furthermore it is a solution to T ,
as each class type, that appears exactly once in w also appears exactly once in w′ and
each class type that appears at least twice in w also appears at least twice in w′ by the
definition of f. Furthermore all classes not in the image of f have a class type τ with
T (τ) = ∗.

This concludes the proof of (a). We want to emphasize, that we did not use the fact
that v is a valid border string, i.e., the validity of w follows already from the validity of
u and the validity of all used zone strings. In the following proof of (b), we need that the
argumentation also works, if v contains neighboring positions with identical data values.

It remains to prove (b). We show that the following nondeterministic algorithm
correctly decides compatibility in polynomial time:

1. Compute a border string v = (β1, d1) . . . (βn, dn) over B × dom, such that v satisfies
the border profile Tb according to frequencies of class border types.

2. For each position i of v guess a zone string zi of the border type βi such that zi
conforms to βi.

3. Accept if w satisfies T .

We note that v has no ⊥ markings, i.e., the classes of v are well defined. However, v is
not necessarily valid, as neighboring positions can have the same data value.

It is easy to see, that the algorithm works in the given time constraints. Computing
a string v as described above can be easily done deterministically in polynomial time.
According to Proposition 12.7, compatibility of border types with zone types can be
checked in polynomial time, as well as testing whether w is a solution to T .

We have to show that the algorithm correctly decides compatibility of profiles T with
satisfiable border profiles Tb. First we show, that if the algorithm accepts, then the
guessed profile T is compatible with Tb and therefore the answer is correct.

12.2 FO2(∼,+1) without Key Constraints 197

Let u be a valid border string with u |= Tb and v and w be the border string and data
string of the algorithm. With the argumentation of (a), it follows, that there exists a valid
data string w′ such that Γ(w′) = u and w′ |= T . We remember, that the argumentation
of (a) does not require that v is valid. We can conclude that T is compatible with Tb.

For the other direction, we have to show, that if T is compatible to Tb and Tb is
satisfiable, then the algorithm has an accepting run. By definition of compatibility, for
any border string v = β1 . . . βn that satisfies Tb, there exists zone strings z1, . . . , zn, such
that the string w = (z1, d1) . . . (zn, dn) is a valid data string satisfying T . The algorithm
can guess z1, . . . , zn and thus accept.

12.2.4 Capturing Border Profiles with Semi-Linear Sets

We next describe the linear constraints that we derive from a border profile Tb. For
technical reasons that become apparent later, we need to take care of up to ` classes,
which have to get an explicit data value, where ` is some natural number.

Let therefore ` be a natural number and Γ` be the alphabet B × ([1, `] ∪ {⊥}), where
we assume [1, `] to be a subset of dom. With other words, Γ` is an alphabet for border
strings, where up to ` classes can have explicit class types.

For a data string w and some natural number `, let Γ`(w) of w be the border string of
w, where each data value outside [1, `] is mapped to ⊥.

The border automaton A` = (Γ`, Q, δ, q0, QF) accepts a border string v over Γ`, if
v is valid. It is easy to see, that A` has at most |Γ`| many states, as it only needs to
remember the last seen symbol. Note that Γ` is of exponential size in P2 and linear size
in `.

We will first describe semi-linear sets, that capture one class of some class border type
τb. Intuitively these sets can be seen as capturing a profile with only one class border
type, which is occurring exactly once. Using these semi-linear sets, we define a semi-linear
set for a border profile Tb as a linear combination, capturing the multiplicities of class
types as denoted by Tb.

For each border type β and each i ∈ [1, `] ∪ {⊥}, let eβ,i be the indicator function for
(β, i) ∈ Γ`, that is, it maps (β, i) to 1 and all other symbols to 0.

For a class border type τb and a data value i ∈ [1, `] ∪ {⊥} we define the linear set

Lin(τb, i) =

 ∑
β∈BD

τb(β) · eβ,i +
∑

β∈τ−1
b (∗)

kβ · eβ,i

∣∣∣∣∣∣ kβ ∈ N0 for β ∈ τ−1
b (∗)

 ,

where τ−1
b is the inverse of τb. Especially τ−1

b (∗) is the set of all sheep types occurring in
τb.

We note that the first sum in the definition of Lin(τb, i) evaluates to one vector, which
describes exactly the dog border types of a class, whereas the second sum described the
sheep border types. Remember that sheep border types may occur arbitrarily often.

On top of the sets Lin(τb, i), we will define the semi-linear set SLin`(Tb) for a border
profile Tb. First we will define a linear set Lin(Tb), which does not respect the classes

198 12 Two Variable First Order Logic and Key Constraints

with explicit data value. It will not be used in the remainder of the proof, but it helps
clarifying things a bit.

Lin(Tb) =

 ∑
τb /∈T−1

b (∗)

Tb(τb) · Lin(τb,⊥) +
∑

τb∈T−1
b (∗)

kτb · Lin(τb,⊥)

∣∣∣∣∣∣ kτb > 3|T (P2)|

The first sum applies to class border types occurring only a “few” times, whereas the

second sum applies to class border types occurring frequently.
It follows directly from the definition of Lin(Tb), that to every border string v with

parikh(v) ∈ Lin(Tb), we can assign data values in such a way, that the resulting fully
valued border string v′ conforms to the border profile Tb. Note that we do not require v′

to be a valid border string here. The border string v′ can be inconsistent in two different
ways:

(1) The border string might not be consistent with respect to P2 types.

(2) The border string might have two neighboring positions with the same data value.

We deal with the first type of inconsistencies, by intersecting the language induced by the
linear set with the language of A`. The automaton ensures, that no such inconsistencies
occur.

For the second type of inconsistencies, we will show in Proposition 12.9, that we
can always repair these inconsistencies by exchanging data values of positions with
the same border type for all border types that occur frequently. However for seldom
border types, this does not work. Therefore, we allow some (up to `) classes to have
a pre-determined data value. The automaton A` already ensures, that there are no
inconsistencies of the second type for these pre-determined data values. It remains to
allow these pre-determined data values in the (semi-)linear set.

Let therefore T` = τ1, . . . , τ` be a sequence of ` class border types, such that for each
τi it holds that Tb(τi) 6= ∗. We note that T` does not need to be a set, as a class border
type can occur multiple times in T`. We define SLin(Tb, T`) =∑̀

i=1

Lin(τi, i) +
∑

τb∈T−1
b (∗)

kτb ·Lin(τb,⊥)

∣∣∣∣∣∣ kτb > 3|T (P2)| Tb(τb) = ∗
kτb + |{i | τi = τb}| = Tb(τb) Tb(τb) 6= ∗

We note that in this case, the first sum takes care of all classes with explicit data

values and the second sum is for all other classes. The semi-linear set SLin`(Tb) is the
union over all sets SLin(Tb, T`) with T` = τ1, . . . , τ` for class border types τ1, . . . , τ`, such
that for each border type β it holds that either

• β does not occur in Tb, i.e., Tb(τb) = 0 for each τb with τb(β) > 0; or

• β occurs with at least 3|T (P2)| different data values in T`, i.e., |{τi | τi(β) 6= 0}| ≥
3|T (P2)|.

12.2 FO2(∼,+1) without Key Constraints 199

We note that this definition ensures that each border type with only a few data
values occurs only with explicit data values. The following proposition shows, that the
semi-linear sets are sound if ` is chosen big enough, i.e., large enough that every such
border type can get explicit data values.

Proposition 12.9 Given a border profile Tb, L(A`,SLin`(Tb)) 6= ∅ if and only if Tb is
satisfiable, where ` = 3|T (P2)|2.

Proof. We start with the direction L(A`,SLin`(Tb)) 6= ∅ implies Tb is satisfiable. Let
therefore Tb be a border profile, ` be as defined in the proposition statement, and
v = (β1, j1) · · · (βn, jn) be a border string such that v ∈ L(A`,SLin`(Tb)) and for every
border type β it holds that

• (β,⊥) does not occur in v;

• β is a dog border type and (β,⊥) occurs more than 3|T (P2)| times in v; or

• β is a sheep border type and Tb ensures, that β occurs in at least 3 different classes.

By definition of SLin(Tb, T`), such a string always exists, as SLin(Tb, T`) enforces that
each border type β that occurs with less than 3|T (P2)| different data values only has
explicit data values.

To show that there exists a solution to Tb, we will assign data values to positions
marked with ⊥ in v. The assignment of data values, will be done in 3 steps:

• First, we do a provisional assignment of data values to all dog positions of the
border string. This assignment should fulfill all frequency constraints of Tb.

• Second, among the dog positions, we exchange data values until there are no
neighboring dog positions left with the same data value.

• Third, we assign data values to the sheep positions.

We assign data values (from dom \ [1, `]) to all dog positions of v marked with ⊥,
such that we get a border string u which might have inconsistencies of type (2), but
is otherwise compatible with Tb. As already noted, this is always possible, due to the
definition of SLin`(Tb) and A`.

Observe, that not assigning data values to sheep positions cannot make an (otherwise
compatible) border string incompatible to Tb as, by definition of sheep, the corresponding
border types are not required to appear in the classes.

Now, we will ensure that there are no neighboring dog positions with the same data
value. Note that all neighboring positions which have the same data value must be dog
positions, as sheep positions either have no data value yet or A` ensures that their data
values are consistent.

We correct data values of dog border types inductively from left to right. To this end,
let i be the first position, such that i has the same data value d as i− 1.

Let j 6= i be a position with border type βj = βi which has a data value d′ 6= d, such
that none of the neighbor positions of j has the value d. As each class has at most

200 12 Two Variable First Order Logic and Key Constraints

|T (P2)| dog border types altogether, there can be at most |T (P2)| − 1 other positions
with data value d. Remember that no sheep position can have data value d, yet. Each
of these positions can be a neighbor to at most 2 other positions. As there are at least
3|T (P2)| − 1 candidate positions to choose from, it follows that one of the candidates
neither has data value d nor has a d-valued neighbor. We exchange the data values of j
and i.

Finally, it is easy to assign data values to sheep positions, as there are at least 3
different data values available for each sheep position. As each sheep position has at
most 2 neighbors, we can always assign a data value different from the neighboring data
values.

We continue with the proof of the other direction, i.e., Tb is satisfiable implies that
L(A`,SLin`(Tb)) 6= ∅. Let v be a border string that is a solution to Tb. We permute
the data values of v such that every border type β such that β has less than 3|T (P2)|
different data values only occurs with data values, which are at most ` and every other
border type β occurs with at least 3|T (P2)| different data values ≤ `. We have chosen `
large enough that such a permutation is always possible. We note, that permuting the
data values cannot destroy the validity of v.

We choose T` = τ1, . . . , τ`, where τi is the class border type of the class with data value
i. We let v` be the border string v, where each data value larger than ` is replaced by ⊥.
It is not hard to verify, that v` is in SLin(Tb, T`) and therefore in SLin`(Tb). As v is a
valid border string, v` is in L(A`). We can conclude that v ∈ L(A`,SLin`(Tb)).

12.2.5 Small Model Property

Now, we could show that satisfiability of FO2(∼,+1) is decidable in 2-nexptime. To
show that satisfiability is also decidable in nexptime, we need the following small model
property, which basically says, that if there is a satisfying string, than there always is
such a string with at most exponentially many different class types.

Proposition 12.10 If there exists a ϕ compatible profile T , a T compatible border profile
Tb and a border string v ∈ L(A`,SLin`(Tb)) with ` = 3|T (P2)|2 then there also exists a ϕ
compatible profile T ′ and a T ′ compatible border profile T ′b such that v ∈ L(A`,SLin`(T

′
b)),

|T ′| ≤ 24|P2|+1, and |T ′b| ≤ 24|P2|+1.

Proof. We first give an intuitive idea of the proof. The question whether there is a string v,
such that v ∈ L(A`,SLin`(Tb)) reduces to the question whether parikh(A`)∩SLin`(Tb) 6=
∅, which reduces to satisfiability of linear equation systems.

The corresponding linear equation system has roughly one equation for each possible
border type and one variable for each class border type occurring in the profile. Remember
that the number of possible border types (and therefore the number of equations) is
exponential in |P2|, whereas the number of used class border types (and therefore the
number of variables) can be doubly exponential in |P2|. Therefore, if there are many
different class border types, the equation system is heavily under-specified. We will show,
that we can reduce the number of variables/class border types to be exponential.

12.2 FO2(∼,+1) without Key Constraints 201

Now we continue with the proof. Let T be a ϕ-compatible profile, Tb be a compatible
border profile, Lin(Tb, T`) be a linear set from SLin`(Tb) and v ∈ L(A`,Lin(Tb, T`)) be a
valid border string.

Let T̃ be the set of class types as in Proposition 12.6 (c), i.e., |T̃ | ≤ 2|T (P2)| and every
profile T ′, which fulfills the following conditions is ϕ-compatible.

• For all τ ∈ T̃ it holds that T ′(τ) = T (τ).

• For all τ with T (τ) = 0 it holds T ′(τ) = 0.

We assume that there are at most 3|BS | many classes in w that have sheep zones, due
to the following observation: Let z1 and z2 be two zones of w such that

• z1 and z2 have the same sheep border type but different data value; and

• the neighbor zones of z2 both have a different data value than z1.

Then the data string derived from w by replacing z2 with a copy of z1 and changing the
data value of z2 to that of z1 is valid and satisfies ϕ. Remember that sheep are allowed
to occur arbitrary often in a class.

We now divide w into two subsequences w1 and w2. The intuitive idea is, that w1 is
the subsequence containing all the classes we do not want to tamper with and w2 is the
subsequence of w, where we are allowed to change the frequencies of class types without
“leaving” the profile T according to Proposition 12.6 (c). We will use this freedom to find
a profile with not too many class types, which allows the same border string v.

The subsequence w1 contains classes of w as follows:

• every class with a data value from [1, `];

• every class containing sheep zones;

• every class with a class type τ , such that τ ∈ T̃ and T (τ) = 1; and

• two classes of every class type τ , such that τ ∈ T̃ and T (τ) = ∗.

The subsequence w2 contains all other classes. Let v1 and v2 be the corresponding
subsequences of the border string v. We note that by definition of w2, in v2 there are no
explicit data values.

It is easy to see, that parikh(v2) can be written as

parikh(v2) =

m∑
i=1

ki fi,

where

• m and every ki is a natural number

• every fi is a function fi : Γ→ [0, |2P2 |], which maps dog border types marked with
⊥ to a number of occurrences

202 12 Two Variable First Order Logic and Key Constraints

With F , we denote the set {f1, . . . , fm}.
We note that each function f ∈ F corresponds exactly to the first sum in the definition

of Lin(τb,⊥) for some class border type τb. The second sum in the definition of Lin(τb,⊥)
only refers to sheep border types, which are not present in v2. We can restrict the range
of the functions F to [0, |T (P2)|], as each class has at most |T (P2)| dog zones. With
other words, fi encodes exactly the dog border types of ji classes, each of these classes
has the same class border type τ ib and some class type τ . We can conclude that for every

i ∈ [1,m], there exists a class type τi such that T (τi) 6= 0, τi /∈ T̃ , and τi is compatible to
τ ib .

Let T 1
b (τb) denote the number of classes in v1 with class border type τb and

T 2
b (τb) =

{
ki if fi ∈ F s.t. fi corresponds to the first sum in the definition of τb

0 otherwise

We define the border profile T ′b as

T ′b(τb) =

{
∗ if T 1

b (τb) + T 2
b (τb) > 3|T (P2)|

T 1
b (τb) + T 2

b (τb) otherwise

It is easy to see that the number of class border types in T ′b is bounded by 3|BS | +
|T̃ |+ `+m. By construction of T ′b, we know that v ∈ L(A`,SLin`(T

′
b)). Therefore Tb is

satisfiable.
Let Λ : N0 → {0, 1, ∗} be the function that maps every number greater than one to ∗

and τ(w1) be the number of occurrences of τ in w1 for each class type τ . We define T ′ as

T ′(τ) =

{
Λ(τ(w1)) if τ /∈ {τ1, . . . , τm}
Λ(τ(w1) + ki if τ = τi with i ∈ {1, . . . ,m}

It is easy to see that |T ′| is bounded by 3|BS |+|T̃ |+`+m. Furthermore, by construction
T ′ is compatible to T ′b. We note that class types from T̃ only occur in w1 and therefore

T ′(τ) = T (τ) for every class type τ ∈ T̃ . Furthermore T ′(τ) = 0 if T (τ) = 0 by choice of
{τ1, . . . , τm}.

We will show that |F| can be bounded by 24|P2|, by showing that parikh(v2) can always
be defined as a linear combination of at most 24|P2| different functions from F . This
shows the proposition statement, as

3|BS |+ |T̃ |+ `+ 24|P2 ≤ 3 · 22|P2| + 3 · 2|P2| + 3 · 22|P2| + 24|P2| ≤ 24|P2|+1.

Towards contradiction, we assume that m > 24|P2|, none of the ji is zero and parikh(v2)
cannot be written as a linear combination of functions from F , where one coefficient is
zero.

For every subset F of F , we compute the function fF =
∑

f∈F f. Note that the set

{fF | F ⊆ F} contains at most (m·|2P2 |+ 1)|2
P2×2P2 | < 2m different functions, due to

12.2 FO2(∼,+1) without Key Constraints 203

Algorithm 12 Test satisfiability of FO2(∼,+1)-formulas

1: function sat(ϕ)
2: Compute ϕ′ in Scott normal form s.t. ϕ′ is satisfiable iff ϕ is satisfiable
3: Compute ϕ′′ in data normal form s.t. ϕ′′ is satisfiable iff ϕ′ is satisfiable
4: Guess string profile T with at most 24|P2|+1 class types
5: if T is not compatible with ϕ then reject
6: Guess border profile Tb with at most 24|P2|+1 class border types
7: if Tb is not compatible with T then reject
8: Let ` be 3|T (P2)|2
9: Guess linear set Lin from SLin`(Tb)

10: if L(A`,Lin) is nonempty then accept
11: reject

the restricted range of the functions in F . However there are 2m subsets of F . By the
pigeonhole principle, we can conclude that there are two different subsets F1 and F2 of
F , such that fF1

= fF2
. We may safely assume that F1 and F2 are disjoint, as else we

could reason over F1 \ F2 and F2 \ F1.
Let k = min{ki | fi ∈ F1 ∪ F2} be the smallest coefficient of functions in F1 and F2

and i be the corresponding index. W.l.o.g. we assume, that fi ∈ F1. As fF1 = fF2 , we
can conclude that

parikh(v2) =
∑

fj∈F\(F1∪F2)

kj fj +
∑

fj∈F1

(kj − k) fj +
∑

fj∈F2

(kj + k) fj .

Note that fi has the coefficient 0 and all other coefficients are greater or equal to zero.
This is a contradiction to our assumption. We can conclude that we can always define
parikh(v2) as a linear combinations of at most 24|P2| different functions.

This concludes the proof.

12.2.6 Putting Everything Together

Now we can continue with the proof of Theorem 12.2.

Statement of Theorem 12.2 The satisfiability problem for FO2(∼,+1) formulas over
data words with propositions is decidable in nexptime.

Proof. For convenience, we depict Algorithm 11 again as Algorithm 12. The only
differences are the added size restrictions for the profiles according to Proposition 12.10.

It is easy to verify that Algorithm 12 runs in nondeterministic exponential time, as
the size of all representations (Scott normal form, data normal form, profile, border
profile) of the formula are bounded exponentially in ϕ and compatibility can be checked
in polynomial time in the size of the representations (Propositions 12.6 and 12.8).

It remains to show that Algorithm 12 is correct. Let therefore w be a solution to ϕ and
w′ be a valid data word over T (P2) such that de(w′) = w. Let T be the profile of w′ and

204 12 Two Variable First Order Logic and Key Constraints

Tb be the border profile of w′. By definition T is compatible to ϕ and by Proposition 12.8a,
Tb is compatible to T . By Proposition 12.9, we get that L(A`,SLin`(TB)) is nonempty
and therefore, there exists a linear set Lin in SLin`(Tb) such that L(A`,Lin) is nonempty.
If T and Tb respect the size bounds given in the algorithm, we know that there exist an
accepting run (guess T , Tb and Lin). Otherwise, Proposition 12.10 assures us that there
exist a profile T ′ compatible to ϕ and a border profile T ′b compatible to T ′ that respect
the given size bounds, such that T ′b is satisfiable. The algorithm can accept by guessing
T ′, T ′b and Lin′ such that Lin′ ∈ SLin`(Tb) and L(A`,Lin) is nonempty.

For the other direction, we show that if the algorithm accepts, then ϕ is satisfiable.
Let v be a border string in L(A`,SLin`(Tb)). By Proposition 12.9, we know that there
exists a solution v′ for Tb. As Tb is compatible to T , there is a solution w to T and as T
is compatible to ϕ′′, there is a solution to ϕ′′. Therefore, ϕ′ and ϕ are satisfiable.

We have shown that satisfiability of FO2(∼,+1) over data words is complete for
nexptime. The previously known upper bound was 2-nexptime from [NS11]. The best
known upper bound for data trees instead of data words is 3-nexptime from [BMSS09].
The improvement over data trees has two reasons. The first reason is, that in the proof
for data trees, there is an exponential blowup for limiting the number of zones with many
neighbors, whereas in data strings each zone trivially has at most two neighbors. The
second reason is, that we introduce an additional intermediate step using border profiles,
whereas [BMSS09] and [NS11] use an intermediate profile description that is more closely
connected to the formula and gives another exponential blowup. It might be possible to
use an intermediate representation similar to our border profiles to improve the upper
bound for data trees to 2-nexptime. However, this is speculation and needs further
investigation.

12.3 FO2(∼,+1) with Key Constraints

This section is devoted to the proof of the main theorem of this chapter.

Theorem 12.11 It is decidable whether for a given FO2(∼,+1) formula ϕ and a set K
of key constraints there is a data word w such that w |= ϕ and w |= K.

The result holds for data words with symbols as well as for data words with propositions.
Before we give the details of the proof we first discuss its general strategy and the

underlying ideas. Even though the basic idea of the construction is as in Section 12.2,
there are some differences. Especially the definition of border types and border strings is
different, to allow to reason about the key constraints.

It turns out that key constraints of different “arities” (number of •-entries) can be
handled by different strategies. If a key has arity zero it basically states that certain
string patterns should not occur more than once. If on the other hand, a key has arity
one then it basically states that in the same class the set of symbols of the •-position can
occur at most once within the context given by the key. Both conditions be translated
into conditions on the occurring class types. The second conditions is indeed very related
to dog types.

12.3 FO2(∼,+1) with Key Constraints 205

Thus, it mainly remains to deal with key constraints of arity ≥ 2. To illustrate the
idea let us consider a simple key of the form ({a}, •), ({b}, •). If one of the symbols a or
b is a dog in its class type, that is, it is allowed to occur only once in each class, then the
key cannot be violated (if the class type restrictions are met). Thus, we can assume that
a and b are sheep4. If we know that the class types of a and b occur frequently in the
solutions of A and F that we consider, say ω(n) many times where n is the length of the
data word, then we have a lot of freedom to assign data values to occurrences of a and
b. More precisely, there is a quadratic number of possible assignments of pairs of data
values to substrings ab but, of course, there can be only a linear number of occurrences
of such substrings in any data string. Thus, it will turn out that in this case the key
constraint can be fulfilled.

In general it will be slightly more complicated, as the same key constraint can match
inside a zone and crossing zone borders. In the first case there is only one relevant data
value available, even if there are several •-positions. Therefore when looking at the arity,
we will look at the arity of individual matches. Furthermore, when determining arity (of
matches), we will not count •-positions, that are matched on positions marked with an
explicit data value, that is an data value from the set [1, `] as already used in Section 12.2.
The reason is, that for these positions, there might not be enough data values available
to exchange data values in a way to satisfy the constraints. As in Section 12.2, we will
consider the data values of these positions as explicit and not change them any more.

In the following, we will first describe the extended notation do deal with key constraints,
i.e., we will give revised definitions of border types and border strings (Section 12.3.1).
Afterwards, we define k-ary matches of key constraints and describe how we can already
see from the border string, whether a key constraint is violated by nullary or unary matches
(Section 12.3.2). In Section 12.3.3, we define (semi-)linear sets, as in Section 12.2.4 with
the difference, that here the sets should also take account of nullary and unary matches
of key constraints. A sufficient condition for the existence of a satisfying data word is
given in Section 12.3.4. In Section 12.3.5 we put everything together and conclude the
proof.

We note that as we anyway cannot give an elementary upper bound for the overall
algorithm we do not always aim to represent conditions on solutions in the most efficient
way. Instead we favor simplicity over algorithmic efficiency.

12.3.1 Extending Border Strings

The main difference of the border strings here compared to the case without key constraints
is, that here the border string have to store more information to be able to conclude
where key constraints can possibly match.

Therefore, a border type does not only store the two border P2-types, but for each
border the m P2-types next to the border, where m = k(K) is the maximal length of
some key constraint. In case of short zones, the border type simply stores the whole zone.
Additionally, a border type stores, which key constraints can be matched inside the zone.

4However, in general it is not that simple due to the fact that keys have sets of symbols at a position.

206 12 Two Variable First Order Logic and Key Constraints

We define the set of all border types as

B =
(

(T (P2))2m︸ ︷︷ ︸
long zones

∪
2m⋃
i=1

(T (P2))i︸ ︷︷ ︸
short zones

)
× 2K︸︷︷︸

keys

×{ηD, ηS}.

We also need to change the definition of border strings. Additionally to exchanging
the old definition of border type with the new one, we also have to store some more
information about the neighbors. In Section 12.2, the relevant information about the
neighbors was already stored in the border P2-types. Here, we need additional information
about up to m neighboring positions (not zones) to each side of the zone, to be able to
see (from one symbol of the border string), whether a key constraint can be matched
across zone borders.

Therefore, we define the alphabet of border strings to be

Γ = B × (dom)︸ ︷︷ ︸
data value

×
(
T (P2)× (dom)

)2m

︸ ︷︷ ︸
neighbors

.

Every symbol consists of a border type, a data value and information (P2-type and
data value) about the m neighboring positions to the left and right.

Remark Near the borders of a string, we need slightly different symbols, to encode that
there are fewer then m positions to the left or right of a zone. This can be done using
a slightly different definition of P2, which includes a dummy proposition saying “this
position does not exists”.

We say a border string is valid, if neighboring positions are compatible with respect to
their border type and information about their neighbors. As in Section 12.2, we define a
restricted alphabet Γ`, where dom is replaced by [1, `] ∪ {⊥}, i.e.,

Γ` = B × ([1, `] ∪ {⊥})×
(
T (P2)× ([1, `] ∪ {⊥})

)2m

.

It is easy to see, that Γ` is of exponential size in P2, m and K and of linear size in `.
Again is it easy to see, that there exists an automaton A` of size at most |Γ`| that

tests validity of extended border strings, as it is always enough to remember the last seen
symbol.

We define

• compatibility of border types with zone types,

• border class types,

• compatibility of border class types with class types,

• border profiles, and

12.3 FO2(∼,+1) with Key Constraints 207

• compatibility of border profiles with profiles

analogously to Section 12.2.
In detail, we use the following definition for compatibility of border types with zone

types.
A border type β = (. . . ,K, δ) is compatible with a zone type τ = (S,D), if there exists

a valid zone z, such that

• the leftmost and rightmost m P2 types of z are compatible with the information in
the border type;

• the set of sheep types of z is a subset of S;

• the set of dog types of z is D;

• δ = δK , if and only if D 6= ∅; and

• every key constraint κ ∈ K matches exactly once in z.

Note that if a key constraint κ matches twice in the same zone, κ is definitely violated.
Therefore, we can restrict to encode at most one inner match per zone and key constraint.

All other mentioned definitions are exactly, as in Section 12.2, with the only difference
that they use the updated definitions for border types and compatibility of border types
with zone types.

12.3.2 Unary and Nullary Matches of Key Constraints

As already said, the strategies for satisfying key constraint will depend on how many
data values contribute to the key constraint. More precisely, for each individual match
of the key constraint, we are interested in how many data values contribute to a match.
Furthermore we are only interested in non explicit data values, i.e. those data values
which are not pre-determined by the border string.

We say a match of a key constraint κ is k-ary, if there are exactly k zones z1, . . . , zk,
such that for each i ∈ [1, k]

• zi has at least one position matched by a •-position of κ; and

• zi is marked with ⊥ in the border string, i.e. has no explicit data value.

Note that a match will be nullary if all zones of the match have explicit data values
according to the border string.

A symbol γ from Γ is a witness for a match of a key constraint κ, if one of the following
is true

• κ can be matched inside the zone (indicated by the border type);

• κ can be matched across zone borders (indicated by the border type and the
information about the neighboring positions)

208 12 Two Variable First Order Logic and Key Constraints

We note that due to the information about (the data values of) the neighboring
positions, we can always infer how many (non explicit) data values contribute to the
match.

A symbol γ from Γ is a witness for a nullary match of κ if γ is a witness for a match
of κ, the match is nullary (i.e., every •-position of κ is matched inside a zone with an
explicit data value) and γ is the first position in the border string involved in the match.
The latter is the case

• if κ is matched inside the zone, as then γ represents the only zone involved in the
match; or

• if the match of κ uses some of the rightmost m P2 types and some of the right
neighbor positions of γ.

We denote the set of all symbols that are witnesses for a nullary match of κ with Γnullary
κ .

A symbol γ from Γ is a witness for a unary match of κ, if γ is a witness for a match of
κ, the match is unary and γ represents the only zone involved in the match, which is
matched by a •-position and has no explicit data value. We denote the set of all symbols
that are witnesses for a unary match of κ with Γunary

κ .

We note that for nullary matches, we always use the first zone as witness, whereas for
unary matches we always use the only zone with unspecified data value. The choice for
the first zone in the case of nullary matches is just to have one unique witness for every
nullary match, whereas for unary matches it will turn out to be important to use the
zone with the unspecified data value.

It is easy to see, that every violation of a key constraint by nullary matches can already
be seen from the border string w, as a key is violated by nullary matches if and only if
there are at least two positions in w, which witness a nullary match of κ, that is there
are no two positions in w that are labeled with symbols from Γnullary

κ .

In the same way, we can deduct violations of key constraints by unary matches, by
looking at individual classes, as a key κ is violated by unary matches, if and only if there
exists a class c, such that there are at least two positions in c, which witness a unary
match of κ.

The difference (looking at the complete string versus looking at one class) reflects in the
strategy used to avoid violations by nullary and unary matches. To avoid violations by
nullary matches, we disallow the appearance of two witnesses for nullary matches of the
same key constraint in the complete extended border string, whereas for unary matches
we disallow two witnesses for unary matches of the same key constraint in the same class.
Both restrictions will be implemented by defining the linear sets appropriately.

12.3.3 Semi-linear Sets with Key Constraints

As in Section 12.2, we now give a definition of a semi-linear set, depending on a border
profile and — different to the definition in Section 12.2 — also depending on the key
constraints. The set SLin`(Tb,K), will additionally ensure, that data values can be

12.3 FO2(∼,+1) with Key Constraints 209

assigned in such a way, that no key constraint is violated by nullary and/or unary
matches.

Let τb be a border class type and i ∈ dom be a data value indicator. As in Section 12.2,
we define Lin(τb, i) to be

Lin(τb, i) =

 ∑
β∈BD

τb(β) · eβ,i +
∑

β∈τ−1
b (∗)

kβ · eβ,i

∣∣∣∣∣∣ kβ ∈ N0 for β ∈ τ−1
b (∗)

 ,

To make sure, that key constraints are not violated by unary matches, we define a
semi-linear set SLinunary

K , such that for each string v ∈ Γ∗ with parikh(v) ∈ SLinK and
each key constraint κ ∈ K, it holds that there is at most one position labeled with a
symbol from Γunary

κ . Analogously, we define a set SLinnullary
K .

Remark It can be verified that SLinunary
K is of at most exponential size. However for

our results it suffices that SLinunary
K is computable.

We define SLin(τb,K, i) to be Lin(τb, i) ∩ SLin(K, i) for i ∈ [1, `] ∪ {⊥}. Note that
semi-linear sets are closed under intersection. The set SLin(τb,K, i) is intended to capture
exactly one class of the resulting string. Therefore, this definition ensures that there are
no key constraint violation by unary matches, as in each class for each key constraint,
there is at most one unary match.

As in Section 12.2, we define a semi-linear set SLin`(Tb, T`,K) from a given border
profile Tb and a given sequence of ` border class types. The difference is, that we use
the sets SLin(τb,K, i) instead of Lin(τb, i), to ensure that there are no key constraint
violations within a class.

Let therefore be T` = τ1, . . . , τ` be a sequence of ` border class types. We then define
SLin(Tb, T`,K) ={∑̀
i=1

SLin(τi,K, i) +
∑
τb

kτb ·SLin(τb,K, ∗)

∣∣∣∣∣ kτb + |{i | τi = τb}| = Tb(τb) Tb(τb) 6= ∗
kτb > 3|T (P2)| Tb(τb) = ∗

}

The set SLin`(Tb,K) is defined as(⋃
T`

SLin(Tb, T`,K)

)
∩ SLinnullary

K .

We intersect with SLinnullary
K to ensure that no constraint is violated by nullary matches.

12.3.4 Fulfilling the Key Constraints

In this section we give a sufficient condition for the existence of a solution for a constraint
instance I = (T,K).

210 12 Two Variable First Order Logic and Key Constraints

The following proposition is the analog to Proposition 12.9. It basically states that if
the constraints of the semi-linear set are fulfilled and additionally, the border string is
valid (i.e., accepted by A`), then we can consistently assign data values to all positions
labeled with ⊥. Different to Proposition 12.9, we require that there is an unbounded
linear set, as defined below. This allows us to obtain a string u ∈ L(A`,SLin`(Tb,K),
where each class border type that occurs without explicit data value is frequent.

A border type β is bounded in some linear set Lin = {f +
∑
j ij fj | ij ∈ N} over Γ`, if

either

• f(γ) = 0 for each symbol γ ∈ {β} × {⊥} × (T (P2)× ([1, `] ∪ {⊥}))2m; or

• fj(γ) 6= 0 for some symbol γ ∈ {β} × {⊥} × (T (P2)× ([1, `] ∪ {⊥}))2m.

A linear set Lin over Γ` is unbounded, if each border type β ∈ B is unbounded in Lin.

Proposition 12.12 Let Tb be a border profile and K be a set of key constraints such that
there is an unbounded linear set in parikh(L(A`)) ∩ SLin`(Tb,K). Then there exists a
border string u without ⊥ markings, such that u satisfies K and u is a solution to Tb.

Proof. The proof is similar to the proof of Proposition 12.9. However, we have to take
key constraints into account.

Let Lin0 = {f +
∑
j ij fj | ij ∈ N} be an unbounded linear set in parikh(L(A`)) ∩

SLin`(T,K). Let

c =
∑
γ∈Γ`

∑
h∈{f,f1,...,fn}

h(γ`)

be the sum of all coefficients occurring in Lin0. Let further m = k(K) and M =
4 + 16m2(c+ |T (P2)|2). Let g be the function obtained from L0 by setting ij := M , for
all j, and let v ∈ L(A`) be a border string with parikh(v) = g.

The assignment of data values will (as in Proposition 12.9) be done in three steps.
First we assign data values to dog zones, then we change these data values such that no
two neighboring zones have identical data values, and finally, we assign data values to
sheep zones.

Let u be a border string, such that u is identical to v, except that all ⊥ markings of
dog positions are replaced by data values from dom \ [1, `], such that

• u fulfills the frequency constraints of Tb, and

• u has no violations of key constraints by unary matchings.

Note that u cannot have violations by nullary matchings, as v has no such violations and
the data values are completely irrelevant to nullary matchings. Furthermore u cannot
have any violations by unary key constraints, as these are forbidden by SLin`(Tb,K).

The argumentation that such a string exists is identical to the argumentation in
Proposition 12.9.

However, u might have inconsistencies of type (2), that is neighboring positions with
the same data value. Furthermore u might have violations of key constraints by k-ary
matchings with k ≥ 2. We denote key constraint violations as type (3) inconsistencies.

12.3 FO2(∼,+1) with Key Constraints 211

We correct data values for dog zones inductively from left to right. Let therefore be i
the first position, that

• has the same data value as its left neighbor; or

• is matched by a •-position of some matching of a key constraint κ. such that to the
left of i there is another matching of κ with the same data values at all •-positions
of κ.

If there is some position j > i to the right of i, such that βj = βi, dj is different from
the data value at position i − 1 and assigning dj to position i will not violate a key
constraint, then we exchange the data values of i and j.

Otherwise, we have to exchange the data value of i with the data value of some position
to the left of i.

Let therefore j be a position, such that

(1) the data value d′ of j is different from d

(2) j has no d-valued neighbor;

(3) assigning d to j would not cause j to violate a key constraint; and

(4) assigning d′ to i would not cause i to violate a key constraint.

We exchange the data values of i and j.
As each position only has 2 neighbors and there are at most |T (P2)| dog positions with

data value d, the first two conditions rule out at most 3|T (P2)| many (dog) positions.
The third condition can rule out a position j, only if there exists a dog position j′,

such that

• j′ has data value d

• j has a nearby (distance at most m) position k and j′ has a nearby position k′,
such that k and k′ have the same data value.

As there are at most |T (P2)| positions with data value d, there are at most 2m|T (P2)|
positions near positions with data value d. These positions have at most 2m|T (P2)|
different data values D. With the same argumentation we get, that for each data value d′

of D there are at most 2m|T (P2)| positions near to some occurrence of d′ and therefore
the third condition can rule out at most (2m|T (P2)|)2 many positions.

The forth condition is symmetric and can therefore rule out at most (2m|T (P2)|)2

many positions, too.
Altogether, there are at most M ′ = 3|T (P2)|+ 8m2|T (P2)|2 ruled out positions. As

there are at least M > M ′ candidate positions available, we can always find a position j,
such that we can exchange the data values of i and j.

It remains to assign data values to sheep positions. By the choice of v, we know that
for each sheep border type β (occurring with a ⊥ marker), there are at least M different

212 12 Two Variable First Order Logic and Key Constraints

data values available. For each sheep border type β we denote the set of data values
available to β with ∆β .

We have to assign data values from ∆β to positions labeled with β, such that the key
constraints are satisfied and no neighboring positions get the same data value. We will
keep as invariant, that each data value from ∆β is assigned to at most X = 2c positions.

A data value d from ∆β could be ruled out for a position i labeled with β for one of
the following reasons:

(i) a neighbor of i carries d;

(ii) assigning d to i would yield a key violation involving i; or

(iii) d has already been assign to X positions.

Clearly, (i) rules out at most 2 values from ∆β . A data value d can only fulfill
condition (ii) if for some value d′ occurring at distance < m from i, d has an occurrence
at distance < m from some position with data value d′. This rules out at most 4m2X

data values. Finally, at most |v|X data values can be ruled out by condition (iii). It is
obvious that |v| ≤Mc by definition of v.

However, it holds

2 + 4m2X = 2 + 8m2c <
M

2
,

|v|
X

≤ Mc

2c
=
M

2
.

Thus, fewer than M data values are ruled out. As |∆β | ≥M , it is possible to find a
data value d ∈ ∆β that does not violate any constraints and maintains the invariant.

We can conclude that it is possible to assign data values in such a way that the
resulting border string is valid. We note that due to the definition of border types, the
key constraints are always satisfied, regardless, how the border types are replaced by
compatible zone strings. This concludes the proof.

12.3.5 Separating Frequent from Infrequent Class Types

To proof the main result we need one more step. In Section 12.2 it was sufficient to
choose ` as large as 3|T (P2)|× |Tb| to show that we can always find an assignment of data
values. Unfortunately, Proposition 12.12 can only be applied if there is an unbounded set
in SLin`(Tb,K).

Our general strategy is to increase ` until all bounded border types can get explicit
data values. Alongside we forbid bounded border types to occur without an explicit
data value. Note however, that such a step (increasing ` and disallowing bounded types
without explicit data value) can switch some border types from unbounded to bounded
and thus it might be necessary to repeat this for each border type.

Statement of Theorem 12.11 It is decidable whether for a given FO2(∼,+1) formula
ϕ and a set K of key constraints there is a data word w such that w |= ϕ and w |= K.

12.3 FO2(∼,+1) with Key Constraints 213

Algorithm 13 Satisfiability of Border Profiles with Key Constraints

1: function SAT(Tb,K)
2: ` := 0
3: Γ′ := Γ`
4: repeat
5: Lin := guess linear set from SLin`(Tb,K) ∩ parikh(Γ′∗)
6: if Lin is unbounded then accept
7: Bseldom := {β | β is bounded in Lin}
8: ` := maximal number of classes using Bseldom in Lin
9: Γ′ := Γ` \ (Bseldom × {⊥})

10: until |Lin| <∞
11: if ∃v ∈ (B × [1, `])∗.parikh(v) ∈ Lin ∧ v |= K then accept else reject

Proof. The overall decision algorithm is similar to Algorithm 12. First we compute some
formula ϕ′ in data normal form from ϕ. Afterwards, we guess a profile T and a border
profile Tb such that T is compatible with ϕ′ and Tb is compatible with T . We note,
that the proof for Proposition 12.8 works without changes for the modified definition of
border types, we use here. Altogether, we can conclude that there exists a data string
w such that w |= ϕ and w |= K if and only if there exists a solution to Tb that satisfies
the key constraints. We remember, that all information needed to test whether the key
constraints are satisfied are encoded in the border string v, i.e., every to v compatible
data string w will satisfy the key constraints, when they are satisfied in v.

We prove the Theorem statement by showing that Algorithm 13 decides satisfiability
of border profiles with key constraints.

First, we describe Algorithm 13. The variable ` always holds the current number
of explicit data values used for seldom border types. It is initialized with 0, as at the
beginning the set Bseldom of seldom border types is empty. The variable Γ′ always holds
the currently allowed alphabet. This alphabet is equivalent to Γ`, except that seldom
border types are not allowed to occur without an explicit data value.

The repeat loop is the central part of the algorithm. In Line 5 the algorithm guesses a
linear set from the semi-linear set SLin`(Tb,K), such that no seldom border type occurs
without an explicit data value. The latter condition is ensured by intersecting with the
Parikh image of Γ′∗.

If the linear set is unbounded the algorithm accepts. Otherwise it recomputes the set
of seldom border types, increases `, such that all classes using some seldom border type
can get an explicit data value, and recomputes Γ′.

The algorithm either terminates when an unbounded set is found (Line 6) or when the
linear set is finite. In the latter case, the algorithm can enumerate all possible border
strings, such that the Parikh image is in Lin and accept, if it finds a solution.

The algorithm always terminates, as Bseldom is strictly increasing. Once Bseldom = B,
all border types are bounded and therefore Lin has to be finite.

214 12 Two Variable First Order Logic and Key Constraints

We have to prove correctness. First we show, that if the algorithm accepts, then Tb
and K are satisfiable at the same time. If the algorithm accepts in Line 6, it has found
an unbounded linear set in SLin`(Tb,K), which is a sufficient condition according to
Proposition 12.12. In the case the algorithm accepts in Line 11, it has found a solution
by the condition in the if statement. As there is no other possibility for the algorithm to
accept, there can be no false positives.

Now we show, that if Tb and K are satisfiable at the same time, then there is an
accepting run of the algorithm. Let therefore v be a solution, that is v is a border string
without ⊥ markers, such that v |= Tb and v |= K.

Let for some permutation π of the data values, π(v) denote the data string derived
from v by applying π to the data values of v. Note that we will use π only to decide
which data values of v are explicit data values, that is data value from [1, `].

We do an induction over the number of iterations of the loop, to show that there always
is a linear set Lin in SLin`(Tb,K) ∩ parikh(Γ′∗) and a permutation π on the data values,
such that parikh(Γ`(π(v))) ∈ Lin. The correctness follows then from the fact, that the
algorithm can only reject, if parikh(Γ`(π(v))) /∈ Lin.

The statement is true for the induction base case, as parikh(v) ∈ SLin0(Tb,K) and
Γ′ = Γ0 during the first iteration.

For the induction step let Lin be a linear set from SLin`(Tb,K) ∩ parikh(Γ′∗) that
contains parikh(Γ`(π(v))). By the induction hypothesis such a set exists. Let Bseldom

be as in Line 7. By definition of “maximal”, the new number `′ computed in Line 8 is
at least as big as the number of classes using border types from Bseldom in v. Therefore
there exists a permutation π′ which maps all data values used with seldom border types
in v to the set [1, `′]. It follows that parikh(Γ`(π

′(v))) ∈ SLin`′(Tb,K) ∩ parikh(Γ′∗)
This concludes the induction and the proof of the theorem.

12.4 Conclusion on FO2(∼,+1)

In this chapter, we took a look at constraints specified using first order sentences with
two variables. This research was motivated by the fact that first order sentences are the
unifying constraint language for relational databases. Basically all means for specifying
integrity constraints on relational databases build on-top of first order logic. Furthermore,
we know from literature that we can also specify some structural properties using this
logic. We analyzed the complexity of the consistency problem of a first order sentence with
two variables together with a set of key constraints. However, we restricted our research
to strings which can be interpreted as very simple trees. Towards this goal we first looked
at the consistency problem of the FO2(+1,∼) logic over data strings. We improved
the known upper bound from 3-nexptime (upper bound for trees from [BMSS09]) to
nexptime. A more straightforward application of the methods from [BMSS09] gives
a 2-nexptime upper bound as shown in [NS11]. Extending the methods used for this
analysis, we could show that the problem still is decidable when key constraints of
arbitrary arity are added. However, we have no idea of the complexity of this problem
(aside from a more or less trivial nexptime lower bound) and we have no idea whether

12.4 Conclusion on FO2(∼,+1) 215

the same problem over data trees (with a reasonable definition of key constraints on
trees) is decidable. For practical purposes it seems appropriate to separate structural
properties from semantic properties, like we have done in our framework depicted in
Chapter 10. In fact, the research on X2R-constraints started chronologically after the
results of the current chapter to get some better bounds for practically relevant classes of
integrity constraints.

217

Part III

Prototype

218

219

13 FoXLib

In this chapter, we present FoXLib, which is a collection of prototype implementations of
some algorithms in the context of XML described in various papers.

Roughly, FoXLib consists of three big parts: the Formal Language Toolkit (FLT), the
Schema Toolkit and the BonXai Editor Plugin. Additionally there are a few smaller
parts.

13.1 Formal Language Toolkit

The Formal Language Toolkit is a collection of tools to represent and manipulate formal
languages. It has been developed by various members of Hasselt University and is divided
into several modules. WE only list the most important ones.

FLT-core This is the central part of the Formal Language Toolkit. It provides the
means to store and manipulate finite automata and regular expressions. Among others,
it contains algorithms for converting regular expression into finite automata and vice
versa and algorithms for determinizing and minimizing finite automata.

The automaton library is capable of storing DFA-based XSDs, as we have introduced
them in Chapter 5.

This part of the library allows for an easy integration of existing automaton based
algorithms. All other parts of FoXLib use directly or indirectly the functionality of
FLT-core.

FLT-learning This part contains regular expression and XSD inference algorithms, as
they have been described in [BNSV10]. The algorithms learn automata models of the
input data. To actually output schemas, these automata have to be converted to models
of the Schema Toolkit, which is described below.

FLT-disambiguate This part contains an algorithm for repairing the unique particle
attribution constraint of XML Schema which has been proposed in [BGMN09]. The
algorithms computes approximations of the input language (given by a finite automaton).

13.2 Schema Toolkit

The Schema Toolkit constitutes the heart of the system. It provides modules for the
representation, import and export, and the conversion between DTD, XSD, and BonXai.

220 13 FoXLib

The Schema Toolkit originated from a student project in Dortmund [DGG+09]. The
students

Import and Export For all schema languages we have import and export modules,
which can work on streams, files or java strings, whichever is best suited for the user of
the library.

Object Models Schemas can be represented in an abstract way as DFA-based XSDs.
To facilitate manipulation of schemas, each class of schemas additionally has its own
object model. These object models store additional information, such as key, foreign key
and uniqueness constraints, identifiers used for namespaces, typenames, etc.

XML Validator The XML validator validates XML documents against DFA-based XSDs
and can thus be used to validate XML documents against BonXai schemas, DTDs, as
well as XSDs.

Conversion Routines As all conversions pass through the DFA-based XSD representa-
tion, there are six conversion routines. The translation to and from XSDs and DTDs is
rather direct. The computation of a DFA-based XSD from a BonXai schema is discussed
in detail in Chapter 6. It basically reduces to the construction of a product automaton
encompassing all regular contexts in the schema. The converse direction requires to com-
pute regular contexts for every state of the DFA-based XSD. In addition, the conversion
routine creates mappings between automaton states and the corresponding BonXai rules
or XML schema types. This information together with the mappings between XML nodes
and automaton states produced by the XML validator, is used by the BonXai Editor
Plugin to highlight matching nodes/rules in the editor. Information about constraints
and namespace identifiers is directly converted between the object models.

13.3 BonXai Editor

On top of the Formal Language Toolkit and the Schema Toolkit we have developed
a BonXai Editor which provides a graphical user interface to the features of the two
toolkits. The BonXai Editor has been presented as a VLDB demo in 2012 [MNNS12].
Figure 13.1 presents an overview of the BonXai Editor.

The GUI of our current implementation is provided through a plugin for the open source
editor JEdit [JEd]. JEdit provides basic text editing functionalities, syntax highlighting
and a flexible plugin interface. Through the GUI, the user can directly develop BonXai
schemas if desired. The BonXai-Plugin provides the connection between the Formal
Language Toolkit, the Schema Toolkit and JEdit.

GUI Features The GUI aids to understand the correspondence between BonXai rules
and the generated complex types in the transformed XSD. Advanced functionalities

13.3 BonXai Editor 221

JEdit

BonXai-
Plugin

BonXai
OM

XSD
OM

DTD
OM

XML
Validator

DFA-based
XSD

GUI BonXai-Library
Automaton-

Library

P/W

P/W

P/W
XML

C

C

C

Figure 13.1: Schematic overview of the BonXai Editor.
P/W: Parser/Writer, C: Converter, OM: Object Model.

of our GUI facilitate schema development and -debugging. In particular, we support
the analysis of the relationships between an XML document, a BonXai schema, and a
corresponding XSD as follows:

• Highlighting of XML elements matched by a certain BonXai rule or by an XSD
complex type.

• Highlighting of the rule/type that matches an element in an XML tree.

• Highlighting the BonXai rule corresponding to an XSD complex type and vice
versa.

• Finding nodes in an XML tree violating the schema.

• Finding nodes in an XML tree which are unconstrained by the schema, i.e., for
which the schema allows arbitrary content.

Figure 13.2 shows a screenshot of the GUI, which demonstrates the highlighting
capabilities of our plugin based on our running example. Inside the screenshot, the
section element is marked orange, as its content model is not correct. The boldd

element is marked red as it is not allowed to appear at this position in the document
(note the spelling error). The turquoise font element has been selected by the user in
the XML document. The plugin shows where the element is declared in the BonXai
schema and XML schema respectively by highlighting the element declaration in purple.
Furthermore it shows where the content model of the selected element is declared by
marking its ancestor path (BonXai) and type declaration (XML Schema) in green.

222 13 FoXLib

F
igu

re
1
3.2:

S
creen

sh
ot

of
th

e
jed

it-p
lu

gin
w

ith
th

ree
ed

itor
p
an

es:
T

op
-L

eft:
X

M
L

d
o
cu

m
en

t
from

F
igu

re
4.2,

B
ottom

-L
eft:

B
on

X
a
i

sch
em

a
from

F
igu

re
5.2,

R
igh

t:
X

M
L

S
ch

em
a

fro
m

F
ig

u
res

4
.5

–
4
.7

.

13.4 History of FoXLib 223

13.4 History of FoXLib

The Formal Language Toolkit is provided by Hasselt University. The initial draft of
the Schema Toolkit was developed by a student group at TU Dortmund University. It
consisted of the BonXai and XML Schema object models, conversion routines between
them and parsers for both schema languages. The parser for the BonXai language was
not functional and the conversion routines used a self-implemented automaton library
which was faulty, i.e., which produced erroneous results.

On top of this work, two master students out of this student group implemented
conversion routines between XML Schema, DTDs and RelaxNG [Sch10] and algorithms
for computing (approximations of) intersections and unions of XML Schemas [Wol10].
Both works suffered from the faulty implementation of the automaton library.

The author of this thesis integrated the Formal Language Toolkit and the Schema
Toolkit. Especially, the faulty automaton library was replaced by an automaton library
from the Formal Language Toolkit. This integration forced a rewrite of much of the
existing code inside Schema Toolkit. Due to the rewriting the parts related to RelaxNG
are not functional any more.

The integration of both libraries into one has additional benefits. It is now possible to
use the inference algorithms of the FLT to learn actual schemas instead of only automaton
models. In the other direction it is possible to parse actual schemas and derive automaton
models from them that can be further analyzed using the means of the FLT.

The BonXai editor plugin was implemented on top of the other parts of the library
by the author of this thesis. This included writing a working BonXai parser and a new
XML Schema parser. The original XML Schema parser was build on top of the DOM
object model, which does not provide any information about the location of elements in
the XML file. This information is needed to allow for the highlighting features of the
BonXai editor.

13.5 Future of FoXLib

Up to now, the library has only been used by a few academic researchers, mainly persons
from Dortmund and Hasselt. Towards the goal of promoting BonXai, the library has to
be deployed to a wider audience. Therefore, we have registered the domain bonxai.org to
bundle all available documentation about FoXLib and BonXai and to provide access to
the library.

http://bonxai.org

225

Conclusion
&

Bibliography

226

227

14 Conclusions and Directions for
Further Research

We started this thesis by looking at features of database management systems in Chapter 2
to identify where XML repository management systems differ from their relational
counterparts. We recognized that there are at least some differences in almost all areas.
However, the main part of this thesis only covers one aspect of these system, the data
definition language, which is an important part of the interface between the system and the
programmer or administrator. Additional to that, the research on implication of integrity
constraints possibly has some applications in the area of query optimization which is part
of the query evaluation engine. To actually build XML Repository Management Systems,
further research in almost all aspects of these systems is necessary. In the following
conclusion, we will again focus on the aspects, we actually analyzed. This should in no
way imply that the other aspects are of minor importance or do not need further research.
We already have given hints on further research at the individual topics, which we do not
want to repeat. Instead, we want to have some broader conclusion here, a bit focusing on
the goal of designing and implementing an XML Repository Management System.

In the Chapters 5 and 6, we introduced and analyzed the BonXai schema language.
While it is certainly possible, to build an XRMS that only stores the XML data, without
looking at semantics, it is desirable, if the system knows (and checks) semantic constraints.
On one hand, the knowledge about these constraints can be used to optimize access
to data. On the other hand, the system can actively help to recognize (and possibly
repair) invalid data. Therefore, the system should be schema-aware. Managing large
amounts of data usually means, that there is more need to present the increased amount
of schema information in a user-understandable way. This should give enough motivation
for further research in the area of pattern based schema languages and possibly extending
the BonXai schema language.

After studying the BonXai schema language, we summarized known results about
deterministic regular expressions, which are used in various XML schema languages
including BonXai. While further research on DREs is interesting from a formal language
point of view, it is of minor importance for XRMS’s. Existing schema languages are
using DREs. However, there is no compelling reason to use DREs in the core of some
XRMS. Most algorithm will work on some automata representation anyway and if there
is some need to export schema information to existing schema languages, there is always
the pragmatical approach to use existing approximations.

In Chapter 8 we made an excursion into distributed XML repository management
systems. While it is obvious that data gets distributed more and more, a first XRMS
implementation probably will focus on local management of data. However, XRMS’s

228 14 Conclusions and Directions for Further Research

should be designed with distribution in mind, meaning that it should be possible to add
support for distribution at a later time without the need of a big redesign of the system.
On the longer perspective, managing distributed data, will be absolutely necessary and
therefore the research on distributed XML schema design should be continued.

After the excursion into distributed documents, we changed our focus completely from
purely structural descriptions to semantic constraints in Part II of this thesis. Contrary to
Part I, in Part II, we actually looked at the data instead at only focusing on its structure.
We start our retrospect of this part with Chapter 12, whose results chronologically
precedes the research in Chapters 9 to 11.

The research on first order logic with two variables is certainly interesting from a
theoretical point of view. While we have succeeded to show that FO2(∼,+1) on data
words is decidable in combination with key constraints, there is no direct application to
XRMS’s, as we only managed to show satisfiability on data words (and not on trees).
Even if the results could be transferred to trees (which we have no clue about), the
approach is too complex to be deployed to actual XRMS’s. Towards a working XRMS,
the approach of X2R-constraints, which we analyzed in Chapters 9 to 11 is the better
alternative. This corresponds to one central insight, which we want to repeat here: In
XML integrity constraints, navigational properties of the used constraint mechanism
should be separated from semantic features that can compare data values. FO2(∼,+1)
mixes navigational properties with data comparisons, as it has direct access to data
values.

We spent a big part of this thesis to analyze XML-to-relational constraints. As already
pointed out, there are many possible research directions in the area of XML integrity
constraints. Integrity constraints have always been an important aspect of relational
databases and relational DBMS’s. There is no evidence that this changes fundamentally
for XML databases. While usage of key constraints in small documents might not have
been widely used, once it comes to managing big amounts of data (as in XRMS’s), the
need for integrity constraints will rise. Therefore, there should be ongoing research in this
area. We have depicted a very general framework. Towards the design of some actual
system, it is necessary to identify tractable yet expressive fragments. In Chapter 11, we
have studied the implication problem of some sort of functional dependencies and key
constraints. Ongoing research can look at some different fragments to identify the border
of tractability.

We want to emphasize again, that in the second part, we have concentrated on designing
the underlying theoretical concepts instead of designing languages aimed at users, i.e.,
database administrators and programmers. Towards a usage of our concepts in actual
XRMS’s, there is still some way to go, as indicated at the end of Chapter 11.

At the end of this thesis, we took a look on the FoXLib library, that implements some
algorithms designed for XML schema handling and the prototype implementation of a
plugin based on the jedit platform. This library is in particular meant to promote the
BonXai schema language. It allows conversions between BonXai and XML Schema and
thus allows people who want to try BonXai to stay compatible with existing systems. The
library and implementation is not meant to be an XRMS. Especially it is not designed
to handle big amounts of data, as the focus is on schema design and schema analysis.

229

Nevertheless, the implemented algorithms can of course be useful tools for a database
administrator helping to design and manage XML databases inside some XRMS.

In summary, we can conclude that there is still a lot of work to be done on the way
towards a working XRMS.

231

Bibliography

[ABLM10] M. Arenas, P. Barcelo, L. Libkin, and F. Murlak. Relational and xml data
exchange. Synthesis Lectures on Data Management, 2(1):1–112, 2010.

[AF05] S. Avgustinovich and A. Frid. A unique decomposition theorem for factorial
languages. International Journal of Algebra and Computation, 15:149–160,
2005.

[AFL08] M. Arenas, W. Fan, and L. Libkin. On the complexity of verifying consistency
of XML specifications. SIAM Journal on Computing, 38(3):841–880, 2008.

[AGM09] S. Abiteboul, G. Gottlob, and M. Manna. Distributed XML design. In
International Symposium on Principles of Database Systems (PODS), pages
247–258, 2009.

[AHV94] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical
Level. Addison Wesley, 1994.

[AL04] M. Arenas and L. Libkin. A normal form for XML documents. ACM
Transactions on Database Systems, 29:195–232, 2004.

[AM86] P. Atzeni and N. M. Morfuni. Functional dependencies and constraints on
null values in database relations. In Information and Control, volume 70(1),
pages 1–31, 1986.

[Bal04] S. Bala. Regular language matching and other decidable cases of the
satisfiability problem for constraints between regular open terms. In Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages
596–607, 2004.

[BDF+02] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan. Keys for XML.
Computer Networks, 39(5):473–487, 2002.

[BDF+03] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about
keys for XML. Information Systems, 28(8):1037–1063, 2003.

[BGMN09] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML Schema:
effortless handling of nondeterministic regular expressions. In International
Symposium on Management of Data (SIGMOD), pages 731–744, New York,
NY, USA, 2009. ACM.

232 Bibliography

[BK92] A. Brüggemann-Klein. Regular expressions into finite automata. volume
583 of Lecture Notes in Computer Science, pages 87–98. Springer Berlin
Heidelberg, 1992.

[BKW98] A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages.
Information and Computation, 142(2):182–206, 1998.

[BMS+06] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David.
Two-variable logic on words with data. In IEEE Symposium on Logic in
Computer Science (LICS), pages 7–16, 2006.

[BMSS09] M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable
logic on data trees and XML reasoning. Journal of the ACM, 56(3), 2009.

[BNSV10] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of
concise regular expressions and DTDs. ACM Transactions on Database
Systems, 35(2):11:1–11:47, 2010.

[BPSM+08] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language XML 1.0 (fifth edition). Technical report, World
Wide Web Consortium (W3C), November 2008. W3C Recommendation,
http://www.w3.org/TR/2008/REC-xml-20081126/.

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[BV84] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies. Journal
of the ACM, 31(4):718–741, 1984.

[CDFI12] C. Cui, Z. Dang, T. R. Fischer, and O. H. Ibarra. Information rate of
some classes of non-regular languages: An automata-theoretic approach.
submitted, 2012.

[CDLM13] W. Czerwiński, C. David, K. Losemann, and W. Martens. Deciding de-
finability by deterministic regular expressions. In Foundations of Software
Science and Computation Structures, pages 289–304, 2013.

[CFPR03] J. Czyzowicz, W. Fraczak, A. Pelc, and W. Rytter. Linear-time prime
decompositions of regular prefix codes. International Journal of Foundations
of Computer Science, 14:1019–1031, 2003.

[CGLV02] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Vardi. Rewriting of
regular expressions and regular path queries. Journal of Computer and
System Sciences, 64(3):443–465, 2002.

[CGM88] U. S. Chakravarthy, J. Grant, and J. Minker. Foundations of semantic query
optimization for deductive databases. Morgan Kaufmann Publishers Inc.,
1988.

Bibliography 233

[CHM11] P. Caron, Y. Han, and L. Mignot. Generalized one-unambiguity. In Inter-
national Conference on Developments in Language Theory (DLT), pages
129–140, 2011.

[CM01] J. Clark and M. Murata. Relax NG specification.
http://www.relaxng.org/spec-20011203.html, December 2001.

[CMM13] W. Czerwinski, W. Martens, and T. Masopust. Efficient separability of
regular languages by subsequences and suffixes. In International Colloquium
on Automata, Languages and Programming (ICALP), pages 150–161, 2013.

[CMV04] C. S. Coen, P. Marinelli, and F. Vitali. Schemapath, a minimal extension
to xml schema for conditional constraints. In WWW, pages 164–174, 2004.

[Cod72] E. F. Codd. Relational completeness of data base sublanguages. IBM
Corporation, 1972.

[Con71] J. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

[CV85] A. K. Chandra and M. Y. Vardi. The implication problem for functional
and inclusion dependencies is undecidable. SIAM Journal on Computing,
14(3):671–677, 1985.

[DGG+09] N. Douib, O. Garbe, D. Günther, D. Oliana, J. Kroniger, F. Lücke, T. Me-
likoglu, K. Nordmann, G. Özen, T. Schlitt, L. Schmidt, J. Westhoff, and
D. Wolff. PG 530 — pattern based schema languages. Technical report, TU
Dortmund, 2009.

[DSD02] DSD. Document structure description (DSD). http://www.brics.dk/DSD/,
2002.

[EKSW04] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: new
results and open problems. Journal of Automata, Languages, and Combina-
torics, pages 233–256, 2004.

[EZ76] A. Ehrenfeucht and H. P. Zeiger. Complexity measures for regular expres-
sions. Journal of Computer and System Sciences, 12(2):134–146, 1976.

[FGMV04] D. Fiorello, N. Gessa, P. Marinelli, and F. Vitali. Dtd++ 2.0: Adding
support for co-constraints. In Extreme Markup Languages, 2004.

[Fig10] D. Figueira. Reasoning on Words and Trees with Data. Phd thesis, Labora-
toire Spécification et Vérification, ENS Cachan, France, December 2010.

[GGM12] W. Gelade, M. Gyssens, and W. Martens. Regular expressions with counting:
Weak versus strong determinism. SIAM Journal on Computing, 41(1):160–
190, 2012.

http://www.brics.dk/DSD/

234 Bibliography

[GJ08] H. Gruber and J. Johannsen. Optimal lower bounds on regular expression
size using communication complexity. In Foundations of Software Science
and Computation Structures, pages 273–286, 2008.

[GM78] H. Gallaire and J. Minker, editors. Logic and Data Bases. Perseus Publishing,
1978.

[GMUW02] H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems – The
Complete Book. Prentice Hall, 2002.

[GN08] W. Gelade and F. Neven. Succinctness of the complement and intersection
of regular expressions. In Annual Symposium on Theoretical Aspects of
Computer Science (STACS), pages 325–336, 2008.

[GN11] W. Gelade and F. Neven. Succinctness of pattern-based schema languages
for XML. Journal of Computer and System Sciences, 77(3):505–519, 2011.

[GO99] E. Grädel and M. Otto. On logics with two variables. Theoretical Computer
Science, 224(1-2):73–113, 1999.

[GSMT+12] S. Gao, C. Sperberg-McQueen, H. Thompson, N. Mendelsohn, D. Beech, and
M. Maloney. W3C XML Schema definition language (XSD) 1.1 part 1: Struc-
tures. http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/,
April 2012.

[HL03] S. Hartmann and S. Link. More functional dependencies for XML. In
L. Kalinichenko, R. Manthey, B. Thalheim, and U. Wloka, editors, Advances
in Databases and Information Systems, volume 2798 of LNCS, pages 355–369.
Springer Berlin / Heidelberg, 2003.

[HSW06] Y.-S. Han, K. Salomaa, and D. Wood. Prime decompositions of regular
languages. In International Conference on Developments in Language Theory
(DLT), pages 145–155, 2006.

[JEd] jEdit programmer’s text editor. www.jedit.org.

[JR93] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM
Journal on Computing, 22(6):1117–1141, 1993.

[Kin81] J. J. King. Query Optimization by Semantic Reasoning. PhD thesis, Stanford
University, 1981.

[KS07] G. Kasneci and T. Schwentick. The complexity of reasoning about pattern-
based XML schemas. In ACM Symposium on Principles of Database Systems
(PODS), pages 155–164, 2007.

[Kun07] M. Kunc. What do we know about language equations? In International
Conference on Developments in Language Theory (DLT), pages 23–27, 2007.

http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
www.jedit.org

Bibliography 235

[KW80] C. Kintala and D. Wotschke. Amounts of nondeterminism in finite automata.
Acta Informatica, 13:199–204, 1980.

[KW07] L. Kot and W. M. White. Characterization of the interaction of XML
functional dependencies with DTDs. In International Conference Database
Theory (ICDT), pages 119–133, 2007.

[LBC14] P. Lu, J. Bremer, and H. Chen. Deciding determinism of regular languages.
draft, 2014.

[LLL02] M. Lee, T. Ling, and W. Low. Designing functional dependencies for XML.
In International Conference on Extending Database Technology (EDBT),
pages 145–158. 2002.

[LMN12] K. Losemann, W. Martens, and M. Niewerth. Descriptional complexity of
deterministic regular expressions. In International Symposium on Mathe-
matical Foundations of Computer Science (MFCS), pages 643–654, 2012.

[Los10] K. Losemann. Boolesche Operationen auf deterministischen regulären
Ausdrücken. Master’s thesis, TU Dortmund, October 2010.

[Mar05] M. Marx. First order paths in ordered trees. In International Conference
Database Theory (ICDT), pages 114–128, 2005.

[Mei10] M. Meier. On the termination of the chase algorithm. PhD thesis, University
of Freiburg, 2010.

[MLMK05] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml schema
languages using formal language theory. ACM Trans. Internet Techn.,
5(4):660–704, 2005.

[MMN+14] W. Martens, V. Mattick, M. Niewerth, S. Agarwal, N. Douib, O. Garbe,
D. Günther, D. Oliana, J. Kroniger, F. Lücke, T. Melikoglu, K. Nordmann,
G. Özen, T. Schlitt, L. Schmidt, J. Westhoff, and D. Wolff. Design of the
BonXai schema language. Available at http://ls1-www.cs.tu-dortmund.
de/cms/bonxai/, Draft 2014.

[MMS79] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data
dependencies. ACM Transactions on Database Systems, 4(4):455–469, 1979.

[MN07] W. Martens and J. Niehren. On the minimization of XML Schemas and tree
automata for unranked trees. Journal of Computer and System Sciences,
73(4):550–583, 2007.

[MNNS12] W. Martens, F. Neven, M. Niewerth, and T. Schwentick. Developing and
analyzing XSDs through BonXai. International Conference on Very Large
Data Bases (VLDB), 5(12):1994–1997, 2012.

http://ls1-www.cs.tu-dortmund.de/cms/bonxai/
http://ls1-www.cs.tu-dortmund.de/cms/bonxai/

236 Bibliography

[MNS07] W. Martens, F. Neven, and T. Schwentick. Simple off the shelf abstractions
of XML Schema. SIGMOD Record, 36(3):15–22, 2007.

[MNS09] W. Martens, F. Neven, and T. Schwentick. Complexity of decision prob-
lems for XML schemas and chain regular expressions. SIAM Journal on
Computing, 39(4):1486–1530, 2009.

[MNS10] W. Martens, M. Niewerth, and T. Schwentick. Schema design for XML
repositories: Complexity and tractability. In International Symposium on
Principles of Database Systems (PODS), pages 239–250, 2010.

[MNSB06] W. Martens, F. Neven, T. Schwentick, and G. Bex. Expressiveness and
complexity of XML Schema. ACM Transactions on Database Systems,
31(3):770–813, 2006.

[MS04] G. Miklau and D. Suciu. Containment and equivalence for a fragment of
XPath. Journal of the ACM, 51(1):2–45, 2004.

[MS06] A. Møller and M. Schwartzbach. An introduction to XML and web technolo-
gies. Addison-Wesley, 2006.

[NS11] M. Niewerth and T. Schwentick. Two-variable logic and key constraints on
data words. In International Conference Database Theory (ICDT), pages
138–149, 2011.

[NS14] M. Niewerth and T. Schwentick. Reasoning about XML constraints based on
XML-to-relational mappings. In International Conference Database Theory
(ICDT), pages 72–83, 2014.

[NS15] M. Niewerth and T. Schwentick. Reasoning about XML constraints based
on XML-to-relational mappings. Theory of Computing Systems, 2015. sub-
mitted.

[PGM+12] D. Peterson, S. Gao, A. Malhotra, C. Sperberg-McQueen, H. Thomp-
son, and P. Biron. W3C XML Schema definition language
(XSD) 1.1 part 2: Datatypes. http://www.w3.org/TR/2012/

REC-xmlschema11-2-20120405/, April 2012.

[PV00] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data.
In International Symposium on Principles of Database Systems (PODS),
pages 35–46, 2000.

[RG03] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-
Hill, Inc., New York, NY, USA, 3 edition, 2003.

[Sal08] K. Salomaa. Language decompositions, primality, and trajectory-based
operations. In International Conference on Implementation and Application
of Automata (CIAA), pages 17–22, 2008.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

Bibliography 237

[Sch99] Schematron. Schematron. http://www.schematron.com/, 1999.

[Sch10] L. Schmidt. Konvertierung zwischen RELAX NG, XML Schema und Docu-
ment Type Definition. Master’s thesis, TU Dortmund, 2010.

[SRM05] H. Su, E. A. Rundensteiner, and M. Mani. Semantic query optimization
for xquery over xml streams. In International Symposium on Principles of
Database Systems (PODS), pages 277–288, 2005.

[SSY08] A. Salomaa, K. Salomaa, and S. Yu. Length codes, products of languages
and primality. In International Conference on Language and Automata
Theory and Applications (LATA), pages 476–486, 2008.

[Sto74] L. Stockmeyer. The complexity of decision problems in automata and logic,
1974. Ph.D. Thesis, MIT, 1974.

[SY99] A. Salomaa and S. Yu. On the decomposition of finite languages. In
International Conference on Developments in Language Theory (DLT),
pages 22–31, 1999.

[To10] A. W. To. Parikh images of regular languages: Complexity and applications.
Computing Research Repository, abs/1002.1464, 2010.

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57–81, 1968.

[van97] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity,
Logic and Recursion Theory, volume 187 of Lecture Notes in Pure and
Applied Mathematics, pages 331–363. Marcel Dekker Inc., 1997.

[Var95] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Banff Higher Order Workshop (BANFF), pages 238–266, 1995.

[VLL04] M. W. Vincent, J. Liu, and C. Liu. Strong functional dependencies and
their application to normal forms in XML. ACM Transactions on Database
Systems, 29(3):445–462, September 2004.

[Wie09] W. Wieczorek. An algorithm for the decomposition of finite languages. Logic
Journal of the IGPL, 2009. Appeared on-line August 8, 2009.

[WLA+00] L. Wood, A. Le Hors, V. Apparao, S. Byrne, M. Champion, S. Isaacs,
I. Jacobs, G. Nicol, J. Robie, R. Sutor, and C. Wilson. Document Object
Model (DOM) level 1 specification (second edition). http://www.w3.org/
TR/2000/WD-DOM-Level-1-20000929/, September 2000.

[Wol10] D. Wolff. Untersuchung und Implementierung von Durchschnitt, Vereinigung
und Differenz für XML Schema. Master’s thesis, TU Dortmund, 2010.

http://www.schematron.com/
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/

238 Bibliography

[Yu97] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 2. Springer, 1997.

	Preface
	Contents
	Introduction
	Introduction
	Questions
	Running Example: A Content Management System
	Structure of the Thesis
	Contributions by other Authors

	Database Management Systems
	Database Interface
	Query Evaluation Engine
	Low-Level Features
	Distributed Data

	Preliminaries and Notation
	Regular Languages
	Tree Model
	Tree Languages
	Tiling Problems

	Schema Definition Languages
	Defining the Structure of Trees
	Example: A Toy Markup Language
	A DTD for the Markup Language
	An XML Schema for the Markup Language

	BonXai
	BonXai Schemas for the Markup Language
	BonXai at a Glance
	BonXai at Work
	A Comparison with Other Schema Languages for XML

	The Theory Underlying BonXai
	A Formal Model for XML Schema Definitions
	A Formal Model for BonXai Schemas
	Priorities in BonXai
	Translations Between Schemas
	Efficient Translations for Fragments
	Worst-Case Optimality of the Translation Algorithms
	Further Research on the BonXai Schema Language

	Deterministic Regular Expressions
	Weak vs. Strong Determinism
	Orbit Property and DRE Definability
	Closure Properties and Descriptional Complexity of DREs
	Minimization
	Further Research on Deterministic Regular Expressions

	Schema Decomposition
	From XML Documents to Strings
	Notation and Algorithmic Problems
	Connections to Language Theoretic Problems
	The Language Primality Problem
	Perfect Typings
	Normal Form Typings
	Verification of Typings
	Existence of Typings
	Further Research on Distributed XML Design

	Integrity Constraints
	Integrity Constraints for Relations and Trees
	Relational Integrity Constraints
	Integrity Constraints on Trees

	A Framework for XML Integrity Constraints
	XML-to-Relational Constraints
	Tree Patterns and Tree Pattern Mappings
	Tree Pattern Based X2R-Constraints
	Comparing the X2R-Framework with Existing Work

	Implication of XML-to-Relational Constraints
	Witness Pairs and Model Checking
	Chasing on Trees
	Upper Bounds Based on Small Counter Examples
	Polynomial Space Upper Bound Based on Skeletons
	Lower Bounds by Reductions from 3SAT
	Lower Bounds by Reductions from Tiling Problems
	Conclusions and Further Research on X2R-constraints

	Two Variable First Order Logic and Key Constraints
	Definitions
	[2],+1 without Key Constraints
	[2],+1 with Key Constraints
	Conclusion on ,+1

	Prototype
	FoXLib
	Formal Language Toolkit
	Schema Toolkit
	BonXai Editor
	History of FoXLib
	Future of FoXLib

	Conclusion & Bibliography
	Conclusions and Directions for Further Research
	Bibliography

