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Abstract

XML Schema Definitions (XSDs) can be adequately abstracted by the single-type regular tree languages. It
is well-known that these form a strict subclass of the robust class of regular unranked tree languages. Sadly,
in this respect, XSDs are not closed under the basic operations of union and set difference, complicating
important tasks in schema integration and evolution. The purpose of this paper is to investigate how the
union and difference of two XSDs can be approximated within the framework of single-type regular tree
languages. We consider both optimal lower and upper approximations. We also address the more general
question of how to approximate an arbitrary regular tree language by an XSD and consider the complexity
of associated decision problems.
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1. Introduction

Despite the existence of viable alternatives [10], XML Schema is momentarily the only industrially
accepted and widely supported schema language for XML. Although the presence of a schema accompanying
an XML repository has many advantages in terms of XML processing and (meta)data integration, it has
already been observed several times that, in practice, XSDs are often faulty or simply missing [2, 5, 23].
Even though the exact causes of the absence of schemas and the high percentage of errors in XSDs are
difficult to pinpoint, the high complexity of XML Schema undoubtedly plays an important role.

In [4], we therefore initiated a research program to simplify the use of XML Schema. While the latter
paper focused on the handling of non-deterministic content models (forbidden by the Unique Particle At-
tribution (UPA) constraint), the present paper concentrates on the Element Declaration Consistent (EDC)
constraint which imposes restrictions on the use of the typing mechanism in XSDs. The most immediate
advantage of EDC is that it facilitates a simple one-pass top-down validation algorithm. On the negative
side, the constraint breaks the equivalence of XML Schema with the robust class of unranked regular tree
languages and, more specifically, it prevents the closure of XSDs under two of the Boolean operations: union
and set difference. The latter defect greatly complicates common tasks in XML Schema integration and
evolution where the union and difference operators play a fundamental role (cf. [3]). Indeed, merging two
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(or more) XSDs becomes a non-trivial task when the target schema can no longer be represented by an
XSD. The same holds true for refactoring a large schema into several components. To this end, we inves-
tigate in this paper how to compute optimal approximations of the union and difference of XSDs. More
general, we look into optimal approximations of arbitrary unranked regular tree languages, thereby laying
the foundation of a translation from Relax NG to XML Schema.

Approximations come in two distinct flavours. Depending on the application at hand, we are either
interested in a maximal lower or a minimal upper approximation. For instance, in a typical data integration
scenario, where the union of two XSDs, X and Y , needs to be represented by an XSD S, we want to allow all
XML data described by X and Y but at the same time minimize the amount of errors, that is, minimize the
number of XML documents outside X ∪ Y . In such a setting S needs to be a minimal upper approximation
of X ∪ Y . Maximal lower approximations can, for instance, be motivated by the following kind of data
exchange scenario. When a Web service describes its interface by means of a schema X in Relax NG, a
corresponding XSD S needs to be made available for general use. To ensure a correct handling of requests,
S should only define XML documents present in X while being as close to X as possible. That is, S should
be a maximal lower approximation of X.

There are two orthogonal reasons why XSDs are not closed under the Boolean operations: one is caused
by enforcing the Unique Particle Attribution constraint (UPA) and the other by enforcing the Element
Declarations Consistent constraint (EDC). Both constraints are independent since each of them can be
imposed on a schema without affecting the other: the UPA constraint restricts only the content models of
schemas while the EDC constraint only restricts the typing mechanism.

The Unique Particle Attribution (UPA) constraint prohibits closure of XML Schema under the Boolean
operations for the simple reason that content models which satisfy the UPA constraint are not closed under
union [8], complement [8, 14], or intersection [16]. In [4] we therefore investigated how content models
that violate UPA can be approximated with content models that satisfy it. In the present study, we focus
solely on the EDC constraint. In particular, we allow UPA violations and assume that content models are
represented by regular string languages. As such, the present study is orthogonal to our previous work [4].

In fact, the results of this paper and our previous work [4] can be combined in the following manner:
When given a regular tree language L (e.g., obtained by performing an operation on given XSDs), one can
obtain an XSD that approximates L by first applying the procedures from this paper to repair the EDC
constraint and then the procedures from [4] to repair the UPA constraint. The present paper shows to
which extent the EDC constraint can be repaired optimally, if possible. Unfortunately, regarding the UPA
constraint, it seems that optimal approximations almost never exist and some compromises regarding how
closely one wants to approximate the target language need to be made [4].

Contributions. We show that, for every regular unranked tree langugage X, there is a unique minimal
upper XSD-approximation S. The latter approximation can be computed in exponential time when X is
represented as an extended DTD (EDTD). Furthermore, S can have exponentially more types than X and
in general this blow-up cannot be avoided. In strong contrast, the union and difference of two XSDs can be
uniquely approximated in polynomial time. Deciding whether a given single-type EDTD is a minimal upper
XSD-approximation of a EDTD is shown to be complete for pspace.

Maximal lower XSD-approximations do not behave as nicely as their upper counterparts. Indeed, even
for the union of two XSDs X and Y we show that there can be infinitely many maximal lower XSD-ap-
proximations. We therefore focus on XSD-approximation which extend either X or Y . We show such
approximations to be unique and to be computable in polynomial time. We show that for the special case
of non-recursive unranked regular tree languages there always exists a maximal lower approximation and
that it is decidable whether a given XSD is a maximal lower XSD-approximation. It is unclear whether the
same results hold for arbitrary regular languages.

Using the minimization algorithm from [20], we can also minimize the output XSDs of our approximation
algorithms. Since minimizing an XSD can be done in polynomial time, this extra step would cost polynomial
time in the size of our output XSDs. In that sense, we can always deliver optimal representations of optimal
approximations.

Related Work. Murata et al. established a taxonomy of XML Schema languages in terms of tree languages

2



[21]. More precisely, they classified DTDs as the local tree languages, XSDs as the single-type tree languages
(ST-REG) and Relax NG as the unranked tree languages. Furthermore, they obtained a one-pass top-down
validation algorithm for ST-REG and stated (without proof) that ST-REG is not closed under union and
set difference. Martens et al [19] characterized ST-REG as the subclass of the regular tree languages closed
under ancestor-guarded subtree exchange, from which the failure of closure of ST-REG under union and
difference easily follows. In the same paper, the authors showed that it is exptime-complete to decide
whether a given regular tree language can be represented by an equivalent single-type one.

To the best of our knowledge, optimal single-type approximations of regular tree languages have not
been investigated.

Outline. Section 2 introduces the necessary definitions. In Section 3, we discuss minimal upper XSD-ap-
proximations, while we address maximal lower XSD-approximations in Section 4. Section 5 discusses how
our results change when NFAs and (deterministic) regular expressions are used as content models. We
conclude in Section 6.

2. Preliminaries

2.1. Strings, Trees, and Contexts

For a finite set S, we denote by |S| its cardinality. By Σ we always denote a finite alphabet of symbols or
labels. As usual, a (non-deterministic) finite automaton (NFA) over alphabet Σ is a tuple N = (Q,Σ, δ, I, F ),
where Q is its finite set of states, Σ is the alphabet, δ : Q×Σ→ 2Q is the transition function, I is the set of
initial states, and F is the set of final states. The automaton N is state-labeled when, for every state q, all
transitions to q carry the same label. That is, for each q ∈ Q, the set {a ∈ Σ | q ∈ δ(q′, a) for some q′ ∈ Q} is
either empty or a singleton. Note that being state-labeled is a natural property of Glushkov automata (see,
e.g., [8]). Furthermore, any regular language can be defined by a state-labeled automaton.

In the latter case, we denote this unique alphabet symbol by label(q). The automaton N is deterministic,
or a DFA, if I is a singleton and the cardinality of each set δ(q, a) is at most one. If N is a DFA, we sometimes
also write δ(q, a) = q′ instead of δ(q, a) = {q′}. By N(w), we denote the set of states that N can end up in
when reading w ∈ Σ∗ started in some state q ∈ I. We define the size |N | of an NFA N to be the sum of
the number of states and the sizes of its transitions, that is, |N | = |Q| +

∑
(q,a)∈Q×Σ |δ(q, a)|. The regular

expressions (RE) r over Σ are of the form

r ::= ∅ | ε | a | rr | r + r | (r)? | (r)+ | (r)∗,

where ε denotes the empty string and a ranges over symbols in the alphabet Σ. Sometimes, we also use
the symbol · for regular expression concatenation to improve readability. As usual, we write L(r) for the
language defined by a regular expression r and L(N) for the language defined by a finite automaton N .

The set of Σ-trees, denoted by TΣ, is inductively defined as follows: (1) every a ∈ Σ is a Σ-tree; and
(2) if a ∈ Σ and t1, . . . , tn ∈ TΣ for n ≥ 1 then a(t1, . . . , tn) is a Σ-tree. There is no a priori bound on the
number of children of a node in a Σ-tree; such trees are therefore unranked. In the following, when we say
tree we always mean Σ-tree. A tree language is a set of trees.

For every tree t, the set of nodes of t, denoted by Dom(t), is the set defined as follows: if t = a(t1, . . . , tn)
with a ∈ Σ, n ≥ 0, and t1, . . . , tn ∈ TΣ, then Dom(t) = {ε} ∪ {iu : 1 ≤ i ≤ n, u ∈ Dom(ti)}. Thus,
ε represents the root while ui represents the i-th child of u. For a node v ∈ Dom(t), we denote the
Σ-label of v by labt(v). When v has n children, we denote by ch-strt(v) the child-string of v, i.e., the
string labt(v1) · · · labt(vn). We denote by anc-strt(v) the ancestor-string of v = i1 · · · ik, which is defined as
labt(ε)labt(i1) · · · labt(i1 · · · ik−1)labt(v). Notice that anc-strt(v) always includes the label of v. The depth
of a node v in tree t is the length of its ancestor-string. The depth of a tree t is the maximum over the
depths of its nodes. As such, a tree consisting of only a root has depth one. Denote by t1[v ← t2] the tree
obtained from a tree t1 by replacing the subtree rooted at node v of t1 by t2; hence, in t1[v ← t2], the label
of v is the root label of t2. By subtreet(v) we denote the subtree of t rooted at v.
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A context is a tree with a “hole” marker •. More specifically, a context C is a tree over the alphabet
Σ ∪ (Σ× {•}) in which all nodes are labeled with Σ-symbols, except for one leaf that is labeled with (a, •)
for some a ∈ Σ. Given a context C with a hole marker at node u and a tree t′ = a(t1, . . . , tn), we denote
by C[t′] the Σ-tree C[u ← t′]. If C ′ is another context with root label a or (a, •), we denote by C[C ′] the
context C[u ← C ′]. We say that we apply the context C to tree t′ (respectively, context C ′). Notice that
we can only apply a context C to a tree t′ (respectively, context C ′) if the root of t′ (respectively, C ′) bears
the same Σ-label as the distinguished leaf in C.

2.2. XML Schema Languages

We abstract XML Document Type Definitions (DTDs) as follows:

Definition 2.1. A DTD is a tuple (Σ, d, Sd), where Σ is a finite alphabet, d is a function that maps
Σ-symbols to regular string languages over Σ, and Sd ⊆ Σ is the set of start symbols. For notational
convenience we sometimes denote (Σ, d, Sd) by d.

A tree t satisfies d if its root is labeled by an element of Sd and, for every node v with label a, the
child-string ch-strt(v) is in the language defined by d(a). By L(d) denote the language of trees satisfying d.

The size of a DTD is |Σ|+ |Sd|+ |d| where |d| refers to the size of the representations of the regular string
languages. Unless specified otherwise, we represent all such regular string languages by minimal DFAs.2

Hence, |d| is the sum of the sizes of all DFAs representing languages d(a) for a ∈ Σ or, more formally,
|d| =

∑
a∈Σ |Aa|, where Aa is the minimal DFA for d(a).

To boost its expressiveness, the XML Schema specification extends DTDs with a typing mechanism,
abstracted in the form of extended DTDs as follows [21, 22]:

Definition 2.2. An extended DTD (EDTD) is a tuple D = (Σ,∆, d, Sd, µ), where ∆ is a finite set of types,
(∆, d, Sd) is a DTD and µ is a mapping from ∆ to Σ.

A tree t satisfies D if t = µ(t′) for some t′ ∈ L(d). Here, µ(t′) denotes the Σ-tree obtained from t′ by
replacing each label τ by µ(τ). Again, we denote by L(D) the language of trees satisfying D.

Extended DTDs are well-known to define the class of unranked regular tree languages (UREG) [7, 22].
The size of an EDTD is |Σ| plus the size of its underlying DTD.

Proviso 2.3. In this paper, we assume that all EDTDs are reduced. Formally an EDTD (Σ,∆, d, Sd, µ)

is reduced if, for each type τ ∈ ∆, there exists a tree t′ ∈ L(d) and a node u such that labt
′
(u) = τ . It

is widely known that an equivalent reduced EDTD can be computed from a given EDTD in polynomial time
(see, e.g., [1, 18]).

As the Element Declarations Consistent rule severely constrains the use of the typing mechanism in
XML Schema [12], extended DTDs do not constitute a satisfactory abstraction of XSDs. Therefore, XSDs
are commonly abstracted as single-type EDTDs [21, 19, 17]:

Definition 2.4. A single-type EDTD (stEDTD in short) is an EDTD (Σ,∆, d, Sd, µ) with the property
that no two types τ1 and τ2 exist with µ(τ1) = µ(τ2) such that (i) τ1, τ2 ∈ Sd; or, (ii) there is a type τ such
that w1τ1v1 ∈ d(τ) and w2τ2v2 ∈ d(τ) for some strings w1, v1, w2, and v1.

Notice that condition (ii) does not require that τ1 and τ2 must occur in the same string in d(τ). For
example, if d(τ) = L(τ1 + τ2) and µ(τ1) = µ(τ2) then τ1 and τ2 do not occur in the same string in d(τ) but
d(τ) would not be allowed as a content model in a single-type EDTD.

A tree language T is definable by a single-type EDTD if there exists a single-type EDTD D such that
L(D) = T . We refer to ST-REG as the class of tree languages definable by single-type EDTDs. The type-size

2In Section 5, we discuss how our results change when (deterministic) regular expressions and NFAs are used. Note also
that XML Schema restricts regular expressions to be deterministic, a strict subclass of DFAs. In fact, any deterministic regular
expression can be translated in quadratic time to a corresponding DFA.
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of a language T in ST-REG is min{|∆| | L(D) = T and D = (Σ,∆, d, Sd, µ)}, i.e., the smallest number of
types among all stEDTDs defining T .

We next define the type automaton of an EDTD. Intuitively, the type automaton of an EDTD is an NFA
that, when given an ancestor string of a node v, is in a state that corresponds to a type that can be assigned
to a node with the same ancestor string than v. Type automata will be a convenient tool in proofs and
constructions.

Definition 2.5. The type automaton of an EDTD D = (Σ,∆, d, Sd, µ) is a state-labeled NFA N =
(Q,Σ, δ, {qinit}) without final states such that Q = ∆ ] {qinit} and, for each q ∈ Q,

• if q = qinit, then δ(q, a) = {τ | µ(τ) = a and τ ∈ Sd}, and

• otherwise, δ(q, a) = {τ | µ(τ) = a and τ occurs in some word in d(q)}.

Example 2.6. Consider the following EDTD D = (Σ,∆, d, Sd, µ), with ∆ = {τa, τ1
b , τ

2
b }, Sd = {τa} and

µ(τa) = a, µ(τ1
b ) = µ(τ2

b ) = b:
τa → τa + τ1

b

τ1
b → τ2

b + ε
τ2
b → τa + τ2

b + ε

Then, this is the type automaton of D:

qinitstart τa τ1
b τ2

ba

a

b b

b
a

We make the following observations:

Observation 2.7. (1) Given an EDTD, its type automaton can be constructed in linear time.

(2) For each EDTD, the state qinit of its type automaton has no incoming transitions.

(3) The type automaton of an EDTD D is a DFA if and only if D is a single-type EDTD.

Martens et al. provided several alternative characterizations of single-type EDTDs [19, 17]. One of these
is a simple extension of DTDs, which we call DFA-based XSDs and which we define next. Recall, that we
denote by anc-strt(v) the sequence of labels on the path from the root to v including both the root and v
itself.

Definition 2.8. A DFA-based XSD is a pair D = (Σ, A, d, Sd), where A = (Q,Σ, δ, {qinit}, ∅) is a state-
labeled DFA with initial state qinit and without final states, d is a function from Q \ {qinit} to regular
languages over Σ, and Sd ⊆ Σ is the set of start symbols.

A tree t satisfies D if labt(ε) ∈ Sd and, for every node u, A(anc-strt(u)) = {q} implies that ch-strt(u)
is in the language d(q). As in EDTDs, we represent the languages d(q) by minimal DFAs, unless stated
otherwise.

Proposition 2.9. DFA-based XSDs are expressively equivalent to single-type EDTDs and one can translate
between DFA-based XSDs and single-type EDTDs in linear time.

Proof. Since the current literature only claims a quadratic upper bound for these translations [17, 13], we
explicitly provide a construction.

Let D = (Σ, A, d, Sd) be a DFA-based XSD, where A = (Q,Σ, δ, {qinit}, ∅) is a state-labeled DFA without
final states. We define the equivalent single-type EDTD E = (Σ,∆, d′, S′d, µ) as follows:

• ∆ = {(a, q) ∈ Σ×Q | ∃p : δ(p, a) = q in A},
5



t1

α1

v1

t′1

∈ T

t2

α2

v2

t′2

∈ T ⇒

t1[v1 ← t′2]

α1

v1

t′2

∈ T

Figure 1: Ancestor-guarded subtree exchange (anc-strt1 (v1) = anc-strt2 (v2)).

• S′d = {(a, q) | a ∈ Sd and δ(qinit, a) = q in A},

• µ((a, q)) = a for every (a, q) ∈ ∆, and

• for each (a, q) ∈ ∆, we define d′((a, q)) to be the language {(a1, q1) · · · (an, qn) ∈ ∆∗ | a1 · · · an ∈ d(q)
and, for each ai, δ(q, ai) = qi in A}.

Notice that the size of ∆ is linear in the size of D, since it is bounded by the number of transitions in A.
Furthermore, the languages d′((a, q)) can be represented by DFAs that are isomorphic to the DFAs d(q);
only their alphabets differ.

Conversely, let E = (Σ,∆, d, Sd, µ) be a single-type EDTD. We construct an equivalent DFA-based XSD
D = (Σ, A, d′, S′d) as follows:

• S′d = {µ(τ) | τ ∈ Sd},

• A = (Q,Σ, δ, {qinit}) is the type automaton of E, and

• for each τ ∈ ∆, we define d′(τ) = µ(d(τ)), where µ(d(τ)) denotes the homomorphic extension of µ to
string languages.

Notice that the single-type property of E ensures that A is indeed a state-labeled DFA and that E can be
constructed in linear time.

We next recall a fundamental characterization of single-type EDTDs in terms of a subtree-exchange
property, graphically illustrated in Figure 1.

Definition 2.10. A tree language T is closed under ancestor-guarded subtree exchange if the following
property holds. Whenever for two trees t1, t2 ∈ T with nodes v1, v2 respectively, anc-strt1(v1) = anc-strt2(v2)
then

t1[v1 ← subtreet2(v2)] ∈ T.

Theorem 2.11 ([19]). A regular tree language T is definable by a single-type EDTD if and only if it is
closed under ancestor-guarded subtree exchange.

2.3. XSD-Approximations

We define the notions of lower and upper XSD-approximations which constitute the central theme of
this work.

Definition 2.12. An upper XSD-approximation of a tree language T is a language T ′ definable by a
single-type EDTD such that T ′ contains T . An upper XSD-approximation is minimal if there is no other
upper XSD-approximation X of T such that T ⊆ X ( T ′.

A lower XSD-approximation of a tree language T is a language T ′ definable by a single-type EDTD
such that T ′ is contained in T . A lower XSD-approximation is maximal if there is no other lower XSD-ap-
proximation X of T such that T ′ ( X ⊆ T .
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2.4. Complexity-Theoretic Results

We recall a complexity-theoretic result about EDTDs which we use in the remainder of the paper. The
following theorem follows from a well-known result by Seidl [24] and the close correspondence between
EDTDs and tree automata discussed by Papakonstantinou and Vianu [22].

Theorem 2.13 ([22, 24]). The universality problem for EDTDs, i.e., deciding whether TΣ ⊆ L(D) for an
EDTD D, is exptime-complete.

Notice that, since TΣ is definable by a DTD, also the inclusion problem L(D1) ⊆ L(D2) is exptime-
complete if D2 is an EDTD and D1 is either a DTD or stEDTD.

2.5. Single-Type Closure and Derivation Trees

We next prove some basic properties about languages definable by single-type EDTDs and their closure
properties.

Definition 2.14. Let T be a tree language. We denote by closure(T ) the smallest tree language which
contains T and which is closed under ancestor-guarded subtree exchange. We will write closure(t1, t2) if
T = {t1, t2}.

By Lemma 2.15, the above notion is well-defined.

Lemma 2.15. Let (Xi)i∈I be an arbitrary family of tree languages where each Xi is closed under ancestor-
guarded subtree exchange. Then the intersection

⋂
i∈I Xi is also closed under ancestor-guarded subtree

exchange.

Proof. Let X =
⋂
i∈I Xi. Let t1, t2 be two trees from X with nodes v1, v2 resp., and anc-strt1(v1) =

anc-strt2(v2). For each i ∈ I we have t1, t2 ∈ Xi and thus t = t1[v1 ← subtreet2(v2)] ∈ Xi. Therefore t ∈ X,
and thus X is closed under ancestor-guarded subtree exchange.

When t ∈ closure(X) then t can be obtained from trees in X by using the subtree exchange property.
The next definition formalizes this idea in terms of derivation trees.

Definition 2.16. Let X be a tree language and t a tree from closure(X). A derivation tree of t with respect
to X is a (finite) binary tree ϑ labeled with trees from closure(X) such that:

• The root of ϑ is labeled with t: labϑ(ε) = t.

• For each leaf v ∈ Dom(ϑ), we have labϑ(v) ∈ X.

• For each internal node v ∈ Dom(ϑ) and i ∈ {1, 2}, let ti = labϑ(vi). Then there are nodes ui ∈ Dom(ti)
such that anc-strt1(u1) = anc-strt2(u2) and labϑ(v) = t1[u1 ← subtreet2(u2)].

Lemma 2.17. Let X be a tree language and t a tree. Then t ∈ closure(X) if and only if t has a derivation
tree with respect to X.

Proof. It is immediate that whenever t has a derivation tree ϑ with respect to X, then t ∈ closure(X).
Indeed, all leaf nodes of ϑ are labeled with trees of X, and all internal nodes are labeled by trees obtained
by applying ancestor-guarded subtree exchange to their children. Hence, all trees occurring in ϑ, including
t, are in closure(X).

For the converse direction, let Ti be the set of the trees from closure(X) which have a derivation tree
of height i. Clearly T0 = X. If ϑ is a derivation tree for t, then t(ϑ, ϑ) is a derivation tree for t too,
thus Ti ⊆ Ti+1. We show that T =

⋃
i∈N Ti is closed under ancestor-guarded subtree exchange. Indeed,

for every t1, t2 ∈ T there exist n1, n2 such that t1 ∈ Tn1 and t2 ∈ Tn2 . Hence, any tree t obtained by
applying ancestor-guarded subtree exchange to t1 and t2 is in Tmax(n1,n2)+1 ⊆ T . Hence, T is closed under
ancestor-guarded subtree exchange. As closure(X) is the smallest set closed under ancestor-guarded subtree
exchangewhich contains X, closure(X) ⊆ T .
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The next lemma will only be used in Section 4.2.2.

Lemma 2.18. Let X be a tree language and t a tree in closure(X). If ϑ is a derivation tree of t with respect
to X and ϑ = t(ϑA, tB(ϑ1, ϑ2)) for some subtrees ϑ1, ϑ2, ϑA of ϑ, then either

(a) t(ϑA, ϑ1),

(b) t(ϑA, ϑ2), or

(c) both t(tC(ϑA, ϑ1), ϑ2) and t(tC(ϑA, ϑ1), tB(ϑ1, ϑ2)) for some Σ-tree tC

are also derivation trees of t with respect to X.
With the same premises but ϑ = t(tB(ϑ1, ϑ2), ϑA) we have that

(a) both t(tD(ϑ1, ϑA), ϑ2) and t(tD(ϑ1, ϑA), tB(ϑ1, ϑ2)) for some Σ-tree tD, or

(b) both t(ϑ1, tE(ϑ2, ϑA)) and t(tB(ϑ1, ϑ2), tE(ϑ2, ϑA)) for some Σ-tree tE, or

(c) t(ϑ1, ϑA)

is also a derivation tree of t with respect to X.

Proof. Let tA, t1 and t2 be the root labels of subtrees ϑA, ϑ1 and ϑ2, respectively. From the definition of
derivation tree for i ∈ {A,B, 1, 2} there exist nodes vi ∈ Dom(ti) such that anc-strt1(v1) = anc-strt2(v2),
anc-strtA(vA) = anc-strtB (vB), tB = t1[v1 ← subtreet2(v2)] and t = tA[vA ← subtreetB (vB)]. From the
definition of tB it is clear that v1 ∈ Dom(tB). We consider three cases with respect to the position of nodes
v1 and vB in tB : (a) the subtrees rooted at v1 and vB are disjoint, (b) vB is in the subtree rooted at v1 and
(c) v1 is in the subtree rooted at vB .

It is easy to see that in cases (a) and (c) we have vB ∈ Dom(t1), and in case (b) there is v′B ∈ Dom(t2)
such that v′B = v2w, vB = v1w for some w ∈ Σ∗.

Let us first consider the case when ϑ = t(tA, tB(t1, t2)). For (a) we have t = tA[vA ← subtreet1(vB)].
For (b) we have t = tA[vA ← subtreet2(v′B)]. For (c) we have tC = tA[vA ← subtreet1(vB)] and t = tC [v′1 ←
subtreet2(v2)] = tC [v′1 ← subtreetB (v1)] where v′1 ∈ Dom(tC) and v′1 = vAw, v1 = vBw for some w ∈ Σ∗.

Now we consider the case when ϑ = t(tB(t1, t2), tA). For (a) we have tD = t1[vB ← subtreetA(vA)] and
t = tD[v1 ← subtreet2(v2)] = tD[v1 ← subtreetB (v1)]. For (b) we have tE = t2[v′B ← subtreetA(vA)] and
t = t1[v1 ← subtreetE (v2)] = tB [v1 ← subtreetE (v2)]. For (c) we have t = t1[vB ← subtreetA(vA)].

3. Upper XSD-Approximations

In this section we consider upper XSD-approximations of EDTDs. In general, constructing a minimal
upper XSD-approximation of an EDTD requires exponential time. However, given two single-type EDTDs
D1 and D2, we can construct minimal upper XSD-approximations for languages L(D1) ∪ L(D2), L(D1) ∩
L(D2), and TΣ \ L(D1) in polynomial time.

3.1. EDTDs

We show that for every regular tree language there exists a unique minimal upper XSD-approximation.
In particular, the latter approximation can be obtained by determinizing the type automaton correspond-
ing to the given EDTD. The overall construction can be computed in exponential time and results in an
approximation of exponential type-size which in general cannot be avoided.

A minimal upper approximation of a given EDTD can now be constructed as follows. We prove later
that it is also unique.
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Construction 3.1 (Minimal upper approximation of an EDTD). Let D = (Σ,∆, d, Sd, µ) be an EDTD.
Let N = (QN ,Σ, δN , {qinit}) be the type automaton of D, and let AN = (Q,Σ, δ, {{qinit}}) be the DFA
obtained from N by performing the standard subset construction. That is, Q ⊆ 2QN is the smallest set such
that {qinit} ∈ Q and whenever S ∈ Q then for every a ∈ Σ, we have

⋃
q∈S δN (q, a) ∈ Q. By construction

and Observation 2.7(2), each non-initial state consists of a set of types S of D in which, for every τ , τ ′ ∈ S,
we have µ(τ) = µ(τ ′). Then define the DFA-based XSD (Σ, AN , d

′, S′d) with

S′d = {a ∈ Σ | τ ∈ Sd, µ(τ) = a}

and
d′(S) :=

⋃
τ∈S

µ(d(τ)) for every S ∈ Q.

Here, µ is canonically extended to languages.

Theorem 3.2 will show that (Σ, AN , d
′, S′d) is the unique minimal upper XSD-approximation of D.

Theorem 3.2. The minimal upper XSD-approximation of an EDTD is unique and can be computed in
exponential time. There is a family of EDTDs (Dn)n≥2, such that the size of every Dn is O(n) but the
type-size of the minimal upper XSD-approximation is Ω(2n).

Proof. We first show that, given EDTD D = (Σ,∆, d, Sd, µ), determinizing its type automaton results
in a DFA-based XSD D′ = (Σ, A, d′, S′d) which is the unique minimal upper XSD-approximation of D.
To this end, we show that (1) L(D) ⊆ L(D′), and (2) L(D′) ⊆ closure(L(D)). The first condition says
that D′ is indeed an upper XSD-approximation of D. Any upper XSD-approximation of D must contain
L(D) and must be closed under ancestor-guarded subtree exchange. Since closure(L(D)) is the smallest
set which satisfies these requirements, thus the second condition says that D′ is indeed the smallest upper
XSD-approximation, therefore the minimal upper XSD-approximation.

We first show that L(D) ⊆ L(D′). To this end, let t be a tree in L(D). Hence, there exists a tree t′ such

that t′ ∈ L(d) and µ(t′) = t. That is, for every node v of t′, ch-strt
′
(v) is in d(labt

′
(v)). Let v be a node of

t, and S = A(anc-strt(v)). Then, by construction of D′, labt
′
(v) ∈ S. Indeed, S contains all types which a

node with the ancestor string anc-strt(v) can have, and labt
′
(v) must clearly be one of them. But then, as

d′(S) =
⋃
τ∈S µ(d(τ)) and we know that ch-strt

′
(v) is in d(τ), it follows that ch-strt(v) is in d′(S). As this

holds for all nodes of t, t ∈ L(D′).
We next show that L(D′) ⊆ closure(D). To this end, let t be a tree in L(D′). We will show that t is also

in closure(D), by explicitly constructing t using only trees in L(D) and the subtree exchange property. We
do this as follows: we iterate over the nodes of t in a breadth first manner, such that when we reach a node
v, we have constructed a tree tv, such that (1) tv ∈ closure(D) and (2) the parts of t and tv up to v (in the
breadth first order) are isomorphic. That is, the tree consisting of all nodes of t before and including v, and
all their children, is isomorphic to the same initial part of tv. Note that when v is the last node of t in the
breadth first traversal, condition (2) ensures that tv = t, and hence, by condition (1) t ∈ closure(D).

In order to construct this sequence of trees tv, we first assign a type τv to every node v of t. As t is in
L(D′), for any node v of t, we can define Sv = A(anc-strt(v)), and have ch-strt(v) ∈ d′(Sv). By definition
of D′, there is (at least) one τ in Sv such that ch-strt(v) is in µ(d(τ)). Denote this τ by τv.

We next construct the sequence of trees tv for all nodes v of t in breadth first order. When v is the root
node of t, let tv be a tree such that D can accept tv by assigning the type τv to the root node and such that
ch-strtv (v) equals ch-strt(v). As D is reduced, such a tv must exist, and tv satisfies both condition (1) and
(2).

Next, let tu be the already obtained tree, and v be the next node in breadth first order. Let t′ be a tree
containing a node v′ such that anc-strt

′
(v′) equals anc-strt(v), ch-strt

′
(v′) equals ch-strt(v), and D accepts

t′ by assigning type τv to v′. By construction of D′ and the fact that D is reduced, such a tree t′ must exist.
Then, tv is constructed by exchanging the subtree rooted at v in tu by the subtree rooted at v′ in t′. Hence,
tv is in closure(D), and satisfies condition (2) as well. It follows that t is in closure(D), as desired.
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Clearly (A, d′) can be constructed in time exponential in D, by Proposition 2.9 the overall construction
is in exponential time.

To show that this exponential size increase can not be avoided, it suffices to consider unary trees, i.e.,
trees in which every node has at most one child. Such a unary tree can be viewed as a word whose first
position is the root node, and whose last position is the leaf. On unary trees, EDTDs and single-type EDTDs
intuitively correspond to NFAs and DFAs, respectively, and thus the exponential size increase in translating
from NFAs to DFAs carries over to EDTDs and single-type EDTDs.

More formally, for any n, consider the language Ln = (a+ b)∗a(a+ b)n. It is well known that any DFA
accepting this language must be of size exponential in n. Let Dn be an EDTD accepting only unary trees
which correspond to words in Ln. That is, L(Dn) contains only unary trees which have the property that
the unique node at distance n of the leaf node is a, and all other nodes can be either a or b. Clearly, Dn is
of size linear in n.

Let D′n = (Σ, A, d, Sd) be a DFA-based XSD such that L(Dn) = L(D′n). It suffices to show that D′n is of
size exponential in n, as one can translate in polynomial time between single-type EDTDs and DFA-based
XSDs. To this end, let An be obtained from A by making all states q of A, for which ε ∈ L(d(q)), final;
and removing all transitions (q, σ, q′) for which σ /∈ L(d(q)). Then, we have that L(An) = Ln. Therefore,
we have that the type-size of An and, by extension, also the type-sizes of A and D′n must be of size at least
exponential in n. As L(D′n) = L(Dn), D′n is the minimal upper XSD-approximation of Dn. This means
that an exponential size increase can not be avoided in constructing such an upper XSD-approximation for
general EDTDs.

We conclude this subsection by discussing the complexity of testing whether a given single-type EDTD
is the minimal upper XSD-approximation of an EDTD. The proof makes use of the following lemma which
is interesting in its own right as it contrasts with the exptime-completeness of testing equivalence of an
EDTD and a single-type EDTD (Theorem 2.13). Recall from Section 2 that EDTDs use DFAs and not
NFAs to represent their regular string languages, which is crucial for the following lemma.

Lemma 3.3. Let D1 be an EDTD and let D2 be a single-type EDTD. Testing whether L(D1) ⊆ L(D2) is
in ptime.

Proof. We provide a ptime algorithm for the complement of the problem. Since ptime is closed under
complement, this proves the lemma.

Let D1 = (Σ,∆1, d1, Sd1 , µ1) and D2 = (Σ,∆2, d2, Sd2 , µ2). Let, for each i ∈ {1, 2}, Ai = (Qi,Σ, δi, Ii)
be the type automata of Di. Notice that A2 is deterministic whereas A1 might be non-deterministic.

By definition, a tree t is not in the language defined by the single-type EDTD D2 if and only if there
exists a node u ∈ Dom(t) such that ch-strt(u) 6∈ µ2(d2(τ)), where A2(anc-strt(u)) = {τ}. We will make use
of this observation in the following. Since D1 is reduced (Proviso 2.3), every string that can be handled
by the type automaton A1 of D1 can occur as an ancestor-path of a tree in L(D1). More formally, for a
string w, there exists a tree t ∈ L(D1) and a node u in t with anc-strt(u) = w if and only if A1(w) 6= ∅.
Furthermore, for each (non-initial) state τ of A1(w) and each string v ∈ d1(τ), there exists a tree t ∈ L(D1)
and a node u in t such that anc-strt(u) = w and ch-strt(u) = µ1(v). Therefore, L(D1) ( L(D2) if and only
if we can find a type τ2 ∈ ∆2 for which there exists a string w with

• A2(w) = {τ2}, A1(w) = S1, and

• there exists a τ1 ∈ S1 and a string v ∈ d1(τ1) such that µ1(v) /∈ µ2(d2(τ2)).

Our ptime algorithm consists of the following steps:

(1) Compute the binary relation R = {(τ1, τ2) | ∃w such that τ1 ∈ A1(w) and A2(w) = {τ2}}.

(2) Test whether there exists a pair (τ1, τ2) in R for which µ1(d1(τ1)) 6⊆ µ2(d2(τ2)).

Step (1) can be computed in polynomial time by considering the product automaton A1 × A2 = (Q1 ×
Q2,Σ, δ, I1 × I2, ∅). Indeed, the relation R is precisely the set of pairs (τ1, τ2) that is reachable from a
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state (q1, q2) ∈ I1 × I2. Step (2) is in ptime since both µ1(d1(τ1)) and µ2(d2(τ2)) can be represented by
polynomial-size DFAs. These DFAs are, in fact, isomorphic to the DFAs for d1(τ1) and d2(τ2).

We recall the following result:

Theorem 3.4 ([25]). The complexity of the language inclusion problem L(X) ⊆ L(Y ) is pspace-complete
when X and Y are given as regular expressions or NFAs.

Using the previous lemma and an on-the-fly construction of the minimal upper XSD-approximation we
get the following theorem.

Theorem 3.5. Deciding whether a single-type EDTD is a minimal upper XSD-approximation of a given
EDTD is pspace-complete.

Proof. For the upper bound, let D1 = (Σ,∆1, d1, Sd1 , µ1) be a single-type EDTD and D be an EDTD. First,
we test whether L(D) ⊆ L(D1), which can be done in pspace, according to Lemma 3.3. If L(D) 6⊆ L(D1),
we reject. Let D2 be the minimal upper XSD-approximation of D according to Theorem 3.2. We claim that

(1) D1 is the minimal upper XSD-approximation of D if and only if L(D1) ⊆ L(D2);

(2) we can test whether L(D1) ⊆ L(D2) in pspace, that is, without fully constructing D2.

For (1), let D2 = (Σ,∆2, d2, Sd2 , µ2). Of course, D1 is a minimal upper XSD-approximation for D if and
only if L(D1) = L(D2). But since L(D1) is a regular language that contains L(D) and is closed under
ancestor-guarded subtree exchange, and L(D2) is a minimal language with the same properties, we have
that L(D1) = L(D2) if and only if L(D1) ⊆ L(D2).

For (2), notice that naively testing whether L(D1) ⊆ L(D2) would cost double-exponential time, since
D2 is exponentially large. However, according to the proof of Theorem 4.10 in [18], testing the inclusion
L(D1) ⊆ L(D2) reduces to (1) computing a correspondence relation R ⊆ ∆1 ×∆2 between their types and,
(2) for each pair (τ1, τ2) ∈ R, testing the inclusion µ1(d1(τ1)) ⊆ µ2(d2(τ2)). In other words, we have that
L(D1) 6⊆ L(D2) if and only if

there is a (τ1, τ2) ∈ R such that µ1(d1(τ1)) 6⊆ µ2(d2(τ2)).

We show that the latter can be tested in pspace. Since pspace is closed under complement, this would
prove the theorem.

Let A1 and A2 be the (deterministic) type automata of D1 and D2, respectively. The relation R in the
proof of Theorem 4.10 in [18] contains precisely the pairs (τ1, τ2) ∈ ∆1 ×∆2 for which there exists a string
w such that A1(w) = {τ1} and A2(w) = {τ2}. Our pspace procedure consists of the following steps:

(a) Guess w and keep track of (A1(w), A2(w)) (without constructing A2 itself).

(b) Test whether µ1(d1(τ1)) 6⊆ µ2(d2(τ2)).

For step (a), we can guess w one symbol at a time and, by construction of D2, the pair (A1(w), A2(w))
is equal to (A1(w), A(w)), where A is the type automaton of D. We can do this by only keeping the last
symbol of w in memory, a state of A1, and a set of states of A, which only takes polynomial space.

Finally, let (τ, {τ1, . . . , τk}) be the pair from R we obtain after having guessed w completely. We can
now test step (2) by directly testing whether µ1(d1(τ)) 6⊆ µ(d(τ1)) + · · · + µ(d(τk)). Since both µ1(d1(τ))
and µ(d(τ1)) + · · · + µ(d(τk)) can be represented by polynomial size NFAs or regular expressions, this test
is also possible in pspace (Theorem 3.4).

The pspace lower bound for this theorem can be obtained from the fact that testing L(A) ⊆ L(A1)∪· · ·∪
L(An) for DFAs A, A1, . . . , An is pspace-complete. This is the complement of the well known intersection
emptiness problem.
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3.2. Unions of XSDs

We next address the minimal upper XSD-approximation for the union of two XSDs.

Theorem 3.6. Let D1 and D2 be two single-type EDTDs. The minimal upper XSD-approximation of
L(D1)∪L(D2) is unique and can be computed in time O(|D1||D2|). There is a family of pairs of single-type
EDTDs (Dn

1 , D
n
2 )n≥1, such that the size of every Dn

1 and Dn
2 is O(n) but the type-size of the minimal upper

XSD-approximation for L(Dn
1 ) ∪ L(Dn

2 ) is Ω(n2).

Proof. Intuitively, the upper approximation D of D1 = (Σ,∆1, d1, Sd1 , µ1) and D2 = (Σ,∆2, d2, Sd2 , µ2) will
have a type automaton A that simulates the type automata A1 of D1 and A2 of D2 in parallel. That is, for
each ancestor string w, whenever A1(w) = {τ1} and A2(w) = {τ2}, we have A(w) = {(τ1, τ2)}. Then, for a
type (τ1, τ2) of D, the minimum upper approximation accepts the union of the internal DFAs for d1(τ1) and
d2(τ2). However, in this union, we need to adjust the types to comply to the single-type restriction, which
we do as in Construction 3.1.

More formally, let D be an EDTD for the language L(D1) ∪ L(D2) obtained by computing the cross-
product of D1 and D2. The type automaton of D is the product3 of the type automata of D1 and D2.
Since the product of two deterministic automata is again deterministic, the determinization process of
Construction 3.1 is in this case trivial and can be performed in time O(|D1||D2|). Therefore, the type-size
of the minimal upper XSD-approximation D′ for L(D1) ∪ L(D2) is O(|D1||D2|). Furthermore, since each
DFA in D′ is the union of at most one DFA in D1 and one in D2, the size of D′ is also O(|D1||D2|). It
follows from the proof of Theorem 3.2 that this is the unique minimal upper XSD-approximation.

For the second part of the theorem fix n ≥ 1 and consider the following single-type EDTD D1 with
Sd = {τ0

a , τ
0
b }:

τ ia → τ i+1
a + τ i+1

b + ε (for all 0 ≤ i < n− 1)
τ ib → τ ia + τ ib + ε (for all 0 ≤ i < n)
τn−1
a → τnb + ε
τnb → τnb + ε

The language L(D1) consists of unary trees which contains at most n nodes labeled with a (for c ∈ {a, b}
the type τ ic represents trees with root label c, which have at most n− i nodes labeled with a). By changing
the roles of a and b, we can define D2 such that L(D2) consists of unary trees which contain at most n
nodes labeled with b. The type-size of both D1 and D2 is O(n).

Clearly L(D1)∪L(D2) consists of unary trees which contains at most n nodes labeled with a or at most
n nodes labeled with b. We show that type-size of D′ is Ω(n2).

Let N ′ be the type automaton for D′. Let τk,` = N ′(akb`) for 1 ≤ k, ` ≤ n. Consider now types for
(k, `) 6= (k′, `′) and let us assume that τk,` = τk′,`′ . W.l.o.g0ẇe can assume that k > k′. Both unary trees t =

akb2nan−k and t′ = ak
′
b2nan−k

′
are in L(D′). Therefore applying ancestor-type-guarded subtree exchange

to node v = 1k+`−1 in Dom(t) and node v′ = 1k
′+`′−1 in Dom(t′) we get that a tree t′′ = t[v ← subtreet

′
(v′)]

also belongs to L(D′) which is impossible since t′′ = akb`+2n−`′an−k
′

contains more than n nodes labeled
with b and n − k′ + k > n nodes labeled with a. Therefore all types τk,` for 1 ≤ k, ` ≤ n are pairwise
different.

3.3. Intersections of XSDs

We start with the following immediate observation.

Proposition 3.7. Let D1 and D2 be single type EDTDs. Their intersection L(D1) ∩L(D2) is definable by
a single-type EDTD.

Proof. This follows from Lemma 2.15, from the fact that regular languages are closed under intersection,
and from Theorem 2.11.

3For more details on the standard product construction of automata, see, e.g., [15].

12



Therefore, the minimal upper XSD-approximation will in fact be equal to the intersection.

Theorem 3.8. Let D1 and D2 be two single-type EDTDs. The minimal upper XSD-approximation of
L(D1)∩L(D2) is unique, defines precisely L(D1)∩L(D2) and can be computed in time O(|D1||D2|). There
is a family of pairs of single-type EDTDs (Dn

1 , D
n
2 )n≥1, such that the size of every Dn

1 and Dn
2 is at least n

and the type-size of the minimal upper XSD-approximation for L(Dn
1 ) ∩ L(Dn

2 ) is Ω(|Dn
1 ||Dn

2 |).

Proof. The construction for the intersection of D1 and D2 is analogous to the construction in the proof of
Theorem 3.6, with the difference that now we need to construct the intersection of the two internal DFAs.
That is, for d′(S), we need to construct

⋂
τ∈S µ(d(τ)). However, since the standard product construction of

DFAs can also construct the intersection, this construction is also possible in time O(|D1||D2|). Correctness
of this construction can be proved through the characterization in Proposition 2.9.

The second part of the theorem is similar to the lower bound proof of Theorem 3.6. For each n ≥ 1,
we can take the single-type EDTDs Dn

1 and Dn
2 accepting unary trees of the form ap1 and ap2 , where

p1 6= p2 are the two smallest prime numbers larger than n. Then, the type size of the single-type EDTD for
L(Dn

1 ) ∩ L(Dn
2 ) is Ω(|Dn

1 ||Dn
2 |), which proves the lower bound.

3.4. Complements of XSDs

We next show that the complement of an XSD can be uniquely approximated within polynomial time.

Theorem 3.9. Let D be a single-type EDTD. The minimal upper XSD-approximation for the complement
of D is unique and can be computed in time polynomial in |D|.

Proof. Let D = (Σ,∆, d, Sd, µ) and let E = (Σ, A, f, S′d) be the DFA-based XSD equivalent to D with
A = (∆,Σ, δ, {qinit}). We will prove the theorem in two steps: first we will construct an EDTD Dc for the
complement of D and then we will show that the minimal upper approximation of Dc can be constructed
in polynomial time.

A tree t is in TΣ \ L(E) if and only if there exists a v ∈ Dom(t) with A(anc-strt(v)) = {τ} such that
ch-strt(v) /∈ f(τ). When given a tree t, the EDTD Dc guesses the path towards such a node v and tests
whether ch-strt(v) /∈ f(τ). Formally, for the definition of Dc = (Σ,∆c, dc, Sdc , µc), we use two sets of types:
∆ and Σ. We use ∆ to guess the path to v and we use Σ as the set of types that accept every tree. More
formally:

(1) ∆c = ∆ ] Σ;

(2) for every τ ∈ ∆, µc(τ) = µ(τ) and, for every a ∈ Σ, µc(a) = a;

(3) Sdc = Sd ] (Σ \ µ(Sd));

(4) for every τ ∈ ∆, dc(τ) = (Σ∗ \ f(τ)) + Σ∗ ·
⋃
a∈Σ δ(τ, a) · Σ∗;

(5) for every a ∈ Σ, dc(a) = Σ∗.

The EDTD Dc accepts TΣ \ L(D) and |Dc| = O(|Σ||D|). The factor |Σ| in this complexity arises from rule
(4) in which a product construction between a DFA for the complement of f(τ) and a DFA of size O(|Σ|)
must be performed.

To prove that the minimal upper approximation of L(Dc) can be computed in polynomial time, we
need to prove that determinizing the type automaton of Dc using the subset construction can be done in
polynomial time. To this end, let us first investigate the type automaton Nc of Dc. This type automaton
contains the type automaton A of D as a sub-automaton: rule (3) includes all the outgoing transitions from
qinit, and rule number (4) includes all other transitions. The transitions that Nc has in addition are the ones
entering the states in Σ. These transitions arise from rules (3), (4), and (5). The Σ-states form a clique due
to rule (5).

Due to the structure of Nc, the subset construction results in an automaton in which every state is a
subset of {τ, a} for some τ ∈ ∆, a ∈ Σ. The reason is that, after reading a string, Nc can never arrive
in two different states of type ∆ or two different states of type Σ. Therefore, the subset construction for
determinizing Nc can be performed in time |Σ||Nc|. This shows that the minimal upper approximation of
the complement of D can be computed in polynomial time in the size of D.
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Finally, we can also show that the minimal upper approximation of the difference of two single-type
EDTDs can be constructed in polynomial time by refining the construction in Theorem 3.9.

Theorem 3.10. Let D1 and D2 be single-type EDTDs. The minimal upper approximation of L(D1)\L(D2)
can be computed in time polynomial in |D1|+ |D2|.

Proof. The proof is similar to the proof of Theorem 3.9, but the construction is more technical. Let, for each
i ∈ {1, 2}, Di = (Σ,∆i, di, Sdi , µi). We prove the theorem in two steps: first we construct an EDTD Dc for
the language L(D1) \L(D2) and then we show that its minimal upper approximation can be constructed in
polynomial time.

Let A1 = (∆1 ] {q1
init},Σ, δ1, {q1

init}) be the type automaton of D1 and let E2 = (Σ, A2, f2, S
′
d2

) be
the DFA-based XSD equivalent to D2 obtained by the construction in Proposition 2.9. As such, A2 =
(∆2 ] {q2

init},Σ, δ2, {q2
init}) is the type automaton of E2.

Then, since L(D2) = L(E2), a tree t is in L(D1)\L(D2) if and only if it is in L(D1)\L(E2). This means
that t ∈ L(D1) and there exists a v ∈ Dom(t) with A2(anc-strt(v)) = {τ} such that ch-strt(v) /∈ f2(τ).
When given a tree t, the EDTD Dc for L(D1) \ L(E2) tests whether t ∈ L(D1) and, in parallel, it guesses
the path towards such a node v and tests whether ch-strt(v) /∈ f2(τ).

Formally, for the definition of Dc = (Σ,∆c, dc, Sdc , µc), we use two sets of types: ∆1 and ∆1 ×∆2. We
use the types ∆1×∆2 for the path from the root to v and we use ∆1 to type all other nodes. More formally,
let P = {(τ1, τ2) ∈ ∆1 ×∆2 | µ1(τ1) = µ2(τ2)}. Then we define

(1) ∆c = ∆1 ] P ;

(2) for every τ ∈ ∆1, µc(τ) = µ(τ) and, for every (τ1, τ2) ∈ P , µc((τ1, τ2)) = µ1(τ1);

(3) Sdc = (P ∩ (Sd1 × Sd2)) ] {τ1 ∈ Sd1 |6 ∃τ2 ∈ Sd2 with µ(τ2) = µ(τ1)};

(4) for every (τ1, τ2) ∈ P ,

dc((τ1, τ2)) = {w ∈ d1(τ1) | µ1(w) /∈ f2(τ2)}
∪ {w1(τ ′1, τ

′
2)w2 | w1τ

′
1w2 ∈ d1(τ1), µ1(τ ′1) = µ2(τ ′2) = a, µ1(w1τ

′
1w2) ∈ f2(τ2),

δ1(τ1, a) = τ ′1 and δ2(τ2, a) = τ ′2};

and,

(5) for every τ ∈ ∆1, dc(τ) = d1(τ).

We explain the rationale behind the above definition. Notice that every tree t in L(Dc) is also in L(D1).
Indeed, if t′ ∈ L(dc), then a witness t′0 ∈ L(d1) can be obtained from t′ by relabeling each label (τ1, τ2) ∈ P
by τ1. Furthermore, a tree t is in L(Dc) if and only if it is in L(D1) and there exists a node v with
A2(anc-strt(v)) = {τ} and ch-strt(v) /∈ f2(τ). If there is such a node v, then Dc can type the tree t such
that the ancestors of v (including v itself) get assigned types of P and all other nodes receive types in ∆1.
As such, all nodes have a ∆1-type and the nodes with a type from P also have a ∆2-type. The ∆1-types
are consistent with D1 and therefore ensure that t ∈ L(D1).

The rule for (5) considers the case where we have assigned a ∆1-type to a node. For all descendants of
this node, we simply check conformance against D1, that is, dc is defined exactly the same as d1.

The rule for (3) considers two cases. If the root of t is labeled with a symbol that is allowed by Sd2 , then
we assign a type in P to the root and search for an error with respect to D2 must deeper in the tree. If the
root is labeled with a symbol that is not allowed by Sd2 , we have already found the error and we only need
to check conformance against D1. Therefore, we can assign a type τ1 ∈ Sd1 .

In the rule for (4), the current node u is assigned a type from P . This means that we will search for a
node v with an error with respect to D2 in the current subtree. There are two cases: either the error with
respect to D2 is in the child string of u (in which case u = v) or it is deeper in the subtree. In the former
case, we can assign the string of types {w ∈ d1(τ1) | µ1(w) /∈ f2(τ2)} to the child string of u and in the
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latter case, there exists a child ui of u on the path to v. As such, we can assign a string of types of the form
w1(τ ′1, τ

′
2)w2 to the children of u, where w1 is assigned to the left siblings of ui, (τ ′1, τ

′
2) is assigned to ui,

and w2 is assigned to the right siblings of ui.
The EDTD Dc therefore accepts precisely L(D1) \ L(D2). Furthermore, Dc is of size polynomial in

|D1|+ |D2|.
To prove that the minimal upper approximation of L(Dc) can be computed in polynomial time, we need

to prove that determinizing the type automaton Nc of Dc using the subset construction as in Construction 3.1
can be done in polynomial time. The argument is analogous to the argument in Theorem 3.9: for each string
w, the set Nc(w) contains at most one element from ∆1 and at most one element from P . Therefore, each
subset reachable from a start state in the determinized type automaton only contains at most two elements
from ∆c. This shows that the minimal upper approximation of the complement of D can be computed in
polynomial time in the size of D.

4. Lower XSD-Approximations

We showed in the Preliminaries that the intersection of single-type EDTDs can again be expressed as
a single-type EDTD (Lemma 2.15). Therefore, the maximal lower XSD-approximations of intersections
of single-type EDTDs equal the minimal upper XSD-approximations. From Section 3.3, we can therefore
conclude that the maximal lower XSD-approximations of intersections of single-type EDTDs exist and are
unique. However, in general, the picture for lower approximations is not so nice. For example, there can be
infinitely many maximal lower approximations for the union of two XSDs D1 and D2. We give an example
of this in Theorem 4.3. Nevertheless, we show that there is a unique maximal lower approximation that
includes all of D1 (and, symmetrically, there is a unique maximal lower approximation that includes all of
D2). That is, there is a well-defined maximal part of D1 which can be added to D2 to form a maximal
lower approximation of D1 ∪D2. Also the complement cannot be uniquely approximated in general. We do
not know whether for every EDTD there always exists at least one maximal lower approximation. That is,
we do not know whether it is possible to have an infinite sequence of lower approximations that converges
to the language of the EDTD but never reaches a fixpoint. For the class of bounded depth schemas, we
show that there is at least one maximal lower approximation. Finally, we discuss the complexity of deciding
whether a given single-type EDTD is a maximal lower approximation of a given EDTD.

4.1. A Modified Subtree Exchange Property

We first provide a modified version of the subtree exchange property for single-type EDTDs that will
be helpful in this section. Let N be a state-labeled NFA. For a node v in a tree t, we call the set of types
N(anc-strt(v)) the ancestor-type of v in t w.r.t. N and we denote it by anc-typetN (v). When N is clear from
the context, we sometimes also write anc-typet(v).

Definition 4.1. Let N be an NFA. A tree language T is closed under ancestor-type-guarded subtree exchange
w.r.t. N if the following holds. Whenever for two trees t1, t2 ∈ T with nodes v1, v2, resp., anc-typet1N (v1) =
anc-typet2N (v2) then t[v1 ← subtreet2(v2)] ∈ T . We say that a set T is closed under ancestor-type-guarded
subtree exchange w.r.t. an EDTD D if it is closed under ancestor-type-guarded subtree exchange w.r.t. the
type automaton of D.

Notice that anc-typet1N (v1) = anc-typet2N (v2) implies that labt1(v1) = labt2(v2), because the automaton
N is always a state-labeled NFA.

Theorem 4.2. A regular tree language which is defined by an EDTD D is definable by a single-type EDTD
if and only if it is closed under ancestor-type-guarded subtree exchange w.r.t. D.

Proof. If T is definable by a single-type EDTD, then we can construct an ancestor-guarded DTD for T by
determinizing the type automaton N of D, as explained in Construction 3.1. Therefore, T is closed under
ancestor-type-guarded subtree exchange. If T is closed under ancestor-type-guarded subtree exchange, then
it is also closed under ancestor-guarded subtree exchange and therefore definable by a single-type EDTD.
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4.2. Unions of XSDs

Constructing maximal lower XSD-approximations of unions of XSDs is not as straightforward as con-
structing minimal upper XSD-approximations. An immediate difference with upper XSD-approximations is
that the number of maximal lower approximations of D1 ∪D2 can in fact be infinite. A concrete example
can be found in the proof of Theorem 4.3. However, when attention is restricted to approximations of the
form D1 ∪ Y , we show in Section 4.2.2 that there always exists a unique part of Y ⊆ D2 such that D1 ∪ Y
is a maximal lower approximation of D1 ∪D2.

4.2.1. Lower Approximations for Unions of XSDs are not Unique

The next theorem underlines that lower XSD-approximations do not behave as nicely as their upper
counterparts: there can be infinitely many of them approximating a union of two XSDs.

Theorem 4.3. Let D1 and D2 be two single-type EDTDs. In general, the set of maximal lower XSD-ap-
proximations for L(D1) ∪ L(D2) can be infinite.

Proof. Let D1 and D2 be defined as follows:

D1 :
a→ a + b

b→ ε
D2 : a→ a + aa + ε

Here, a acts as start symbol for both schemas. Notice that D1 and D2 are DTDs. Here, D1 defines linear
(non-branching) trees which, when seen as strings, are of the form a∗b. The DTD D2 defines the set of trees
where all nodes are labelled a and can have zero, one, or two children.

For every n ≥ 1, define Xn as the following single-type EDTD with start symbol τ0
a :

τ ia → τ i+1
a + τb + ε for 0 ≤ i < n− 1

τn−1
a → τna + τna τ

n
a + τb + ε

τna → τna + τna τ
n
a + ε

τb → ε

Here, µ(τb) = b and µ(τ ia) = a for every i ∈ {0, . . . , n}. We use ak(t1, . . . , t`) to abbreviate the tree
a(a · · · (a(t1, . . . , t`))) that has a (non-branching) sequence of k a’s starting from its root followed by the
subtrees t1, . . . , t`. Then, L(Xn) ∩ L(D1) = {am(b) | m ≤ n}. Therefore, Xi 6= Xj for i 6= j.

We next argue that, for each n ≥ 1, Xn is a maximal lower XSD-approximation of L(D1)∪L(D2). Let t
be an arbitrary tree from (L(D1)∪L(D2)) \L(Xn). We prove that closure(L(Xn)∪ {t}) 6⊆ L(D1)∪L(D2).

Indeed, if t ∈ L(D1) \ L(Xn) then t is a tree am(b) with m > n. As an(a, a) ∈ L(Xn), it follows that
closure(t, an(a, a)) contains a tree an(am−n(b), a) 6∈ L(D1) ∪ L(D2). The latter can be seen by applying
ancestor-guarded subtree exchange on nodes 1n in Dom(t) and Dom(an(a, a)).

Otherwise, assume that t ∈ L(D2)\L(Xn) then in the first n−1 levels there is a node with two children,
thus t = am(t′, t′′) for some m < n and t′, t′′ ∈ L(D2). Then, again, closure(t, an(b)) contains a tree
am(an−m(b), t′′) 6∈ L(D1) ∪ L(D2), which can be seen by applying ancestor-guarded subtree exchange on
nodes 1m in Dom(t) and Dom(tn).

4.2.2. Unique Lower Approximations when Fixing one Disjunct

In this section, we show that one can compute a maximal lower XSD-approximation of L(D1) ∪ L(D2)
which includes L(D1) and that such a maximal approximation containing L(D1) is unique. That is, we are
looking for the maximal set Y ⊆ L(D2) such that L(D1) ∪ Y is a maximal lower XSD-approximation of
L(D1) ∪ L(D2). This set Y needs to come from the set of non-violating trees, as defined next:

Definition 4.4. Let D1 and D2 be single-type EDTDs. The set of non-violating trees from L(D2) with
respect to D1 is defined as

nv(D2, D1) := {t ∈ L(D2) | ∀t1 ∈ L(D1) closure(t1, t) ⊆ L(D1) ∪ L(D2)}.
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That is, nv(D2, D1) contains all individual trees t for which closure(D1∪{t}) remains within the union of
D1 and D2. If we want to find a set Y ⊆ L(D2) such that L(D1)∪Y is a maximal lower XSD-approximation
of L(D1) ∪ L(D2), then clearly Y ⊆ nv(D2, D1), otherwise L(D1) ∪ Y 6⊆ L(D1) ∪ L(D2). We show that,
in fact, if Y = nv(D2, D1), then L(D1) ∪ Y is definable by a single-type EDTD. From the above, it then
follows that L(D1)∪Y is a maximal lower XSD-approximation of L(D1)∪L(D2). Therefore, the remainder
of Section 4.2.2 is devoted to proving that L(D1) ∪ Y is definable by a single-type EDTD.

Let Di = (Σ,∆i, di, Sdi , µi) for i ∈ {1, 2}. Moreover let Ai = (∆i ] qI ,Σ, δi, qI) be the type automaton
for Di.

Let t ∈ L(D2) and t1 ∈ L(D1) be two trees. Clearly closure(t1, t) ⊆ L(D), where D = (Σ,∆, d, Sd, µ)
is a single-type EDTD such that L(D) = closure(L(D1) ∪ L(D2)). Thus from Theorem 4.2 we have that
closure(t1, t) is closed under ancestor-type-guarded subtree exchangew.r.t. D. From the construction in
Theorem 3.6, the type set for D is ∆ = (∆1 ∪ {⊥})× (∆2 ∪ {⊥}).

Therefore a tree t ∈ L(D2) belongs to nv(D2, D1) if and only if for every t1 ∈ L(D1) and all nodes
v ∈ Dom(t), v1 ∈ Dom(t1), such that anc-typet(v) = anc-typet1(v1), we have that

(a) t[v ← subtreet1(v1)] ∈ L(D1) ∪ L(D2), and

(b) t1[v1 ← subtreet(v)] ∈ L(D1) ∪ L(D2).

This is one characterization of all trees t belonging to nv(D2, D1). However, we need another one which
does not explicitly mention t1.

Thereto, for i ∈ {1, 2} and τ = (τ1, τ2) ∈ ∆, we define the following sets:

Si(τ) := {subtreet(v) | t ∈ L(Di), anc-typet(v) = τ},
Ci(τ) := {contextt(v) | t ∈ L(Di), anc-typet(v) = τ}.

We call a type τ ∈ ∆ an s-type if it satisfies the condition S1(τ) \ S2(τ) 6= ∅. We call this type a c-type
if it satisfies the condition C1(τ) \ C2(τ) 6= ∅. Of course, a type can be both an s-type and a c-type.

With these definitions we can state that a tree t ∈ L(D2) belongs to nv(D2, D1) if and only if, for every
node v ∈ Dom(t) and τ = anc-typet(v),

(a’) if τ is an s-type, then contextt(v) ∈ C1(τ),

(b’) if τ is a c-type, then subtreet(v) ∈ S1(τ).

We prove that (a) is satisfied if and only if (a’) is. For the if part, let t1 ∈ L(D1) and v1 ∈ Dom(t1)
such that anc-typet1(v1) = τ . If t′1 = subtreet1(v1) ∈ S2(τ), then clearly t[v ← t′1] ∈ L(D2). On the other
hand, if t′1 ∈ S1(τ) \S2(τ), then τ is an s-type. Therefore applying (a’) we get that contextt(v) ∈ C1(τ) and
t[v ← t′1] ∈ L(D1).

For the only if part, τ is an s-type and thus there exists a tree t1 ∈ L(D1) and v1 ∈ Dom(t1) such
that anc-typet1(v1) = τ and t′1 = subtreet1(v1) ∈ S1(τ) \ S2(τ). Therefore applying (a) we get that
t′′ = t[v ← t′1] ∈ L(D1)∪L(D2). From the definition of t′1 it must be that t′′ ∈ L(D1), and thus contextt(v) =
contextt

′′
(v) ∈ C1(τ).

Similarly one can prove equivalence of (b) and (b’).

Now we define a single-type EDTD D′ = (Σ,∆, d′, Sd′ , µ) such that L(D′) = nv(D2, D1). Intuitively, D′

will check locally whether conditions (a’) and (b’) are satisfied. For example, if τ = (τ1, τ2) is a c-type, then
in order to satisfy subtreet(v) ∈ S1(τ) we have to check whether ch-strt(v) ∈ µ1(d1(τ1)). From Lemma 4.5
it will follow that together these local checks test whether (a’) and (b’) hold.

For every τ = (τ1, τ2) ∈ ∆, we define

slab(τ) := {a ∈ Σ |
(
δ1(τ1, a), δ2(τ2, a)

)
is an s-type}.
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and also we define d′ such that

µ(d′(τ)) =


µ2(d2(τ2)) ∩ µ1(d1(τ1)) if τ is a c-type(
µ2(d2(τ2)) ∩ (Σ \ slab(τ))∗

)
∪
(
µ2(d2(τ2)) ∩ µ1(d1(τ1)) ∩ (Σ∗ · slab(τ) · Σ∗)

)
if τ is not a c-type

That is, when τ is a c-type, µ(d′(τ)) contains exactly the intersection of µ1(d1(τ1)) and µ2(d2(τ2)). When
τ is not a c-type, it contains the strings in µ2(d2(τ2)) for which none of the symbols lead to an s-type, and
the strings in µ2(d2(τ2)) ∩ µ1(d1(τ1)), for which one of the elements leads to an s-type.

Moreover, in d′(τ), the type associated to any alphabet symbol a, i.e., the type τ ′ such that µ(τ ′) = a,
is τ ′ =

(
δ1(τ1, a), δ2(τ2, a)

)
.

To show that L(D′) = nv(D2, D1), we need the following lemma.

Lemma 4.5. Let t ∈ L(D′), v, u ∈ Dom(t) and τv = anc-typet(v), τu = anc-typet(u). Then,

(a) if τv is an s-type and u is the parent of v, then τu is an s-type;

(b) if τv is an s-type and u is a sibling of v, then τu is a c-type; and,

(c) if τv is a c-type and u is a child of v, then τu is a c-type.

Proof. Case (a): take a tree t? ∈ S1(τv) \ S2(τv). From the definition of S1(τv) there exist t′ ∈ L(D1) and

v′ ∈ Dom(t′) such that anc-typet
′
(v′) = τv and subtreet

′
(v′) = t?.

Since anc-typet
′
(v′) = anc-typet(v), we can modify the tree t′ to have the same ancestor string to

node v as the tree t without affecting its membership to L(D1). Thus, w.l.o.g. we can assume that
anc-strt

′
(v′) = anc-strt(v). Therefore v′ has a parent u′ of type τu. From the definition of d′ we have that

ch-strt(u) ⊆ µ1(d1(τu,1)), since labt(v) ∈ slab(τu). Again, by changing t′, we can assume that ch-strt
′
(u′) =

ch-strt(u). Therefore we have that subtreet
′
(u′) ∈ S1(τu) \ S2(τu).

Case (b): take a tree t? ∈ S1(τv) \ S2(τv). There exist t′ ∈ L(D1) and v′ ∈ Dom(t′) such that

anc-typet
′
(v′) = τv and subtreet

′
(v′) = t?. Since v has a sibling, it has also a parent w. W.l.o.g. we

can assume that anc-strt
′
(v′) = anc-strt(v) and ch-strt

′
(w′) = ch-strt(w), where w′ is a parent of w. Let

u′ = w′a for a ∈ Σ such that u = wa. We have that contextt
′
(u′) ∈ C1(τu) \ C2(τu).

Case (c): take a context C? ∈ C1(τv) \ C2(τv). There exist t′ ∈ L(D1) and v′ ∈ Dom(t′) such that
anc-typet

′
(v′) = τv and contextt

′
(v′) = C?. W.l.o.g. we can assume that ch-strt

′
(v′) = ch-strt(v). Let

u′ = v′a for u = va. We have that contextt
′
(u′) ∈ C1(τu) \ C2(τu).

We show that any tree t ∈ L(D′) satisfies (a’) and (b’) and thus L(D′) ⊆ nv(D2, D1). Thereto, let
t ∈ L(D′), v ∈ Dom(t) and τ = (τ1, τ2) = anc-typet(v). From the definition of d′(τ), if τ is a c-type or v has
a child which type is an s-type, then µ(d′(τ)) ⊆ µ1(d1(τ1)).

To show that (b’) holds, suppose that τ is a c-type. Then applying Lemma 4.5(c) recursively we get
that, for every descendant u of v, with the type τu = (τu,1, τu,2) = anc-typet(u), τu is a c-type. Hence, by
construction of d′, µ(d′(τu)) ⊆ µ1(d1(τu,1)). It follows that subtreet(v) ∈ S1(τ).

For (a’), assume that τ is an s-type. By Lemma 4.5(a) and (b), for every u ∈ Dom(contextt(v)), the
type τu = anc-typet(u) is either an s-type or a c-type. More specifically, for all such nodes u not on the
path from the root to v, τu is a c-type. Thus, by construction of d′, µ(d′(τu)) ⊆ µ1(d1(τu,1)). For all nodes
u on the path from the root to v, τu is an s-type. As any such node thus has a child which has an s-type,
again by construction of d′, µ(d′(τu)) ⊆ µ1(d1(τu,1)). Hence, contextt(v) ∈ C1(τ).

Therefore, t satisfies conditions (a’) and (b’) and thus L(D′) ⊆ nv(D2, D1). Now we show that any tree
t ∈ L(D2) which satisfies (a’) and (b’) must belong to L(D′). This will show that nv(D2, D1) ⊆ L(D′).

Consider a tree t ∈ L(D2), v ∈ Dom(t) and τ = (τ1, τ2) = anc-typet(v). Since t ∈ L(D2) we have
ch-strt(v) ∈ µ2(d2(τ2)).

If τ is a c-type, then in order to satisfy (b’) we have ch-strt(v) ∈ µ1(d1(τ1)). Thus ch-strt(v) ∈ µ2(d2(τ2))∩
µ1(d1(τ1)) = µ(d′(τ)).
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Now consider the case when τ is not a c-type. If there is a child u of v which has an s-type, then in
order to satisfy (a’) in u we have ch-strt(v) ∈ µ1(d1(τ1)). Such u exists only if labt(u) ∈ slab(τ), thus
ch-strt(v) ∈ Σ∗ · slab(τ) · Σ∗. Thus again ch-strt(v) ∈ µ(d′(τ)).

Since for every v ∈ Dom(t) of type τ we have ch-strt(v) ∈ µ(d′(τ)) then t ∈ L(D′). That concludes the
proof that L(D′) = nv(D2, D1).

Lemma 4.6. Let D1 and D2 be two single-type EDTDs. Then, nv(D2, D1) is definable by a single-type
EDTD. Moreover, it is computable in time polynomial in |D1|+ |D2|.

Proof. We can calculate the set of s-types and the set of c-types in polynomial time. As also the content
models in D′ can be constructed in polynomial time, the single-type EDTD D′ which defines nv(D2, D1)
can be computed in polynomial time.

Lemma 4.7. Let D1 and D2 be two single-type EDTDs. The language L(D1) ∪ nv(D2, D1) is definable by
a single-type EDTD.

Proof. Let E = nv(D2, D1). From Lemma 4.6 E is regular, thus L(D1) ∪ E is also regular.
We prove that L(D1)∪E is closed under ancestor-guarded subtree exchange. Assuming otherwise, there

exist trees t1, t2 ∈ L(D1) ∪ E and tB ∈ closure(t1, t2) such that tB 6∈ L(D1) ∪ E. From Lemma 4.6, both
L(D1) and E are closed under ancestor-guarded subtree exchange. Thus we only have to consider the case
where t1 ∈ L(D1) and t2 ∈ E.

From the definition of E, tB ∈ L(D2) \ E and there exist trees tA ∈ L(D1) and t ∈ closure(tA, tB) such
that t 6∈ L(D1) ∪ L(D2).

Therefore at least one of t(tA, tB(t1, t2)), t(tA, tB(t2, t1)), t(tB(t1, t2), tA) or t(tB(t2, t1), tA) is a derivation
tree of t 6∈ L(D1) ∪ L(D2) with respect to L(D1) ∪ nv(D2, D1). We show that such a tree cannot exist.
Applying Lemma 2.18 to these four derivation trees we get that there exists another derivation tree which
is one of the following:

(a) t(tA, t1),

(b) t(t1, tA),

(c) t(tA, t2),

(d) t(t2, tA),

(e) t(tC(tA, t1), t2),

(f) t(tD(t1, tA), t2),

(g) t(t2, tE(t1, tA)),

(h) both t(tC(tA, t2), t1) and t(tC(tA, t2), tB(t2, t1)),

(i) both t(tD(t2, tA), t1) and t(tD(t2, tA), tB(t2, t1)),

(j) both t(t1, tE(t2, tA)) and t(tB(t1, t2), tE(t2, tA)).

For example applying Lemma 2.18 to t(tA, tB(t1, t2)) we get cases (a), (c), (e) and (h).
Cases (a) and (b) contradict the fact that L(D1) is closed under ancestor-guarded subtree exchange.

Cases (c) and (d) contradict the definition of E. For cases (e)–(g) we have that tC , tD, tE ∈ L(D1) which
leads to contradiction with the definition of E.

Finally, for case (h) we have that tC ∈ L(D1) ∪ L(D2). If tC ∈ L(D1), we use the first derivation tree
and obtain a contradiction as L(D1) is closed under ancestor-guarded subtree exchange. If tC ∈ L(D2), we
use the second derivation tree and obtain a contradiction as L(D2) is closed under ancestor-guarded subtree
exchange. Cases (i) and (j) are analogous.

Theorem 4.8. Let D1 and D2 be single-type EDTDs. The language L(D1)∪nv(D2, D1) is a maximal lower
XSD-approximation of L(D1) ∪ L(D2). It is a unique maximal lower XSD-approximation which includes
L(D1).

Proof. From Lemma 4.7, L(D1)∪nv(D2, D1) is a lower XSD-approximation of L(D1)∪L(D2). It is maximal
and unique from the definition of non-violating set. (Uniqueness will also follows from Corollary 4.10.)

We note that L(D1) ∪ nv(D2, D1) can be computed in polynomial time.
We conclude this section with a remark on the relationship between D1, D2 and their maximal lower

XSD-approximation. Previously, we have shown that when we fix D1 there is a uniquely determined maximal
regular subset Y ⊆ L(D2) such that L(D1)∪Y is closed under ancestor-guarded subtree exchange. It remains
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open whether for every regular subset X ⊆ L(D1) there is a unique maximal regular subset Y ⊆ L(D2)
such that X ∪ Y is closed under ancestor-guarded subtree exchange. We show that a maximal lower XSD-
approximation is uniquely defined by its intersection with L(D1) (and dually, it is uniquely defined by its
intersection with L(D2)).

We will use the following lemma:

Lemma 4.9. Let X, Y1 and Y2 be tree languages. If X ∪ Y1 and X ∪ Y2 are closed under ancestor-guarded
subtree exchange, then X ∪ closure(Y1 ∪ Y2) is also closed under ancestor-guarded subtree exchange.

Proof. Let t ∈ closure(X ∪ Y1 ∪ Y2). We show that t ∈ X ∪ closure(Y1 ∪ Y2). As X ∪ closure(Y1 ∪ Y2) ⊆
closure(X ∪ Y1 ∪ Y2), it then follows that X ∪ closure(Y1 ∪ Y2) = closure(X ∪ Y1 ∪ Y2) and thus is closed
under ancestor-guarded subtree exchange. Let ϑ be a derivation tree of t with respect to X ∪ Y1 ∪ Y2.

If ϑ does not contain a node labeled by an element from X, then t ∈ closure(Y1 ∪ Y2) and we are done.
Therefore, from now on we assume that there is at least one node u that is labeled with an element from
X. Notice that we can assume that u is a leaf (otherwise we would remove all nodes under u and we would
still get a valid derivation tree). We will now argue that we can assume that the sibling of u is also leaf.
If we refer to the subtree rooted at u as ϑA, then we know from Lemma 2.18 that, if ϑ is a derivation tree
of t with respect to X ∪ Y1 ∪ Y2 in which the subtree rooted at the sibling of ϑA has depth k, then there
also exists a derivation tree ϑ′ of t with respect to X ∪ Y1 ∪ Y2 in which the subtree rooted at the sibling of
ϑA has depth k − 1. Therefore, we can assume that there exists a derivation tree ϑ of t in which each node
labeled by an element from X is a leaf and has a sibling that is also a leaf.

For every node u of ϑ, we show by induction on the depth of the subtree rooted at u that labϑ(u) ∈
X ∪ closure(Y1 ∪ Y2). For the induction base, if u is a leaf, then labϑ(u) is by definition in X ∪ Y1 ∪ Y2.
So, assume that the depth of subtreeϑ(u) is n. By induction, we know that the labels of u’s children are in
X∪closure(Y1∪Y2). If one of u’s children ui has a label from X, then we know that n = 2 because we proved
that we can assume this in ϑ. As such, the label of the other child uj of u is labeled with an element from
X ∪ Y1 ∪ Y2. If labϑ(uj) ∈ X ∪ Y1, then labϑ(u) ∈ X ∪ Y1 because X ∪ Y1 is closed under ancestor-guarded
subtree exchange. (Similarly if labϑ(uj) ∈ X ∪Y2). Otherwise, both children are labeled by an element from
closure(Y1 ∪ Y2). By definition of closure, it immediately follows that labϑ(u) ∈ closure(Y1 ∪ Y2) too, which
concludes our proof.

Corollary 4.10. Let A and B be two maximal lower XSD-approximations of L(D1)∪L(D2). If A∩L(D1) =
B ∩ L(D1) then A ∩ L(D2) = B ∩ L(D2).

Proof. Apply Lemma 4.9 to sets X = A ∩ L(D1), Y1 = A ∩ L(D2) and Y2 = B ∩ L(D2). Then we get that
A ∩ L(D1) ∪ closure(A ∩ L(D2) ∪ B ∩ L(D2)) is definable by a single-type EDTD and since closure(A ∩
L(D2)∪B∩L(D2)) ⊆ L(D2), it is a lower XSD-approximation. However it is a proper superset of A, unless
A ∩ L(D2) = B ∩ L(D2).

4.3. Complements of XSDs

Just as in the case of unions of XSDs, maximal lower XSD-approximations are not unique for complements
of XSDs.

Theorem 4.11. Let D be a DTD and let Dc be the EDTD for the complement of L(D). In general, the set
of maximal lower XSD-approximations for L(Dc) can be infinite, even over unary alphabets.

Proof. We prove the theorem by giving a DTD such that the set of maximal lower XSD-approximations for
its complement is infinite. To this end, let D be the DTD over alphabet {a} consisting of the single rule
a→ a + ε. Therefore, a tree is in L(Dc) if and only if at least one node has at least two children.

We argue that, for each n ≥ 1 the following single-type EDTD Xn, with start symbol τ1
a , is a maximal

lower XSD-approximation for L(Dc):

τ ia → (τ i+1
a )+ (for all 1 ≤ i < n)

τna → τn+1
a (τn+1

a )+

τn+1
a → (τn+1

a )∗
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Here µ(τ ia) = a for each i ∈ {1, . . . , n+ 1}. Notice that the languages defined by Xn are pairwise different,
since the tree tm = a(· · · (a(a, a)) of depth m is in L(Xn) if and only if n+ 1 = m.

We now prove that each Xn is a maximal lower XSD-approximation for L(Dc). To this end, let t be an
arbitrary tree from L(Dc)\L(Xn). We prove that closure(L(Xn)∪{t}) 6⊆ L(Dc). First we consider the case
when t has a leaf v with depth m ≤ n. Then, closure(t, tn+1) contains the tree a(· · · a(a)) of depth m from
L(D), which can be seen by applying ancestor-guarded subtree exchange on node v in Dom(t) and on node
1m−1 in Dom(tn+1). (Notice that the node 1m−1 has depth m.)

The other possibility is that in t every leaf v has depth greater than n. Then the tree must violate
the conditions of Xn in some node on depth n + 1, i.e., there is a node v with anc-strt(v) = an and v has
exactly one child. Then, closure(t, tn+1) contains the tree t′ = a(· · · (a(subtreet(v1)))), where root node of
subtreet(v1) has depth n + 1. This can be seen by applying ancestor-guarded subtree exchange on node v
in Dom(t) and node 1n−1 in Dom(tn+1). Finally, closure(t′, tn+1) contains the tree a(· · · (a)) of depth n+ 1,
by applying ancestor-guarded subtree exchange on nodes 1n in Dom(t′) and Dom(tn+1). Since the latter
tree is in L(D) it shows that closure(L(Xn) ∪ {t}) is not a lower approximation of L(Dc) in this case.

4.4. EDTDs

We now study lower XSD-approximations in general. That is, in this section we are interested in lower
XSD-approximations for general regular tree languages. In this setting, we need to leave some questions
unanswered. In particular, we do not know if every unranked regular tree language has a maximal lower
XSD-approximation; nor do we know the precise complexity of deciding whether a given XSD is a maximal
lower XSD-approximation of a regular tree language.

We know a bit more if regular tree language is depth-bounded, that is, if there exists a k ∈ N such the
every tree has depth at most k. In this setting, maximal lower XSD-approximations exist (Section 4.4.1)
and it is decidable whether a given single-type EDTD is a maximal lower approximation of a given EDTD
(Section 4.4.2). However, the algorithm to decide the latter question has a very high complexity and it is
not clear to us whether it can be improved.

4.4.1. Existence of Maximal Lower XSD-Approximations

We say that a tree language T is depth-bounded if there is a k ∈ N such that every tree from T has
depth at most k. In this subsection we show that there exists a maximal lower XSD-approximation for every
depth-bounded regular tree language.

For proving this result, we need some technical material. Let (X ,≤) be a partially ordered set (or, poset).
A chain C is a set of elements from X such that for all X,Y ∈ C, either X ≤ Y or Y ≤ X.

A forest is a possibly empty, ordered sequence of trees. For a tree t and a node v ∈ Dom(t) such that
subtreet(v) = a(t1, . . . , tn), we denote by subforestt(v) the forest t1, . . . , tn.

We recall the notion of monoid forest automata from [6]. To this end, a finite monoid is a triple (M,+, e)
where M is a finite set, + is a binary operator on M and e is an element from M such that the following
conditions hold: (1) for all x, y ∈ M , x+ y ∈ M , (2) for all x, y, z ∈ M , (x+ y) + z = x+ (y + z), and (3)
for all x ∈M , x+ e = e+ x = x.

A monoid forest automaton A = ((Q,+, q0),Σ, δ, F ) is a deterministic automaton where (Q,+, q0) is a
finite monoid, δ : Σ ×Q → Q is the transition function and F ⊆ Q is a set of final states. The automaton
assigns to every forest t a value A(t) ∈ Q which is defined as follows: (i) if t is empty, then A(t) = q0, (ii)
if t = a(s) for some forest s, then A(t) = δ(a,A(s)), and (iii) if t = t1, . . . , tn for some trees t1, . . . , tn, then
A(t) = A(t1) + . . .+A(tn). A forest is accepted by A if A(t) ∈ F .

Theorem 4.12. Let T be a depth-bounded regular tree language. For every lower XSD-approximation X of
T , there is a maximal lower XSD-approximation M of T with X ⊆M .

Proof. Let (X ,⊆) be a poset of all lower XSD-approximations of T which include X. Obviously, X ∈ X .
Now let us take a non-empty chain C from the poset and define XC as the union of all tree languages
from C. We show that XC is closed under ancestor-guarded subtree exchange. Indeed, for any two trees
t1, t2 ∈ XC there are two languages X1, X2 ∈ C such that t1 ∈ X1 and t2 ∈ X2. Since C is a chain we
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have either X1 ⊆ X2 or X2 ⊆ X1. W.l.o.g. we assume the latter, thus t1, t2 ∈ X1, and since X1 is a lower
XSD-approximation we have closure(t1, t2) ⊆ X1 ⊆ XC .

Hence, XC ∈ X and thus XC is an upper bound of the chain C. Therefore we can apply the Kuratowski-
Zorn lemma [9] to the poset, from which it follows that there is at least one maximal element M in (X ,⊆).

Therefore, there is a maximal set M which satisfies X ⊆ M ⊆ T and which is closed under ancestor-
guarded subtree exchange. We will show that M is a regular tree language.

Let us generalize the notion of single-type EDTDs to non-regular languages. In a generalized single-type
EDTD we allow d to map symbols to non-regular string languages. Since M is closed under ancestor-guarded
subtree exchange, we can define it by a generalized single-type EDTD D = (Σ,∆, d, Sd, µ). Let A be the
type automaton for D. Since M is depth-bounded, we can take such D that for every τ ∈ ∆ there is exactly
one string w with A(w) = τ . Let A = ((Q,+, q0),Σ, δA, F ) be a monoid forest automaton for T .

Let us assume that M is not regular. The depth-bounded language M is not regular if and only if there
is at least one τ ∈ ∆ for which d(τ) is not regular. Let us fix such a τ?.

For every a ∈ Σ, let τa be a type which appears in d(τ?) and µ(τa) = a (τa is undefined if there is no
such type). Moreover, let

La = {subtreet(v) | t ∈M,v ∈ Dom(t), anc-typet(v) = τa},
Qa = {q ∈ Q | ∃t ∈ La,A(t) = q},
QF = {q ∈ Q | ∃t ∈M, v ∈ Dom(t), anc-typet(v) = τ?,A(subforestt(v)) = q}.

Now we build a word automaton B = (2Q,Σ, δB, {q0}, 2QF ) with transition function

δB(S, a) = {q1 + q2 | q1 ∈ S, q2 ∈ Qa}.

Finally, we introduce D′ = (Σ,∆, d′, Sd, µ) with d′(τ) = d(τ) for any τ 6= τ?, d
′(τ?) contains only types

from {τa | a ∈ Σ} and µ(d′(τ?)) = L(B). It is clear that L(D′) is closed under ancestor-guarded subtree
exchangeand M ⊂ L(D′). We show that L(D′) ⊆ T .

Let t ∈ L(D′) and let v1, . . . , vk ∈ Dom(t) be nodes with anc-typet(vi) = τ?. Let fi = subforestt(vi).
Since A(fi) ∈ QF , we can find another forest f ′i such that

A(fi) = A(f ′i) (1)

and the tree t′, obtained by replacing every fi with f ′i , belongs to M . Therefore, t′ ∈ T and from (1) t ∈ T .

Applying the above procedure until no type τ , with non-regular d(τ), can be found results in a regular
set M ′ with M ⊂M ′ ⊆ T . This contradicts the maximality of M and thus M is itself regular.

4.4.2. Testing Maximal Lower XSD-Approximations

We turn ourselves to the question of deciding whether a given XSD is a maximal lower approximation of
a given EDTD. Similarly as in Section 4.4.1, we do not yet know if this problem is decidable in the general
case. Here, we prove that it is decidable if the given languages are depth-bounded.

We start with a few observations. Let S be a single-type EDTD that is a lower approximation of an
EDTD D. It is a maximal lower approximation of L(D) if and only if

there is no t ∈ L(D)− L(S), with closure(L(S) ∪ {t}) ⊆ L(D).

Furthermore, since L(S) ⊆ L(D) and since closure(L(S)) = L(S) we have that S is a maximal lower
approximation of L(D) if and only if

there is no t ∈ L(D) with closure(L(S) ∪ {t}) ⊆ L(D).

Let T be a regular tree language and N be an NFA. The type-closure of T with respect to N , denoted
by type-closureN (T ) is the smallest language which contains T and is closed under ancestor-type-guarded
subtree exchange w.r.t. N . Due to Theorem 4.2, S is a maximal lower approximation if and only if

there is no t ∈ L(D) with type-closureN (L(S) ∪ {t}) ⊆ L(D).
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In the above statement, N is the type automaton of an EDTD for closure(L(S) ∪ {t}). One approach for
an algorithm to decide whether S is a maximal lower approximation could therefore be to guess an N and
t such that type-closureN (L(S) ∪ {t}) ( L(D). However, we do not know a size bound on N or t.

Here, we can solve one aspect of this problem: once we know N , the size of t is no longer problematic.
However, the size of N is dependent on t and therefore, can also be arbitrarily large. For this reason, we
need to restrict to depth-bounded tree languages. If L(D) and L(S) are depth-bounded by k, then we can
bound the number of states of a deterministic type automaton for closure(L(S)∪ {t}) with O(Σk+1) states.
The reason is that trees in L(S) ∪ {t} contain at most |Σ|k+1 different ancestor-strings.

More formally, let Nk be the smallest state-labeled DFA over Σ with the property that, for each pair
of strings w1 6= w2 of length at most k, Nk ends up in different states when reading w1 and w2, that is,
w1 Nk(w1) 6= Nk(w2). Notice that Nk can be seen as a complete |Σ|-ary tree of depth k and therefore has
O(|Σ|k+1) states. Notice that, for languages depth-bounded by k, closure under ancestor-guarded subtree
exchange is exactly the same as closure under type-guarded subtree exchange by Nk. Therefore, for depth-
bounded languages by k, S is a maximal lower approximation if and only if

there is no t ∈ L(D), with type-closureNk(L(S) ∪ {t}) ⊆ L(D).

Our plan is to construct a tree automaton4 for the language {t ∈ L(D) | type-closureNk(L(S) ∪ {t}) ⊆
L(D)}. This tree automaton accepts the empty language if and only if S is a maximal lower approximation.
Constructing such a tree automaton, however, is not trivial. The main technical difficulty of this section
therefore lies in the following Lemma, which we prove later in this section:

Lemma 4.13. We can construct a non-deterministic tree automaton for {t ∈ L(D) | type-closureNk({t} ∪
L(S)) ⊆ L(D)} in time double exponential in |D|+ |S| and exponential in |Nk|.

More formally, in the statement of the above lemma, we mean that there exist fixed polynomials p1 and

p2 such that we can construct the non-deterministic tree automaton in time 22p1(|D|+|S|) × 2p2(|Nk|).
We briefly examine the size of Nk in terms |D| and |S|. To this end, we say that an EDTD F =

(Σ,∆F , dF , SF , µF ) is non-recursive if the directed graph (∆F , E) with edge-relation E = {(τ1, τ2) | d(τ1)
contains a string with label τ2} is acyclic. The following observation immediately follows from the definitions:

Observation 4.14. Let F be an EDTD. Then the following are equivalent:

(1) F is non-recursive;

(2) there exists a k ∈ N such that L(F ) is depth-bounded by k;

(3) L(F ) is depth-bounded by |F |.

The above observation tells us that, if |D| and |S| are non-recursive, we can assume that the size of Nk is
O(|Σ|max(|S|+|D|)+1). Furthermore, by Lemma 4.13 and since emptiness testing of a non-deterministic tree
automaton is in ptime, we obtain the following theorem:

Theorem 4.15. Given a single-type EDTD S and an EDTD D, deciding whether S is a maximal lower
XSD-approximation of L(D) is in 2exptime, if both S and D are non-recursive.

Indeed, the 2exptime upper bound on the complexity would be obtained by an algorithm that first tests
whether L(S) ⊆ L(D), then constructs the tree automaton from Lemma 4.13, and accepts if and only if
L(S) ⊆ L(D) and the constructed tree automaton accepts the empty language.

The rest of the section is devoted to the proof of the Lemma 4.13, which is rather technical. Our proof
uses non-deterministic tree automata, which we introduce formally introduce next.

A tree is binary if each node has either zero or two children. A non-deterministic binary tree automaton
is a tuple B = (Q,Σ, δ, F ), where Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a set of

4A tree automaton is an automata-theoretic model corresponding to EDTDs.
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transitions of the form a→ q or a(q1, q2)→ q, where a ∈ Σ, and q, q1, q2 ∈ Q. We refer to transitions a→ q
and a(q1, q2)→ q as leaf transitions and internal transitions, respectively. A run of B on a binary tree t is
a labeling λ : Dom(t)→ Q such that,

• for every leaf u with label a ∈ Σ, there is a rule a→ λ(u) in δ and

• for every non-leaf u with label a ∈ Σ, there is a rule a(λ(u1), λ(u2))→ λ(u) in δ.

We also consider the generalization of tree automata to (unranked) Σ-trees. A non-deterministic tree
automaton (NTA) is a tuple B = (Q,Σ, δ, F ), where Q is a finite set of states, F ⊆ Q is the set of final
states, and δ is a function δ : Q × Σ → 2Q

∗
such that δ(q, a) is a regular string language over Q for every

a ∈ Σ and q ∈ Q. A run of B on a tree t is a labeling λ : Dom(t)→ Q such that, for every v ∈ Dom(t) with
n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that when v has no children, then the criterion reduces
to ε ∈ δ(λ(v), labt(v)).

A run λ is accepting if it labels the root with a final state from F . A tree t is accepted by B if there
exists an accepting run of B on t. A tree is accepted if there is an accepting run. It is well-known that tree
automata are expressively equivalent to EDTDs and that there are quadratic time translations between tree
automata and equivalent EDTDs (this goes back to Thatcher [26]).

An EDTD for binary trees is an EDTD F such that L(F ) only contains binary trees. An EDTD
(Σ,∆, d, Sd, µ) for binary trees is bottom-up deterministic if, for every pair of rules d(τa1 ) = L1 and d(τa2 ) = L2

with µ(τa1 ) = µ(τa2 ) = a we have that L1∩L2 = ∅. It is folklore that EDTDs can be transformed into weakly
deterministic EDTDs using a subset construction, similar to tree automata. However, the transformation
causes an exponential blow-up.

We now prove a lemma that is similar to the main result in this section, but applies to binary trees. It
is the main technical lemma in this section.

Lemma 4.16. Let N be a state-labeled DFA and D a bottom-up deterministic EDTD for binary trees.
There exists a non-deterministic binary tree automaton for {t ∈ L(D) | type-closureN ({t}) ⊆ L(D)} of size
exponential in |D|+ |N |.

Proof. Let D = (Σ,∆, d, Sd, µ) and N = (QN ,Σ, δN , IN , ∅). For a type τ ∈ ∆, we denote by Dτ the bottom-
up deterministic EDTD (Σ,∆, d, {τ}, µ), i.e., the EDTD D with start symbol τ . W.l.o.g., we assume that
D is complete, i.e., for each tree t′, there is a type τ in ∆ such that t′ ∈ L(Dτ ). Since D is bottom-up
deterministic, this type τ is unique for each t′ and we denote τ by D(t′). We extend this notation to sets,
i.e., for T ⊆ TΣ, D(T ) is the set {τ | ∃t′ ∈ T such that t′ ∈ L(Dτ )}. Similarly, we assume that N is complete,
i.e., that N has a run on each Σ-string. For a state q of N , we denote by Nq the DFA (QN ,Σ, δN , {q}, ∅)
obtained from N by making q its initial state. In this proof, we denote by parent(u) the parent of node u.
If u is the root, then we define anc-strt(parent(u)) to be the empty string.

The goal of the proof is to construct a bottom-up non-deterministic tree automaton Atc for the language

{t ∈ L(D) | type-closureN ({t}) ⊆ L(D)}.

The intuition is that the state set of Atc includes subsets {τ1, . . . , τn} of ∆. When reading a tree t and Atc

visits a node u ∈ Dom(t) in such a state {τ1, . . . , τn}, we have that

∀τ ∈ ∆, τ ∈ {τ1, . . . , τn} iff

τ ∈ D(t′) for some t′ ∈ type-closureN
q

({subtreet(u)}) where q = N(anc-strt(parent(u))). (2)

Thus, if we visit the root of t in a state {τ1, . . . , τn} ⊆ Sd, then type-closureN ({t}) ⊆ L(D).
Formally, let Atc = (QA,Σ, δA, FA) be a binary tree automaton. Hence, the transition rules of Atc

are either leaf transitions of the form a → R for a ∈ Σ and R ∈ QA, or internal transitions of the form
a(R1, R2)→ R for a ∈ Σ and R1, R2, R ∈ QA. In a state R ∈ QA, we will store five components, which we
will define later in the proof:

R = (Types(R), anc-type(R), subtrees(R), contexts(R), forks(R)).
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In the following, we will define these sets formally and describe their intended meaning. The intended
meaning of these sets will always be explained in terms of a tree t and a node u in t, to which the state can
be assigned in a successful run.

The first component in a state R is Types(R):

(R1): Types(R) = {τ1, . . . , τn} ⊆ ∆. In an accepting run λ on a tree t, each node will be assigned a state
R = λ(u) with Types(R) = {τ1, . . . , τn} if and only if Types(R) satisfies equation (2) above with
respect to t and u.

If we can correctly make bottom-up transitions using these sets, we are done. For the leaf transitions, this
would be easy: we just have a → {D(a)} because closing a single-node tree under subtree exchange does
not add any trees. Now, consider the internal transitions. Here, assume that we have a transition with the
left-hand side a(R1, R2). We need to compute Types(R) such that a(R1, R2) → R is a valid transition, so
we want to maintain the invariant of equation (2). In this respect, consider a node u in the input tree t
and let subtreet(u) = a(t1, t2). Recall that, in t, the two children of u are u1 and u2. In the remainder
of the proof, we want to exhibit a fixpoint computation that computers Types(R) correctly, i.e., such that
equation (2) holds for all nodes in t.

The technical difficulty in this proof is that, in order to compute Types(R) correctly for the transition
a(R1, R2)→ R, the sets Types(R1) and Types(R2) do not provide enough information and we also need to
maintain the other four components of R mentioned above. We discuss these components under (R2)–(R5)
below and explain later in the proof why the information is needed and how it can be computed. Components
R2 and R3 can already be defined with our current technical material. For a node v in a tree t′, we call
the state N(anc-strt

′
(v)) the ancestor-type of v in t′ and we denote it by anc-typet

′
(v). We also store the

following sets in a state R:

(R2): A state anc-type(R) ∈ QN . In an accepting run λ on a tree t, each node u will be assigned a state
R = λ(u) where anc-type(R) is the ancestor-type of u in t.

(R3): A set of pairs subtrees(R) ⊆ QN ×∆. In an accepting run λ on a tree t, each node u will be assigned
a state R = λ(u) where subtrees(R) contains a pair (q, τ) if and only if there is a descendant uv of u

with q = anc-typet(parent(uv)) and τ ∈ D(type-closureN
q

(subtreet(uv))).

For the other sets, we first need more formal background. Recall that a context is a tree with a hole
marker in one leaf. A fork is a binary tree with three nodes, in which the two leaf nodes have hole markers.
For example, a((b, •), (c, •)) is a fork. To a context C we associate a function fC : ∆ → ∆ which behaves
as follows. For each type τ1, fC(τ1) := D(C[t1]), where t1 is a tree with D(t1) = τ1. Similarly, we associate
a function fF : ∆×∆ → ∆ to each fork F = a((b, •), (c, •)). For each pair of types (τ1, τ2), fF (τ1, τ2) = τ
if there are two trees t1 and t2 with D(t1) = τ1 and D(t2) = τ2, labt1(ε) = b and labt2(ε) = c and
τ = D(a(t1, t2)). Since D is bottom-up deterministic, these functions are well-defined.

Each pair of nodes u, uv of t induces a context Cuuv which is rooted at u and has the hole marker at uv.
Formally, if labt(uv) = a, then Cuuv is the subtree of t[uv ← (•, a)] rooted at u. Similarly, the fork induced by
a (non-leaf) node u ∈ t is a((b, •), (c, •)), where a = labt(u), b = labt(u1), and c = labt(u2). In the following,
we refer to subtreet(u) also as the subtree of t induced by u. Let F be a fork induced by node u with label a. A
6-tuple (q1, q2, q3, τ1, τ2, τ3) is induced by F when anc-typet(u) = q1, anc-typet(u1) = q2, anc-typet(u2) = q3,
and there is a pair of trees t1, t2 with D(t1) = τ2 and D(t2) = τ3 such that D(a(t1, t2)) = τ1. We can now
state the remaining information that needs to be stored in a state R of Atc:

(R4): A set contexts(R) ⊆ Q2 ×∆2. In an accepting run λ on a tree t, each node will be assigned a state
R = λ(u) in which contexts(R) contains the quadruple (q1, q2, τ1, τ2) if and only if there is a tree t′ in

type-closureN
q

(subtreet(u)), where the state q = N(anc-strt(parent(u))) and there are nodes v, vw in
t′ such that Nq(anc-strt

′
(parent(v))) = q1, Nq(anc-strt

′
(parent(vw))) = q2, and fCv

vw
(τ2) = τ1, where

fCv
vw

is the function associated to the context Cvvw.

(R5): The set forks(R) ⊆ Q3 ×∆3. In an accepting run λ on a tree t, each node will be assigned a state
R = λ(u) in which forks(R) contains all tuples induced by forks induced by nodes in subtreet(u).
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In the next part of the proof, we explain why these components are needed and how they can be
computed for the construction of the tree automaton’s transitions. The overall approach is the following.
If we want to correctly compute R for a transition a(R1, R2) → R, we perform a fixpoint computation
according to the rules we exhibit below. This fixpoint computation uses the information we store in R1

and R2 and iteratively adds sets to Types(R). Finally, we must also show how all the auxiliary information
(anc-type(R), subtrees(R), contexts(R), and forks(R)) can be computed. Notice that R only depends on
R1, R2, and the label a.

Before we explain the fixpoint computation for Types(R) we argue why anc-type(R) can already be
assumed to be known for each state R. It is easy to construct a tree automaton that reads a tree in a
top-down manner and that assigns, in an accepting run, the state anc-typet(u) to each node u. (This tree
automaton just simulates N on each path from the root.) Formally, this is a non-deterministic binary tree
automaton which is linearly large in N . In the current construction, we can simulate this automaton in
parallel to the rest of the automaton.

We perform the fixpoint computation for Types(R) according to several rules. Rule 1 simply propagates
information from Types(R1) and Types(R2) to Types(R):

Rule 1: If τ1 ∈ Types(R1), τ2 ∈ Types(R2), then we add all elements of set τprop :=
{
τ ∈ ∆ | τ1τ2 ∈ d(τ)

}
to Types(R).

With Rule 1 we can compute all sets τprop = D(t′) ∈ Types(R) for which

t′ ∈
{
a(t1, t2) | ∀i ∈ {1, 2}, ti ∈ type-closureNqi ({subtreet(ui)})

}
, where qi = anc-typet(parent(ui)).

A second step would be to include in Types(R) all types that are reachable by performing subtree exchange
between u and descendants uv of u in t with the same ancestor-type. In other words, we want to add all
elements of the set τsa = D(t′) to Types(R) for which

t′ ∈ {type-closureNqi (subtreet(uv)) | v 6= ε, qi = anc-typet(parent(uv)) and anc-typet(uv) = anc-typet(u)}.

In order to compute τsa we need to store ancestor-types in states as well. Therefore, a state R in QA also
needs to contain anc-type(R), i.e., (R2), and subtrees(R), i.e., (R3). Given these two sets, we can compute
τsa with the following rules:

Rule 2a: If there exists an i ∈ {1, 2} with anc-type(R) = anc-type(Ri) then Types(Ri) ⊆ Types(R).

Rule 2b: If there exists an i ∈ {1, 2} with (anc-type(R), τbu) ∈ subtrees(Ri), then τbu ∈ Types(R).

As argued above, we can already assume anc-type(R) to be known, so Rules 2a and 2b can indeed be used
to compute all τsa correctly.

Finally, we want to include in Types(R) all elements of ∆full = D(t′) for which

t′ ∈ type-closureN
q

({subtreet(u)}), where q = anc-typet(parent(u)). (3)

Here, subtrees from t′ with the same ancestor-type can be arbitrarily exchanged. In order to keep track of
the possible effects of subtree exchange on the reachable types in D, we need to remember the effects of
contexts in t′ on the reachable types in D. Therefore, we need to store contexts(R), i.e., (R4).

However, it is not clear that contexts(R) is enough. If t′ is an arbitrary tree obeying equation (3) then
this tree is a “patchwork” of parts from subtreet(u). These parts are, in general, subtrees, contexts, and
generalized contexts. A generalized context is a tree C which can have k leaves labeled with Σ×{•}-symbols
for an arbitrary k ∈ N. The following lemma states that each tree t′ can be seen as a patchwork mentioned
above:

Lemma 4.17. Let t be an arbitrary tree. Each tree in type-closureN ({t}) can be partitioned into (generalized)
contexts and subtrees induced by nodes in t.
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(a) Illustration of a possible partitioning
of a tree into subtrees, contexts, and gen-
eralized contexts.

a

d
e f

b c

(b) Illustration of a possible partitioning of a
generalized context into contexts, forks, and
subtrees.

Figure 2: Illustrations for Lemmas 4.17 and 4.18.

This lemma is illustrated in Figure 2(a). The lemma claims that each tree in the closure can be split up
into parts, similar to the tree in Figure 2(a). It can easily be proved by induction on the number of subtree
exchanges performed.

However, remembering all possible effects of generalized contexts on types is problematic for the tree
automaton construction, because a generalized context induces a function from ∆k → ∆ for an arbitrary
(non-fixed) k. If k is not fixed, the number of such functions is arbitrarily large and therefore we cannot
store them in a finite state of the automaton. However, the next lemma states that remembering the effects
of (1) contexts and (2) forks is sufficient to also be able to compute the effects of all generalized contexts.
The next lemma follows from the definitions:

Lemma 4.18. Each generalized context can be partitioned into contexts and forks.

This lemma is illustrated in Figure 2(b), which contains a partitioning of a generalized context into
contexts and forks. By combining Lemmas 4.17 and 4.18, we obtain that remembering contexts and forks
is sufficient:

Lemma 4.19. Let t be an arbitrary tree. Each tree in type-closureN ({t}) can be partitioned into contexts,
forks, and subtrees induced by nodes in t.

Lemma 4.19 is the reason why we store forks(R), i.e., (R5). Notice that forks(R) can already be computed
from labt(u), labt(u1), labt(u2), forks(R1), and forks(R2). We can therefore assume forks(R) to be already
known.

In the following rules, 3a simply propagates contexts, forks, and subtrees from R1 and R2 to R. Rule
3b adds the new fork defined by node u to R. Rules 3c–3e add the new contexts an subtrees obtained by
taking contexts and subtrees from R1 and R2 and adding the new root u.

Rule 3a: For all i ∈ {1, 2}, contexts(Ri) ⊆ contexts(R), forks(Ri) ⊆ forks(R),
and subtrees(Ri) ⊆ subtrees(R).

Rule 3b: For all τ1 ∈ Types(R1), τ2 ∈ Types(R2), τ3 ∈ {τ | τ1τ2 ∈ d(τ)},
(anc-str(R), anc-str(R1), anc-str(R2), τ3, τ1, τ2) ∈ forks(R).

Rule 3c: For all (anc-type(R1), τ1) ∈ subtrees(R1), (anc-type(R2), τ2) ∈ subtrees(R2),
and τ3 ∈ {τ | τ1τ2 ∈ d(τ)}, we have (anc-type(R), τ3) ∈ subtrees(R).

Rule 3d: For all (anc-type(R1), q2, τ1, τ2) ∈ contexts(R1), (anc-type(R2), τ3) ∈ subtrees(R2),
τ4 ∈ {τ | τ1τ3 ∈ d(τ)}, (anc-type(R), q2, τ4, τ2) ∈ contexts(R).
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Rule 3e: For all (anc-type(R1), τ1) ∈ subtrees(R1), (anc-type(R2), q3, τ2, τ3) ∈ contexts(R2),
τ4 ∈ {τ | τ1τ2 ∈ d(τ)}, (anc-type(R), q3, τ4, τ3) ∈ contexts(R).

The following rules now close the already obtained information under ancestor-type-guarded subtree
exchange.

Rule 4a: If (q1, q2, τ1, τ2) ∈ contexts(R) and (q2, q3, τ2, τ3) ∈ contexts(R) then (q1, q3, τ1, τ3) ∈ contexts(R).

Rule 4b: If (q1, q2, q3, τ1, τ2, τ3) ∈ forks(R), (q4, τ4) ∈ subtrees(R), and (q2, q4, τ2, τ4)
and (q3, q5, τ3, τ5) ∈ contexts(R), then (q1, q5, τ1, τ5) ∈ contexts(R).

Rule 4c: If (q1, q2, q3, τ1, τ2, τ3) ∈ forks(R), (q5, τ5) ∈ subtrees(R), and (q2, q4, τ2, τ4)
and (q3, q5, τ3, τ5) ∈ contexts(R), then (q1, q4, τ1, τ4) ∈ contexts(R).

Rule 4d: If (q1, q2, τ1, τ2) ∈ contexts(R) and (q2, τ2) ∈ subtrees(R), (q1, τ1) ∈ subtrees(R).

Rule 4e: If there are (q1, τ1) and (q2, τ2) ∈ subtrees(R) such that q1 = anc-type(R1) and q2 = anc-type(R2),
then τfull = {τ | τ1τ2 ∈ d(τ)} is in Types(R).

Rule 4f: If (anc-type(R), τfull) ∈ subtrees(R), then τfull ∈ Types(R).

This concludes the description of the transition rules. The actual transition function is computed by
applying a fixed point computation using these rules.

We now generalize Lemma 4.16 to also take the language of the given lower XSD-approximation S into
account.

Lemma 4.20. Let N be a state-labeled DFA and D and S be bottom-up deterministic EDTDs for binary
trees such that L(S) ⊆ L(D). Let Σ′ ⊆ Σ. There exists a non-deterministic binary tree automaton for

{t ∈ L(D) | type-closureN,Σ
′
({t} ∪ L(S)) ⊆ L(D)} of size exponential in |D|+ |S|+ |N |.

Proof. If we want to compute whether

type-closureN,Σ
′
({t} ∪ L(S)) ⊆ L(D)

instead of
type-closureN,Σ

′
({t}) ⊆ L(D),

we need to include the trees of L(S) into the fixpoint computation in the proof of Corollary 4.21.
Intuitively, we want to precompute sets subtrees(N,S,D), contexts(N,S,D), and forks(N,S,D) that we

can add to each state R in the automaton of the proof of Lemma 4.16. So, the extra sets subtrees(N,S,D),
contexts(N,S,D), and forks(N,S,D) are the same for every state R in Lemma 4.16.

Formally, let D = (Σ,∆D, dD, SD, µD) and S = (Σ,∆S , dS , SS , µS). For every t ∈ L(S) we denote by
tS (resp., tD) the unique tree in dS (resp., dD) with µS(tS) = t (resp., µD(tD) = t). We first define the
sets subtrees′(N,S,D), contexts′(N,S,D), and forks′(N,S,D) which also include types from S that will be
projected out later. These sets are formally defined as follows:

subtrees′(N,S,D): {(τN , τS , τD) | ∃t ∈ L(S), u ∈ Dom(t) such that N(anc-strt(u)) = {τN}, labtS (u) = τS ,
and labtD (u) = τD}

contexts′(N,S,D): {(τ1
N , τ

2
N , τ

1
S , τ

2
S , τ

1
D, τ

2
D) | ∃t ∈ L(S), u, uv ∈ Dom(t) such that N(anc-strt(u)) = {τ1

N},
N(anc-strt(uv)) = {τ2

N}, labtS (u) = τ1
S , labtS (uv) = τ2

S and, for the induced context C by u and uv
we have that fC(τ1

D) = τ2
D} (Induced contexts and fC are defined in the proof of Lemma 4.16.)

forks′(N,S,D): {(τ1
N , τ

2
N , τ

3
N , τ

1
S , τ

2
S , τ

3
S , τ

1
D, τ

2
D, τ

2
D) | ∃t ∈ L(S), u, u1, u2 ∈ Dom(t), such thatN(anc-strt(u)) =

{τ1
N}, N(anc-strt(u1)) = {τ2

N}, N(anc-strt(u2)) = {τ3
N}, labtS (u) = τ1

S , labtS (u1) = τ2
S , labtS (u2) =

τ2
S and, for the induced fork F by u we have that fF (τ2

D, τ
3
D) = τ1

D} (Induced forks and fF are defined
in the proof of Lemma 4.16.)
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Figure 3: A tree and its binary encoding.

These sets can all be computed from N , S, and D in a similar fashion. We illustrate the computation for
the sets subtrees′(N,S,D) and contexts′(N,S,D). First we construct the product S ×D of S and D and
we reduce it. (One can immediately construct a reduced product by a bottom-up construction similar to
the standard tree automaton emptiness test, see, e.g., [11].) The type set of this product EDTD is precisely
the subset of ∆S × ∆D with pairs (τS , τD) such that there’s a tree t and a node u ∈ Dom(t) for which
labtS (u) = τS and labtD (u) = τD. Then, we construct the reduced product of S × D with the EDTD
that simulates N on each path, i.e., the EDTD EN with DTD dEN

defined as dEN
(τ) = ∪a∈Στa, where

τa is the unique state of N such that δ(τ, a) = τa. The set of triples of types in EN × S × D is precisely
subtrees′(N,S,D).

The set contexts′(N,S,D) can now be computed as follows. First, we compute the reduced product
EN × S. For each τ ∈ ∆D, we consider all pairs (τN , τS) of types in EN × S. Then, for each such triple
(τN , τS , τ), we perform a construction very similar to the standard tree automaton emptiness test, i.e., we
add in a fixpoint computation, all tuples (τ1

N , τ
2
N , τ

1
S , τ

2
S , τ

1
D, τ) to contexts′(N,S,D) for which either

(a) τ2
N = τN , τ2

S = τS , there is an a ∈ Σ such that µEN
(τ1
N ) = µS(τ1

S) = µD(τ1
D) = a, and τ3

Nτ
2
N ∈ dEN

(τ1
N ),

τ3
Sτ

2
S ∈ dS(τ1

S) and τ3
Dτ ∈ dD(τ1

D) for some (τ3
N , τ

3
S , τ

3
D) ∈ subtrees′(N,S,D);

(b) τ2
N = τN , τ2

S = τS , there is an a ∈ Σ such that µEN
(τ1
N ) = µS(τ1

S) = µD(τ1
D) = a, and τ2

Nτ
3
N ∈ dEN

(τ1
N ),

τ2
Sτ

3
S ∈ dS(τ1

S) and ττ3
D ∈ dD(τ1

D) for some (τ3
N , τ

3
S , τ

3
D) ∈ subtrees′(N,S,D);

(c) there is a (τ3
N , τ

2
N , τ

3
S , τ

2
S , τ

3
D, τ) in contexts′(N,S,D), a (τ4

N , τ
4
S , τ

4
D) ∈ subtrees′(N,S,D) and an a ∈ Σ

such that µEN
(τ1
N ) = µS(τ1

S) = µD(τ1
D) = a and τ4

Nτ
3
N ∈ dEN

(τ1
N ), τ4

Sτ
3
S ∈ dS(τ1

S) and τ4
Dτ

3
D ∈ dD(τ1

D);

(d) there is a (τ3
N , τ

2
N , τ

3
S , τ

2
S , τ

3
D, τ) in contexts′(N,S,D), a (τ4

N , τ
4
S , τ

4
D) ∈ subtrees′(N,S,D) and an a ∈ Σ

such that µEN
(τ1
N ) = µS(τ1

S) = µD(τ1
D) = a and τ3

Nτ
4
N ∈ dEN

(τ1
N ), τ3

Sτ
4
S ∈ dS(τ1

S) and τ3
Dτ

4
D ∈ dD(τ1

D).

The set forks′(N,S,D) can be computed in a similar fashion.
Finally, the relations subtrees(N,S,D), contexts(N,S,D), and forks(N,S,D) are obtained from their

primed variants by projecting out all types of τS , τ
1
S , τ

2
S , and τ3

S .

We now want to make the transition from binary trees to unranked trees. To this end, we use an encoding
of unranked trees into binary trees that is illustrated in Figure 3 and that is similar to the well-known first-
child next-sibling encoding. However, an important difference is that, in our encoding, each subtree in the
binary tree that is rooted with a Σ-label corresponds to a subtree in the unranked tree. We need this
correspondence between subtrees in order to be able to translate the type closure of an unranked language
to a type closure of the encoded binary language.

However, this means that, to leverage the result on binary trees to the unranked tree setting, we need to
perform type closure only on subtrees with Σ-labels at their roots and not on subtrees rooted with the label
#. Therefore, the first step in the transition to unranked trees is the observation that the construction in
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Lemma 4.16 can be adapted to this purpose. Formally, for a set of alphabet symbols Σ′ ⊆ Σ, define the set

type-closureN,Σ
′
(T ) to be the smallest set such that

• T ⊆ type-closureN,Σ
′
(T ), and

• if t1, t2 ∈ type-closureN,Σ
′
(T ), then t := t1[u ← subtreet2(v)] is also in type-closureN,Σ

′
(T ), where

N(anc-strt1(u)) = N(anc-strt2(v)) and labt1(u) = labt2(v) ∈ Σ′.

In other words, type-closureN,Σ
′
(T ) is obtained from T by performing ancestor-type guarded subtree ex-

change, only on nodes labeled with Σ′-labels. This gives the following corollary:

Corollary 4.21. Let N be a state-labeled DFA and D be a bottom-up deterministic EDTD for binary trees.

Let Σ′ ⊆ Σ. There exists a non-deterministic binary tree automaton for {t ∈ L(D) | type-closureN,Σ
′
({t}) ⊆

L(D)} of size exponential in |D|+ |N |.

We are now ready to generalize Lemma 4.16 to unranked trees. Since we do not assume D to be
deterministic, the constructed unranked tree automaton has size double exponential in |D|.

Lemma 4.22. Let N be a state-labeled DFA and D an EDTD. There exists an unranked tree automaton
for {t ∈ L(D) | type-closureN ({t}) ⊆ L(D)} of size double exponential in |D| and exponential in |N |, that

is, of size at most 22p1(|D|) × 2p2(|N |), where p1 and p2 are polynomials.

Proof. We obtain this lemma by calling Corollary 4.21 after going through the binary encoding for unranked
trees that is illustrated in Figure 3. Notice that, in this encoding, each subtree in the binary tree that is
rooted with a Σ-label corresponds to a subtree in the unranked tree. We need this correspondence between
subtrees in order to be able to translate the type closure of an unranked language to a type closure of the
encoded binary language.

Similarly to well-known procedures concerning the first-child next-sibling encoding, we can translate
non-deterministic tree automata (and EDTDs) for unranked regular tree languages to non-deterministic
tree automata accepting the corresponding encoded regular tree language and vice versa.

Notice that, when Σ′ is the alphabet for D, the alphabet for the corresponding EDTD Dbin for the
encoded trees is Σ′ ] {#}. The lemma now follows by calling Corollary 4.21 with the following ingredients:

• The state-labeled DFA N in Corollary 4.21 is obtained from the given automaton N by adding self-
loops labeled # to every state and translating the resulting automaton in a state-labeled automaton.
This DFA has size linear in |N |.

• The alphabet Σ′ in Corollary 4.21 is the same as Σ′ here.

• The EDTD D in Corollary 4.21 is the bottom-up deterministic EDTD obtained by determinizing Dbin.
This EDTD has size exponential in |D|.

Notice that Corollary 4.21 holds for trees of arbitrary depth.
We obtain the tree automaton for our present lemma by transforming the binary tree automaton that

results from Corollary 4.21 back to an unranked tree automaton. The state-labeled DFA we used to call
Corollary 4.21 has size O(|N |) and there exists a fixed polynomial p such that the EDTD has size at most
2p(|D|). Therefore, there exist polynomials p1 and p2 that do not depend on N or D such that the tree

automaton that we obtain from applying Corollary 4.21 has size at most 22p1(|D|) × 2p2(|N |).

We now finally have all the necessary material to prove Lemma 4.13.

Proof of Lemma 4.13. This proof is analogous to the proof of Lemma 4.22, but now we call Lemma 4.20 after
going through the binary encoding for unranked trees. Notice that now, we need to encode and determinize
S as well. Since the automaton resulting from Lemma 4.20, is exponentially larger than S, D, and N the
resulting automaton here is of size doubly exponential in S and D, and exponential in N .
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5. Content Models

In the previous sections, we always represented content models in schemas by DFAs. We next discuss
what changes when using regular expressions or NFAs.

For NFAs all remains the same, except for the following: Lemma 3.3 becomes pspace-complete, since
already inclusion testing for NFAs is pspace-complete.

Lemma 5.1. Let D1 be an EDTD(NFA) and let D2 be a single-type EDTD(NFA). Testing whether L(D1) ⊆
L(D2) is in pspace.

Proof. We provide a pspace algorithm for the complement of the problem. Since pspace is closed under
complement, this proves the lemma.

Let D2 = (Σ,∆2, d2, Sd2 , µ2) and A2 be the (deterministic) type automaton of D2. A tree t is not in
the language defined by the single-type EDTD D2 if and only if there exists a node u ∈ Dom(t) such that
ch-strt(u) 6∈ L(d2(τ)), where A2(anc-strt(u)) = {τ}. The intuition of our pspace procedure is to guess a
path up to such a node u, such that this path can occur in a tree in L(D1).

Since D1 is reduced (Proviso 2.3), every string that can be handled by the type automaton A1 of D1 can
occur as an ancestor-path of a tree in L(D1). More formally, for a string w, there exists a tree t ∈ L(D1)
and a node u in t with anc-strt(u) = w if and only if A1(w) 6= ∅.

Our pspace algorithm consists of the following steps:

(1) Guess w one symbol at a time while maintaining (A1(w), A2(w)).

(2) Test whether there exists a τ1 ∈ A1(w) for which µ1(d1(τ1)) 6⊆ µ2(d2(τ2)) for the unique τ2 ∈ A2(w).

Step (1) only requires polynomial space because we only need to remember the last symbol of w, the set
A1(w) and the singleton A2(w). Step (2) is in pspace since inclusion testing between NFAs and regular
expressions is in pspace (Theorem 3.4).

The size of the optimal upper approximation of the complement of an XSD can become exponentially
large (Theorem 3.9), since complementing an NFA causes an exponential blow-up.

For regular expressions things are similar to NFAs. Again, Lemma 3.3 becomes pspace-complete. Since
the smallest expression for the intersection of two regular expressions can be exponential, and since comple-
menting a regular expression can cause a double-exponential blow-up [14], we have an (optimal) exponential
upper bound for Theorem 3.6 and an optimal double exponential upper bound for Theorem 3.9.

For deterministic regular expression the complexity of all decision problems remains the same as there
is an efficient translation to DFAs. Unfortunately, we lose uniqueness. As is shown in [4], in general,
there exists no best approximation for an arbitrary regular language by a deterministic regular expression.
However, heuristics are available to transfer a DFA to a concise deterministic regular expressions which is
an upper approximation of the given DFA [4]. So the present methods for computing upper approximations
given in Section 3 followed by a translation of DFAs to deterministic regular expressions using the methods
of [4] provides an algorithm for approximating real world XSDs.

Furthermore, the complexity of minimizing stEDTDs also depends on the formalism for the content
models. In particular, for NFAs or DREs, deciding minimality of an single type EDTD is already pspace-
complete.

6. Conclusion

We showed that the case of optimal upper approximations behaves very well: there always exists a
unique one and for union and difference the latter is even tractable. In combination with the methods
of [4], the present work provides usable algorithms for computing upper XSD-approximations. Optimal
lower approximations, in strong contrast, are much less understood. The most important open problem is
undoubtedly the question whether there is an optimal lower approximation for every regular tree language.
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